use bevy::{input::keyboard::KeyboardInput, prelude::*, type_registry::TypeRegistry}; fn main() { App::build() .add_default_plugins() // Registering components informs Bevy that they exist. This allows them to be used when loading scenes // This step is only required if you want to load your components from scene files. // Unregistered components can still be used in your code, but they will be ignored during scene save/load. // In the future registering components will also make them usable from the Bevy editor. // The core Bevy plugins already register their components, so you only need this step for custom components. .register_component::() .register_component::() .add_startup_system(save_scene_system) .add_startup_system(load_scene_system.system()) .add_system(print_system.system()) .run(); } // Registered components must implement the `Properties` and `FromResources` traits. // The `Properties` trait enables serialization, deserialization, dynamic property access, and change detection. // `Properties` enable a bunch of cool behaviors, so its worth checking out the dedicated `properties.rs` example. // The `FromResources` trait determines how your component is constructed when it loads. For simple use cases you can just // implement the `Default` trait (which automatically implements FromResources). The simplest registered component just needs // these two derives: #[derive(Properties, Default)] struct ComponentA { pub x: f32, pub y: f32, } // Some components have fields that cannot (or should not) be written to scene files. These can be ignored with // the #[property(ignore)] attribute. This is also generally where the `FromResources` trait comes into play. // `FromResources` gives you access to your App's current ECS `Resources` when you construct your component. #[derive(Properties)] struct ComponentB { pub value: String, #[property(ignore)] pub event_reader: EventReader, } impl FromResources for ComponentB { fn from_resources(resources: &Resources) -> Self { let event_reader = resources.get_event_reader::(); ComponentB { event_reader, value: "Default Value".to_string(), } } } fn load_scene_system(asset_server: Res, mut scene_spawner: ResMut) { // Scenes are loaded just like any other asset. let scene_handle: Handle = asset_server .load("assets/scene/load_scene_example.scn") .unwrap(); // SceneSpawner can "spawn" scenes. "spawning" a scene creates a new instance of the scene in the World with new entity ids. // This guarantees that it will not overwrite existing entities. scene_spawner.spawn(scene_handle); // SceneSpawner can also "load" scenes. "loading" a scene preserves the entity ids in the scene. // In general, you should "spawn" scenes when you are dynamically composing your World and "load" scenes for things like game saves. scene_spawner.load(scene_handle); // we have now loaded `scene_handle` AND spawned it, which means our World now has one set of entities with the Scene's ids and // one set of entities with new ids // This tells the AssetServer to watch for changes to assets. // It enables our scenes to automatically reload in game when we modify their files asset_server.watch_for_changes().unwrap(); } // Using SceneSpawner spawn() and load() queues them up to be added to the World at the beginning of the next update. However if // you need scenes to load immediately, you can use the following approach. But be aware that this takes full control of the ECS world // and therefore blocks other parallel systems from executing until it finishes. In most cases you should use the SceneSpawner // spawn() and load() methods. #[allow(dead_code)] fn load_scene_right_now_system(world: &mut World, resources: &mut Resources) { let scene_handle: Handle = { let asset_server = resources.get::().unwrap(); let mut scenes = resources.get_mut::>().unwrap(); asset_server .load_sync(&mut scenes, "assets/scene/load_scene_example.scn") .unwrap() }; let mut scene_spawner = resources.get_mut::().unwrap(); scene_spawner.load_sync(world, resources, scene_handle).unwrap(); } // This system prints all ComponentA components in our world. Try making a change to a ComponentA in load_scene_example.scn. // You should immediately see the changes appear in the console. fn print_system(world: &mut SubWorld, query: &mut Query>) { println!("Current World State:"); for (entity, component_a) in query.iter_entities(world) { println!(" Entity({})", entity.index()); println!( " ComponentA: {{ x: {} y: {} }}\n", component_a.x, component_a.y ); } } fn save_scene_system(_world: &mut World, resources: &mut Resources) { // Scenes can be created from any ECS World. You can either create a new one for the scene or use the current World. let mut world = World::new(); world .build() .build_entity() .add(ComponentA { x: 1.0, y: 2.0 }) .add(ComponentB { value: "hello".to_string(), ..ComponentB::from_resources(resources) }) .build_entity() .add(ComponentA { x: 3.0, y: 4.0 }); // The component registry resource contains information about all registered components. This is used to construct scenes. let type_registry = resources.get::().unwrap(); let scene = Scene::from_world(&world, &type_registry.component.read().unwrap()); // Scenes can be serialized like this: println!( "{}", scene .serialize_ron(&type_registry.property.read().unwrap()) .unwrap() ); // TODO: save scene }