use std::f32::consts::PI; use super::{Primitive2d, WindingOrder}; use crate::{Dir2, Vec2}; /// A circle primitive #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Circle { /// The radius of the circle pub radius: f32, } impl Primitive2d for Circle {} impl Default for Circle { /// Returns the default [`Circle`] with a radius of `0.5`. fn default() -> Self { Self { radius: 0.5 } } } impl Circle { /// Create a new [`Circle`] from a `radius` #[inline(always)] pub const fn new(radius: f32) -> Self { Self { radius } } /// Get the diameter of the circle #[inline(always)] pub fn diameter(&self) -> f32 { 2.0 * self.radius } /// Get the area of the circle #[inline(always)] pub fn area(&self) -> f32 { PI * self.radius.powi(2) } /// Get the perimeter or circumference of the circle #[inline(always)] #[doc(alias = "circumference")] pub fn perimeter(&self) -> f32 { 2.0 * PI * self.radius } /// Finds the point on the circle that is closest to the given `point`. /// /// If the point is outside the circle, the returned point will be on the perimeter of the circle. /// Otherwise, it will be inside the circle and returned as is. #[inline(always)] pub fn closest_point(&self, point: Vec2) -> Vec2 { let distance_squared = point.length_squared(); if distance_squared <= self.radius.powi(2) { // The point is inside the circle. point } else { // The point is outside the circle. // Find the closest point on the perimeter of the circle. let dir_to_point = point / distance_squared.sqrt(); self.radius * dir_to_point } } } /// An ellipse primitive #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Ellipse { /// Half of the width and height of the ellipse. /// /// This corresponds to the two perpendicular radii defining the ellipse. pub half_size: Vec2, } impl Primitive2d for Ellipse {} impl Default for Ellipse { /// Returns the default [`Ellipse`] with a half-width of `1.0` and a half-height of `0.5`. fn default() -> Self { Self { half_size: Vec2::new(1.0, 0.5), } } } impl Ellipse { /// Create a new `Ellipse` from half of its width and height. /// /// This corresponds to the two perpendicular radii defining the ellipse. #[inline(always)] pub const fn new(half_width: f32, half_height: f32) -> Self { Self { half_size: Vec2::new(half_width, half_height), } } /// Create a new `Ellipse` from a given full size. /// /// `size.x` is the diameter along the X axis, and `size.y` is the diameter along the Y axis. #[inline(always)] pub fn from_size(size: Vec2) -> Self { Self { half_size: size / 2.0, } } #[inline(always)] /// Returns the [eccentricity](https://en.wikipedia.org/wiki/Eccentricity_(mathematics)) of the ellipse. /// It can be thought of as a measure of how "stretched" or elongated the ellipse is. /// /// The value should be in the range [0, 1), where 0 represents a circle, and 1 represents a parabola. pub fn eccentricity(&self) -> f32 { let a = self.semi_major(); let b = self.semi_minor(); (a * a - b * b).sqrt() / a } #[inline(always)] /// Get the focal length of the ellipse. This corresponds to the distance between one of the foci and the center of the ellipse. /// /// The focal length of an ellipse is related to its eccentricity by `eccentricity = focal_length / semi_major` pub fn focal_length(&self) -> f32 { let a = self.semi_major(); let b = self.semi_minor(); (a * a - b * b).sqrt() } #[inline(always)] /// Get an approximation for the perimeter or circumference of the ellipse. /// /// The approximation is reasonably precise with a relative error less than 0.007%, getting more precise as the eccentricity of the ellipse decreases. pub fn perimeter(&self) -> f32 { let a = self.semi_major(); let b = self.semi_minor(); // In the case that `a == b`, the ellipse is a circle if a / b - 1. < 1e-5 { return PI * (a + b); }; // In the case that `a` is much larger than `b`, the ellipse is a line if a / b > 1e4 { return 4. * a; }; // These values are the result of (0.5 choose n)^2 where n is the index in the array // They could be calculated on the fly but hardcoding them yields more accurate and faster results // because the actual calculation for these values involves factorials and numbers > 10^23 const BINOMIAL_COEFFICIENTS: [f32; 21] = [ 1., 0.25, 0.015625, 0.00390625, 0.0015258789, 0.00074768066, 0.00042057037, 0.00025963783, 0.00017140154, 0.000119028846, 0.00008599834, 0.00006414339, 0.000049109784, 0.000038430585, 0.000030636627, 0.000024815668, 0.000020380836, 0.000016942893, 0.000014236736, 0.000012077564, 0.000010333865, ]; // The algorithm used here is the Gauss-Kummer infinite series expansion of the elliptic integral expression for the perimeter of ellipses // For more information see https://www.wolframalpha.com/input/?i=gauss-kummer+series // We only use the terms up to `i == 20` for this approximation let h = ((a - b) / (a + b)).powi(2); PI * (a + b) * (0..=20) .map(|i| BINOMIAL_COEFFICIENTS[i] * h.powi(i as i32)) .sum::() } /// Returns the length of the semi-major axis. This corresponds to the longest radius of the ellipse. #[inline(always)] pub fn semi_major(&self) -> f32 { self.half_size.max_element() } /// Returns the length of the semi-minor axis. This corresponds to the shortest radius of the ellipse. #[inline(always)] pub fn semi_minor(&self) -> f32 { self.half_size.min_element() } /// Get the area of the ellipse #[inline(always)] pub fn area(&self) -> f32 { PI * self.half_size.x * self.half_size.y } } /// A primitive shape formed by the region between two circles, also known as a ring. #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] #[doc(alias = "Ring")] pub struct Annulus { /// The inner circle of the annulus pub inner_circle: Circle, /// The outer circle of the annulus pub outer_circle: Circle, } impl Primitive2d for Annulus {} impl Default for Annulus { /// Returns the default [`Annulus`] with radii of `0.5` and `1.0`. fn default() -> Self { Self { inner_circle: Circle::new(0.5), outer_circle: Circle::new(1.0), } } } impl Annulus { /// Create a new [`Annulus`] from the radii of the inner and outer circle #[inline(always)] pub const fn new(inner_radius: f32, outer_radius: f32) -> Self { Self { inner_circle: Circle::new(inner_radius), outer_circle: Circle::new(outer_radius), } } /// Get the diameter of the annulus #[inline(always)] pub fn diameter(&self) -> f32 { self.outer_circle.diameter() } /// Get the thickness of the annulus #[inline(always)] pub fn thickness(&self) -> f32 { self.outer_circle.radius - self.inner_circle.radius } /// Get the area of the annulus #[inline(always)] pub fn area(&self) -> f32 { PI * (self.outer_circle.radius.powi(2) - self.inner_circle.radius.powi(2)) } /// Get the perimeter or circumference of the annulus, /// which is the sum of the perimeters of the inner and outer circles. #[inline(always)] #[doc(alias = "circumference")] pub fn perimeter(&self) -> f32 { 2.0 * PI * (self.outer_circle.radius + self.inner_circle.radius) } /// Finds the point on the annulus that is closest to the given `point`: /// /// - If the point is outside of the annulus completely, the returned point will be on the outer perimeter. /// - If the point is inside of the inner circle (hole) of the annulus, the returned point will be on the inner perimeter. /// - Otherwise, the returned point is overlapping the annulus and returned as is. #[inline(always)] pub fn closest_point(&self, point: Vec2) -> Vec2 { let distance_squared = point.length_squared(); if self.inner_circle.radius.powi(2) <= distance_squared { if distance_squared <= self.outer_circle.radius.powi(2) { // The point is inside the annulus. point } else { // The point is outside the annulus and closer to the outer perimeter. // Find the closest point on the perimeter of the annulus. let dir_to_point = point / distance_squared.sqrt(); self.outer_circle.radius * dir_to_point } } else { // The point is outside the annulus and closer to the inner perimeter. // Find the closest point on the perimeter of the annulus. let dir_to_point = point / distance_squared.sqrt(); self.inner_circle.radius * dir_to_point } } } /// An unbounded plane in 2D space. It forms a separating surface through the origin, /// stretching infinitely far #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Plane2d { /// The normal of the plane. The plane will be placed perpendicular to this direction pub normal: Dir2, } impl Primitive2d for Plane2d {} impl Default for Plane2d { /// Returns the default [`Plane2d`] with a normal pointing in the `+Y` direction. fn default() -> Self { Self { normal: Dir2::Y } } } impl Plane2d { /// Create a new `Plane2d` from a normal /// /// # Panics /// /// Panics if the given `normal` is zero (or very close to zero), or non-finite. #[inline(always)] pub fn new(normal: Vec2) -> Self { Self { normal: Dir2::new(normal).expect("normal must be nonzero and finite"), } } } /// An infinite line along a direction in 2D space. /// /// For a finite line: [`Segment2d`] #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Line2d { /// The direction of the line. The line extends infinitely in both the given direction /// and its opposite direction pub direction: Dir2, } impl Primitive2d for Line2d {} /// A segment of a line along a direction in 2D space. #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] #[doc(alias = "LineSegment2d")] pub struct Segment2d { /// The direction of the line segment pub direction: Dir2, /// Half the length of the line segment. The segment extends by this amount in both /// the given direction and its opposite direction pub half_length: f32, } impl Primitive2d for Segment2d {} impl Segment2d { /// Create a new `Segment2d` from a direction and full length of the segment #[inline(always)] pub fn new(direction: Dir2, length: f32) -> Self { Self { direction, half_length: length / 2.0, } } /// Create a new `Segment2d` from its endpoints and compute its geometric center /// /// # Panics /// /// Panics if `point1 == point2` #[inline(always)] pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) { let diff = point2 - point1; let length = diff.length(); ( // We are dividing by the length here, so the vector is normalized. Self::new(Dir2::new_unchecked(diff / length), length), (point1 + point2) / 2., ) } /// Get the position of the first point on the line segment #[inline(always)] pub fn point1(&self) -> Vec2 { *self.direction * -self.half_length } /// Get the position of the second point on the line segment #[inline(always)] pub fn point2(&self) -> Vec2 { *self.direction * self.half_length } } /// A series of connected line segments in 2D space. /// /// For a version without generics: [`BoxedPolyline2d`] #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Polyline2d { /// The vertices of the polyline #[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))] pub vertices: [Vec2; N], } impl Primitive2d for Polyline2d {} impl FromIterator for Polyline2d { fn from_iter>(iter: I) -> Self { let mut vertices: [Vec2; N] = [Vec2::ZERO; N]; for (index, i) in iter.into_iter().take(N).enumerate() { vertices[index] = i; } Self { vertices } } } impl Polyline2d { /// Create a new `Polyline2d` from its vertices pub fn new(vertices: impl IntoIterator) -> Self { Self::from_iter(vertices) } } /// A series of connected line segments in 2D space, allocated on the heap /// in a `Box<[Vec2]>`. /// /// For a version without alloc: [`Polyline2d`] #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct BoxedPolyline2d { /// The vertices of the polyline pub vertices: Box<[Vec2]>, } impl Primitive2d for BoxedPolyline2d {} impl FromIterator for BoxedPolyline2d { fn from_iter>(iter: I) -> Self { let vertices: Vec = iter.into_iter().collect(); Self { vertices: vertices.into_boxed_slice(), } } } impl BoxedPolyline2d { /// Create a new `BoxedPolyline2d` from its vertices pub fn new(vertices: impl IntoIterator) -> Self { Self::from_iter(vertices) } } /// A triangle in 2D space #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Triangle2d { /// The vertices of the triangle pub vertices: [Vec2; 3], } impl Primitive2d for Triangle2d {} impl Default for Triangle2d { /// Returns the default [`Triangle2d`] with the vertices `[0.0, 0.5]`, `[-0.5, -0.5]`, and `[0.5, -0.5]`. fn default() -> Self { Self { vertices: [Vec2::Y * 0.5, Vec2::new(-0.5, -0.5), Vec2::new(0.5, -0.5)], } } } impl Triangle2d { /// Create a new `Triangle2d` from points `a`, `b`, and `c` #[inline(always)] pub const fn new(a: Vec2, b: Vec2, c: Vec2) -> Self { Self { vertices: [a, b, c], } } /// Get the area of the triangle #[inline(always)] pub fn area(&self) -> f32 { let [a, b, c] = self.vertices; (a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)).abs() / 2.0 } /// Get the perimeter of the triangle #[inline(always)] pub fn perimeter(&self) -> f32 { let [a, b, c] = self.vertices; let ab = a.distance(b); let bc = b.distance(c); let ca = c.distance(a); ab + bc + ca } /// Get the [`WindingOrder`] of the triangle #[inline(always)] #[doc(alias = "orientation")] pub fn winding_order(&self) -> WindingOrder { let [a, b, c] = self.vertices; let area = (b - a).perp_dot(c - a); if area > f32::EPSILON { WindingOrder::CounterClockwise } else if area < -f32::EPSILON { WindingOrder::Clockwise } else { WindingOrder::Invalid } } /// Compute the circle passing through all three vertices of the triangle. /// The vector in the returned tuple is the circumcenter. pub fn circumcircle(&self) -> (Circle, Vec2) { // We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations. // // A = (0, 0) // * // / \ // / \ // / \ // / \ // / U \ // / \ // *-------------* // B C let a = self.vertices[0]; let (b, c) = (self.vertices[1] - a, self.vertices[2] - a); let b_length_sq = b.length_squared(); let c_length_sq = c.length_squared(); // Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2 let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip(); let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq); let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq); let u = Vec2::new(ux, uy); // Compute true circumcenter and circumradius, adding the tip coordinate so that // A is translated back to its actual coordinate. let center = u + a; let radius = u.length(); (Circle { radius }, center) } /// Reverse the [`WindingOrder`] of the triangle /// by swapping the first and last vertices #[inline(always)] pub fn reverse(&mut self) { self.vertices.swap(0, 2); } } /// A rectangle primitive #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] #[doc(alias = "Quad")] pub struct Rectangle { /// Half of the width and height of the rectangle pub half_size: Vec2, } impl Primitive2d for Rectangle {} impl Default for Rectangle { /// Returns the default [`Rectangle`] with a half-width and half-height of `0.5`. fn default() -> Self { Self { half_size: Vec2::splat(0.5), } } } impl Rectangle { /// Create a new `Rectangle` from a full width and height #[inline(always)] pub fn new(width: f32, height: f32) -> Self { Self::from_size(Vec2::new(width, height)) } /// Create a new `Rectangle` from a given full size #[inline(always)] pub fn from_size(size: Vec2) -> Self { Self { half_size: size / 2.0, } } /// Create a new `Rectangle` from two corner points #[inline(always)] pub fn from_corners(point1: Vec2, point2: Vec2) -> Self { Self { half_size: (point2 - point1).abs() / 2.0, } } /// Create a `Rectangle` from a single length. /// The resulting `Rectangle` will be the same size in every direction. #[inline(always)] pub fn from_length(length: f32) -> Self { Self { half_size: Vec2::splat(length / 2.0), } } /// Get the size of the rectangle #[inline(always)] pub fn size(&self) -> Vec2 { 2.0 * self.half_size } /// Get the area of the rectangle #[inline(always)] pub fn area(&self) -> f32 { 4.0 * self.half_size.x * self.half_size.y } /// Get the perimeter of the rectangle #[inline(always)] pub fn perimeter(&self) -> f32 { 4.0 * (self.half_size.x + self.half_size.y) } /// Finds the point on the rectangle that is closest to the given `point`. /// /// If the point is outside the rectangle, the returned point will be on the perimeter of the rectangle. /// Otherwise, it will be inside the rectangle and returned as is. #[inline(always)] pub fn closest_point(&self, point: Vec2) -> Vec2 { // Clamp point coordinates to the rectangle point.clamp(-self.half_size, self.half_size) } } /// A polygon with N vertices. /// /// For a version without generics: [`BoxedPolygon`] #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct Polygon { /// The vertices of the `Polygon` #[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))] pub vertices: [Vec2; N], } impl Primitive2d for Polygon {} impl FromIterator for Polygon { fn from_iter>(iter: I) -> Self { let mut vertices: [Vec2; N] = [Vec2::ZERO; N]; for (index, i) in iter.into_iter().take(N).enumerate() { vertices[index] = i; } Self { vertices } } } impl Polygon { /// Create a new `Polygon` from its vertices pub fn new(vertices: impl IntoIterator) -> Self { Self::from_iter(vertices) } } /// A polygon with a variable number of vertices, allocated on the heap /// in a `Box<[Vec2]>`. /// /// For a version without alloc: [`Polygon`] #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct BoxedPolygon { /// The vertices of the `BoxedPolygon` pub vertices: Box<[Vec2]>, } impl Primitive2d for BoxedPolygon {} impl FromIterator for BoxedPolygon { fn from_iter>(iter: I) -> Self { let vertices: Vec = iter.into_iter().collect(); Self { vertices: vertices.into_boxed_slice(), } } } impl BoxedPolygon { /// Create a new `BoxedPolygon` from its vertices pub fn new(vertices: impl IntoIterator) -> Self { Self::from_iter(vertices) } } /// A polygon where all vertices lie on a circle, equally far apart. #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] pub struct RegularPolygon { /// The circumcircle on which all vertices lie pub circumcircle: Circle, /// The number of sides pub sides: usize, } impl Primitive2d for RegularPolygon {} impl Default for RegularPolygon { /// Returns the default [`RegularPolygon`] with six sides (a hexagon) and a circumradius of `0.5`. fn default() -> Self { Self { circumcircle: Circle { radius: 0.5 }, sides: 6, } } } impl RegularPolygon { /// Create a new `RegularPolygon` /// from the radius of the circumcircle and a number of sides /// /// # Panics /// /// Panics if `circumradius` is non-positive #[inline(always)] pub fn new(circumradius: f32, sides: usize) -> Self { assert!(circumradius > 0.0, "polygon has a non-positive radius"); assert!(sides > 2, "polygon has less than 3 sides"); Self { circumcircle: Circle { radius: circumradius, }, sides, } } /// Get the radius of the circumcircle on which all vertices /// of the regular polygon lie #[inline(always)] pub fn circumradius(&self) -> f32 { self.circumcircle.radius } /// Get the inradius or apothem of the regular polygon. /// This is the radius of the largest circle that can /// be drawn within the polygon #[inline(always)] #[doc(alias = "apothem")] pub fn inradius(&self) -> f32 { self.circumradius() * (PI / self.sides as f32).cos() } /// Get the length of one side of the regular polygon #[inline(always)] pub fn side_length(&self) -> f32 { 2.0 * self.circumradius() * (PI / self.sides as f32).sin() } /// Get the area of the regular polygon #[inline(always)] pub fn area(&self) -> f32 { let angle: f32 = 2.0 * PI / (self.sides as f32); (self.sides as f32) * self.circumradius().powi(2) * angle.sin() / 2.0 } /// Get the perimeter of the regular polygon. /// This is the sum of its sides #[inline(always)] pub fn perimeter(&self) -> f32 { self.sides as f32 * self.side_length() } /// Get the internal angle of the regular polygon in degrees. /// /// This is the angle formed by two adjacent sides with points /// within the angle being in the interior of the polygon #[inline(always)] pub fn internal_angle_degrees(&self) -> f32 { (self.sides - 2) as f32 / self.sides as f32 * 180.0 } /// Get the internal angle of the regular polygon in radians. /// /// This is the angle formed by two adjacent sides with points /// within the angle being in the interior of the polygon #[inline(always)] pub fn internal_angle_radians(&self) -> f32 { (self.sides - 2) as f32 * PI / self.sides as f32 } /// Get the external angle of the regular polygon in degrees. /// /// This is the angle formed by two adjacent sides with points /// within the angle being in the exterior of the polygon #[inline(always)] pub fn external_angle_degrees(&self) -> f32 { 360.0 / self.sides as f32 } /// Get the external angle of the regular polygon in radians. /// /// This is the angle formed by two adjacent sides with points /// within the angle being in the exterior of the polygon #[inline(always)] pub fn external_angle_radians(&self) -> f32 { 2.0 * PI / self.sides as f32 } /// Returns an iterator over the vertices of the regular polygon, /// rotated counterclockwise by the given angle in radians. /// /// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`. pub fn vertices(self, rotation: f32) -> impl IntoIterator { // Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0) let start_angle = rotation + std::f32::consts::FRAC_PI_2; let step = std::f32::consts::TAU / self.sides as f32; (0..self.sides).map(move |i| { let theta = start_angle + i as f32 * step; let (sin, cos) = theta.sin_cos(); Vec2::new(cos, sin) * self.circumcircle.radius }) } } /// A 2D capsule primitive, also known as a stadium or pill shape. /// /// A two-dimensional capsule is defined as a neighborhood of points at a distance (radius) from a line #[derive(Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] #[doc(alias = "stadium", alias = "pill")] pub struct Capsule2d { /// The radius of the capsule pub radius: f32, /// Half the height of the capsule, excluding the hemicircles pub half_length: f32, } impl Primitive2d for Capsule2d {} impl Default for Capsule2d { /// Returns the default [`Capsule2d`] with a radius of `0.5` and a half-height of `0.5`, /// excluding the hemicircles. fn default() -> Self { Self { radius: 0.5, half_length: 0.5, } } } impl Capsule2d { /// Create a new `Capsule2d` from a radius and length pub fn new(radius: f32, length: f32) -> Self { Self { radius, half_length: length / 2.0, } } } #[cfg(test)] mod tests { // Reference values were computed by hand and/or with external tools use super::*; use approx::assert_relative_eq; #[test] fn rectangle_closest_point() { let rectangle = Rectangle::new(2.0, 2.0); assert_eq!(rectangle.closest_point(Vec2::X * 10.0), Vec2::X); assert_eq!(rectangle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE); assert_eq!( rectangle.closest_point(Vec2::new(0.25, 0.1)), Vec2::new(0.25, 0.1) ); } #[test] fn circle_closest_point() { let circle = Circle { radius: 1.0 }; assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X); assert_eq!( circle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE.normalize() ); assert_eq!( circle.closest_point(Vec2::new(0.25, 0.1)), Vec2::new(0.25, 0.1) ); } #[test] fn annulus_closest_point() { let annulus = Annulus::new(1.5, 2.0); assert_eq!(annulus.closest_point(Vec2::X * 10.0), Vec2::X * 2.0); assert_eq!( annulus.closest_point(Vec2::NEG_ONE), Vec2::NEG_ONE.normalize() * 1.5 ); assert_eq!( annulus.closest_point(Vec2::new(1.55, 0.85)), Vec2::new(1.55, 0.85) ); } #[test] fn circle_math() { let circle = Circle { radius: 3.0 }; assert_eq!(circle.diameter(), 6.0, "incorrect diameter"); assert_eq!(circle.area(), 28.274334, "incorrect area"); assert_eq!(circle.perimeter(), 18.849556, "incorrect perimeter"); } #[test] fn annulus_math() { let annulus = Annulus::new(2.5, 3.5); assert_eq!(annulus.diameter(), 7.0, "incorrect diameter"); assert_eq!(annulus.thickness(), 1.0, "incorrect thickness"); assert_eq!(annulus.area(), 18.849556, "incorrect area"); assert_eq!(annulus.perimeter(), 37.699112, "incorrect perimeter"); } #[test] fn ellipse_math() { let ellipse = Ellipse::new(3.0, 1.0); assert_eq!(ellipse.area(), 9.424778, "incorrect area"); assert_eq!(ellipse.eccentricity(), 0.94280905, "incorrect eccentricity"); let line = Ellipse::new(1., 0.); assert_eq!(line.eccentricity(), 1., "incorrect line eccentricity"); let circle = Ellipse::new(2., 2.); assert_eq!(circle.eccentricity(), 0., "incorrect circle eccentricity"); } #[test] fn ellipse_perimeter() { let circle = Ellipse::new(1., 1.); assert_relative_eq!(circle.perimeter(), 6.2831855); let line = Ellipse::new(75_000., 0.5); assert_relative_eq!(line.perimeter(), 300_000.); let ellipse = Ellipse::new(0.5, 2.); assert_relative_eq!(ellipse.perimeter(), 8.578423); let ellipse = Ellipse::new(5., 3.); assert_relative_eq!(ellipse.perimeter(), 25.526999); } #[test] fn triangle_math() { let triangle = Triangle2d::new( Vec2::new(-2.0, -1.0), Vec2::new(1.0, 4.0), Vec2::new(7.0, 0.0), ); assert_eq!(triangle.area(), 21.0, "incorrect area"); assert_eq!(triangle.perimeter(), 22.097439, "incorrect perimeter"); } #[test] fn triangle_winding_order() { let mut cw_triangle = Triangle2d::new( Vec2::new(0.0, 2.0), Vec2::new(-0.5, -1.2), Vec2::new(-1.0, -1.0), ); assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise); let ccw_triangle = Triangle2d::new( Vec2::new(-1.0, -1.0), Vec2::new(-0.5, -1.2), Vec2::new(0.0, 2.0), ); assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise); // The clockwise triangle should be the same as the counterclockwise // triangle when reversed cw_triangle.reverse(); assert_eq!(cw_triangle, ccw_triangle); let invalid_triangle = Triangle2d::new( Vec2::new(0.0, 2.0), Vec2::new(0.0, -1.0), Vec2::new(0.0, -1.2), ); assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid); } #[test] fn rectangle_math() { let rectangle = Rectangle::new(3.0, 7.0); assert_eq!( rectangle, Rectangle::from_corners(Vec2::new(-1.5, -3.5), Vec2::new(1.5, 3.5)) ); assert_eq!(rectangle.area(), 21.0, "incorrect area"); assert_eq!(rectangle.perimeter(), 20.0, "incorrect perimeter"); } #[test] fn regular_polygon_math() { let polygon = RegularPolygon::new(3.0, 6); assert_eq!(polygon.inradius(), 2.598076, "incorrect inradius"); assert_eq!(polygon.side_length(), 3.0, "incorrect side length"); assert_relative_eq!(polygon.area(), 23.38268, epsilon = 0.00001); assert_eq!(polygon.perimeter(), 18.0, "incorrect perimeter"); assert_eq!( polygon.internal_angle_degrees(), 120.0, "incorrect internal angle" ); assert_eq!( polygon.internal_angle_radians(), 120_f32.to_radians(), "incorrect internal angle" ); assert_eq!( polygon.external_angle_degrees(), 60.0, "incorrect external angle" ); assert_eq!( polygon.external_angle_radians(), 60_f32.to_radians(), "incorrect external angle" ); } #[test] fn triangle_circumcenter() { let triangle = Triangle2d::new( Vec2::new(10.0, 2.0), Vec2::new(-5.0, -3.0), Vec2::new(2.0, -1.0), ); let (Circle { radius }, circumcenter) = triangle.circumcircle(); // Calculated with external calculator assert_eq!(radius, 98.34887); assert_eq!(circumcenter, Vec2::new(-28.5, 92.5)); } #[test] fn regular_polygon_vertices() { let polygon = RegularPolygon::new(1.0, 4); // Regular polygons have a vertex at the top by default let mut vertices = polygon.vertices(0.0).into_iter(); assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7); // Rotate by 45 degrees, forming an axis-aligned square let mut rotated_vertices = polygon.vertices(std::f32::consts::FRAC_PI_4).into_iter(); // Distance from the origin to the middle of a side, derived using Pythagorean theorem let side_sistance = std::f32::consts::FRAC_1_SQRT_2; assert!( (rotated_vertices.next().unwrap() - Vec2::new(-side_sistance, side_sistance)).length() < 1e-7, ); } }