use proc_macro::{TokenStream, TokenTree}; use proc_macro2::{Span, TokenStream as TokenStream2}; use quote::{quote, ToTokens}; use std::collections::HashSet; use syn::{ parenthesized, parse::Parse, parse_macro_input, parse_quote, punctuated::Punctuated, spanned::Spanned, token::{Comma, Paren}, Data, DataStruct, DeriveInput, ExprClosure, ExprPath, Fields, Ident, LitStr, Path, Result, Token, Visibility, }; pub fn derive_event(input: TokenStream) -> TokenStream { let mut ast = parse_macro_input!(input as DeriveInput); let bevy_ecs_path: Path = crate::bevy_ecs_path(); ast.generics .make_where_clause() .predicates .push(parse_quote! { Self: Send + Sync + 'static }); let struct_name = &ast.ident; let (impl_generics, type_generics, where_clause) = &ast.generics.split_for_impl(); TokenStream::from(quote! { impl #impl_generics #bevy_ecs_path::event::Event for #struct_name #type_generics #where_clause { type Traversal = (); const AUTO_PROPAGATE: bool = false; } }) } pub fn derive_resource(input: TokenStream) -> TokenStream { let mut ast = parse_macro_input!(input as DeriveInput); let bevy_ecs_path: Path = crate::bevy_ecs_path(); ast.generics .make_where_clause() .predicates .push(parse_quote! { Self: Send + Sync + 'static }); let struct_name = &ast.ident; let (impl_generics, type_generics, where_clause) = &ast.generics.split_for_impl(); TokenStream::from(quote! { impl #impl_generics #bevy_ecs_path::resource::Resource for #struct_name #type_generics #where_clause { } }) } pub fn derive_component(input: TokenStream) -> TokenStream { let mut ast = parse_macro_input!(input as DeriveInput); let bevy_ecs_path: Path = crate::bevy_ecs_path(); let attrs = match parse_component_attr(&ast) { Ok(attrs) => attrs, Err(e) => return e.into_compile_error().into(), }; let relationship = match derive_relationship(&ast, &attrs, &bevy_ecs_path) { Ok(value) => value, Err(err) => err.into_compile_error().into(), }; let relationship_target = match derive_relationship_target(&ast, &attrs, &bevy_ecs_path) { Ok(value) => value, Err(err) => err.into_compile_error().into(), }; let storage = storage_path(&bevy_ecs_path, attrs.storage); let on_add = hook_register_function_call(quote! {on_add}, attrs.on_add); let mut on_insert = hook_register_function_call(quote! {on_insert}, attrs.on_insert); let mut on_replace = hook_register_function_call(quote! {on_replace}, attrs.on_replace); let on_remove: Option = hook_register_function_call(quote! {on_remove}, attrs.on_remove); let mut on_despawn = hook_register_function_call(quote! {on_despawn}, attrs.on_despawn); if relationship.is_some() { if on_insert.is_some() { return syn::Error::new( ast.span(), "Custom on_insert hooks are not supported as relationships already define an on_insert hook", ) .into_compile_error() .into(); } on_insert = Some( quote!(hooks.on_insert(::on_insert);), ); if on_replace.is_some() { return syn::Error::new( ast.span(), "Custom on_replace hooks are not supported as Relationships already define an on_replace hook", ) .into_compile_error() .into(); } on_replace = Some( quote!(hooks.on_replace(::on_replace);), ); } if let Some(relationship_target) = &attrs.relationship_target { if on_replace.is_some() { return syn::Error::new( ast.span(), "Custom on_replace hooks are not supported as RelationshipTarget already defines an on_replace hook", ) .into_compile_error() .into(); } on_replace = Some( quote!(hooks.on_replace(::on_replace);), ); if relationship_target.despawn_descendants { if on_despawn.is_some() { return syn::Error::new( ast.span(), "Custom on_despawn hooks are not supported as this RelationshipTarget already defines an on_despawn hook, via the despawn_descendants attribute", ) .into_compile_error() .into(); } on_despawn = Some( quote!(hooks.on_despawn(::on_despawn);), ); } } ast.generics .make_where_clause() .predicates .push(parse_quote! { Self: Send + Sync + 'static }); let requires = &attrs.requires; let mut register_required = Vec::with_capacity(attrs.requires.iter().len()); let mut register_recursive_requires = Vec::with_capacity(attrs.requires.iter().len()); if let Some(requires) = requires { for require in requires { let ident = &require.path; register_recursive_requires.push(quote! { <#ident as #bevy_ecs_path::component::Component>::register_required_components( requiree, components, storages, required_components, inheritance_depth + 1, recursion_check_stack ); }); match &require.func { Some(RequireFunc::Path(func)) => { register_required.push(quote! { components.register_required_components_manual::( storages, required_components, || { let x: #ident = #func().into(); x }, inheritance_depth, recursion_check_stack ); }); } Some(RequireFunc::Closure(func)) => { register_required.push(quote! { components.register_required_components_manual::( storages, required_components, || { let x: #ident = (#func)().into(); x }, inheritance_depth, recursion_check_stack ); }); } None => { register_required.push(quote! { components.register_required_components_manual::( storages, required_components, <#ident as Default>::default, inheritance_depth, recursion_check_stack ); }); } } } } let struct_name = &ast.ident; let (impl_generics, type_generics, where_clause) = &ast.generics.split_for_impl(); let mutable_type = (attrs.immutable || relationship.is_some()) .then_some(quote! { #bevy_ecs_path::component::Immutable }) .unwrap_or(quote! { #bevy_ecs_path::component::Mutable }); let clone_handler = if relationship_target.is_some() { quote!(#bevy_ecs_path::component::ComponentCloneHandler::ignore()) } else { quote!( use #bevy_ecs_path::component::{ComponentCloneViaClone, ComponentCloneBase}; (&&&#bevy_ecs_path::component::ComponentCloneSpecializationWrapper::::default()).get_component_clone_handler() ) }; // This puts `register_required` before `register_recursive_requires` to ensure that the constructors of _all_ top // level components are initialized first, giving them precedence over recursively defined constructors for the same component type TokenStream::from(quote! { impl #impl_generics #bevy_ecs_path::component::Component for #struct_name #type_generics #where_clause { const STORAGE_TYPE: #bevy_ecs_path::component::StorageType = #storage; type Mutability = #mutable_type; fn register_required_components( requiree: #bevy_ecs_path::component::ComponentId, components: &mut #bevy_ecs_path::component::Components, storages: &mut #bevy_ecs_path::storage::Storages, required_components: &mut #bevy_ecs_path::component::RequiredComponents, inheritance_depth: u16, recursion_check_stack: &mut #bevy_ecs_path::__macro_exports::Vec<#bevy_ecs_path::component::ComponentId> ) { #bevy_ecs_path::component::enforce_no_required_components_recursion(components, recursion_check_stack); let self_id = components.register_component::(storages); recursion_check_stack.push(self_id); #(#register_required)* #(#register_recursive_requires)* recursion_check_stack.pop(); } #[allow(unused_variables)] fn register_component_hooks(hooks: &mut #bevy_ecs_path::component::ComponentHooks) { #on_add #on_insert #on_replace #on_remove #on_despawn } fn get_component_clone_handler() -> #bevy_ecs_path::component::ComponentCloneHandler { #clone_handler } } #relationship #relationship_target }) } pub fn document_required_components(attr: TokenStream, item: TokenStream) -> TokenStream { let paths = parse_macro_input!(attr with Punctuated::::parse_terminated) .iter() .map(|r| format!("[`{}`]", r.path.to_token_stream())) .collect::>() .join(", "); let bevy_ecs_path = crate::bevy_ecs_path() .to_token_stream() .to_string() .replace(' ', ""); let required_components_path = bevy_ecs_path + "::component::Component#required-components"; // Insert information about required components after any existing doc comments let mut out = TokenStream::new(); let mut end_of_attributes_reached = false; for tt in item { if !end_of_attributes_reached & matches!(tt, TokenTree::Ident(_)) { end_of_attributes_reached = true; let doc: TokenStream = format!("#[doc = \"\n\n# Required Components\n{paths} \n\n A component's [required components]({required_components_path}) are inserted whenever it is inserted. Note that this will also insert the required components _of_ the required components, recursively, in depth-first order.\"]").parse().unwrap(); out.extend(doc); } out.extend(Some(tt)); } out } pub const COMPONENT: &str = "component"; pub const STORAGE: &str = "storage"; pub const REQUIRE: &str = "require"; pub const RELATIONSHIP: &str = "relationship"; pub const RELATIONSHIP_TARGET: &str = "relationship_target"; pub const ON_ADD: &str = "on_add"; pub const ON_INSERT: &str = "on_insert"; pub const ON_REPLACE: &str = "on_replace"; pub const ON_REMOVE: &str = "on_remove"; pub const ON_DESPAWN: &str = "on_despawn"; pub const IMMUTABLE: &str = "immutable"; struct Attrs { storage: StorageTy, requires: Option>, on_add: Option, on_insert: Option, on_replace: Option, on_remove: Option, on_despawn: Option, relationship: Option, relationship_target: Option, immutable: bool, } #[derive(Clone, Copy)] enum StorageTy { Table, SparseSet, } struct Require { path: Path, func: Option, } enum RequireFunc { Path(Path), Closure(ExprClosure), } struct Relationship { relationship_target: Ident, } struct RelationshipTarget { relationship: Ident, despawn_descendants: bool, } // values for `storage` attribute const TABLE: &str = "Table"; const SPARSE_SET: &str = "SparseSet"; fn parse_component_attr(ast: &DeriveInput) -> Result { let mut attrs = Attrs { storage: StorageTy::Table, on_add: None, on_insert: None, on_replace: None, on_remove: None, on_despawn: None, requires: None, relationship: None, relationship_target: None, immutable: false, }; let mut require_paths = HashSet::new(); for attr in ast.attrs.iter() { if attr.path().is_ident(COMPONENT) { attr.parse_nested_meta(|nested| { if nested.path.is_ident(STORAGE) { attrs.storage = match nested.value()?.parse::()?.value() { s if s == TABLE => StorageTy::Table, s if s == SPARSE_SET => StorageTy::SparseSet, s => { return Err(nested.error(format!( "Invalid storage type `{s}`, expected '{TABLE}' or '{SPARSE_SET}'.", ))); } }; Ok(()) } else if nested.path.is_ident(ON_ADD) { attrs.on_add = Some(nested.value()?.parse::()?); Ok(()) } else if nested.path.is_ident(ON_INSERT) { attrs.on_insert = Some(nested.value()?.parse::()?); Ok(()) } else if nested.path.is_ident(ON_REPLACE) { attrs.on_replace = Some(nested.value()?.parse::()?); Ok(()) } else if nested.path.is_ident(ON_REMOVE) { attrs.on_remove = Some(nested.value()?.parse::()?); Ok(()) } else if nested.path.is_ident(ON_DESPAWN) { attrs.on_despawn = Some(nested.value()?.parse::()?); Ok(()) } else if nested.path.is_ident(IMMUTABLE) { attrs.immutable = true; Ok(()) } else { Err(nested.error("Unsupported attribute")) } })?; } else if attr.path().is_ident(REQUIRE) { let punctuated = attr.parse_args_with(Punctuated::::parse_terminated)?; for require in punctuated.iter() { if !require_paths.insert(require.path.to_token_stream().to_string()) { return Err(syn::Error::new( require.path.span(), "Duplicate required components are not allowed.", )); } } if let Some(current) = &mut attrs.requires { current.extend(punctuated); } else { attrs.requires = Some(punctuated); } } else if attr.path().is_ident(RELATIONSHIP) { let relationship = attr.parse_args::()?; attrs.relationship = Some(relationship); } else if attr.path().is_ident(RELATIONSHIP_TARGET) { let relationship_target = attr.parse_args::()?; attrs.relationship_target = Some(relationship_target); } } Ok(attrs) } impl Parse for Require { fn parse(input: syn::parse::ParseStream) -> Result { let path = input.parse::()?; let func = if input.peek(Paren) { let content; parenthesized!(content in input); if let Ok(func) = content.parse::() { Some(RequireFunc::Closure(func)) } else { let func = content.parse::()?; Some(RequireFunc::Path(func)) } } else { None }; Ok(Require { path, func }) } } fn storage_path(bevy_ecs_path: &Path, ty: StorageTy) -> TokenStream2 { let storage_type = match ty { StorageTy::Table => Ident::new("Table", Span::call_site()), StorageTy::SparseSet => Ident::new("SparseSet", Span::call_site()), }; quote! { #bevy_ecs_path::component::StorageType::#storage_type } } fn hook_register_function_call( hook: TokenStream2, function: Option, ) -> Option { function.map(|meta| quote! { hooks. #hook (#meta); }) } impl Parse for Relationship { fn parse(input: syn::parse::ParseStream) -> Result { syn::custom_keyword!(relationship_target); input.parse::()?; input.parse::()?; Ok(Relationship { relationship_target: input.parse::()?, }) } } impl Parse for RelationshipTarget { fn parse(input: syn::parse::ParseStream) -> Result { let mut relationship_ident = None; let mut despawn_descendants_exists = false; syn::custom_keyword!(relationship); syn::custom_keyword!(despawn_descendants); let mut done = false; loop { if input.peek(relationship) { input.parse::()?; input.parse::()?; relationship_ident = Some(input.parse::()?); } else if input.peek(despawn_descendants) { input.parse::()?; despawn_descendants_exists = true; } else { done = true; } if input.peek(Token![,]) { input.parse::()?; } if done { break; } } let relationship = relationship_ident.ok_or_else(|| syn::Error::new(input.span(), "RelationshipTarget derive must specify a relationship via #[relationship_target(relationship = X)"))?; Ok(RelationshipTarget { relationship, despawn_descendants: despawn_descendants_exists, }) } } fn derive_relationship( ast: &DeriveInput, attrs: &Attrs, bevy_ecs_path: &Path, ) -> Result> { let Some(relationship) = &attrs.relationship else { return Ok(None); }; const RELATIONSHIP_FORMAT_MESSAGE: &str = "Relationship derives must be a tuple struct with the only element being an EntityTargets type (ex: ChildOf(Entity))"; if let Data::Struct(DataStruct { fields: Fields::Unnamed(unnamed_fields), struct_token, .. }) = &ast.data { if unnamed_fields.unnamed.len() != 1 { return Err(syn::Error::new(ast.span(), RELATIONSHIP_FORMAT_MESSAGE)); } if unnamed_fields.unnamed.first().is_none() { return Err(syn::Error::new( struct_token.span(), RELATIONSHIP_FORMAT_MESSAGE, )); } } else { return Err(syn::Error::new(ast.span(), RELATIONSHIP_FORMAT_MESSAGE)); }; let struct_name = &ast.ident; let (impl_generics, type_generics, where_clause) = &ast.generics.split_for_impl(); let relationship_target = &relationship.relationship_target; Ok(Some(quote! { impl #impl_generics #bevy_ecs_path::relationship::Relationship for #struct_name #type_generics #where_clause { type RelationshipTarget = #relationship_target; #[inline(always)] fn get(&self) -> #bevy_ecs_path::entity::Entity { self.0 } #[inline] fn from(entity: #bevy_ecs_path::entity::Entity) -> Self { Self(entity) } } })) } fn derive_relationship_target( ast: &DeriveInput, attrs: &Attrs, bevy_ecs_path: &Path, ) -> Result> { let Some(relationship_target) = &attrs.relationship_target else { return Ok(None); }; const RELATIONSHIP_TARGET_FORMAT_MESSAGE: &str = "RelationshipTarget derives must be a tuple struct with the first element being a private RelationshipSourceCollection (ex: Children(Vec))"; let collection = if let Data::Struct(DataStruct { fields: Fields::Unnamed(unnamed_fields), struct_token, .. }) = &ast.data { if let Some(first) = unnamed_fields.unnamed.first() { if first.vis != Visibility::Inherited { return Err(syn::Error::new(first.span(), "The collection in RelationshipTarget must be private to prevent users from directly mutating it, which could invalidate the correctness of relationships.")); } first.ty.clone() } else { return Err(syn::Error::new( struct_token.span(), RELATIONSHIP_TARGET_FORMAT_MESSAGE, )); } } else { return Err(syn::Error::new( ast.span(), RELATIONSHIP_TARGET_FORMAT_MESSAGE, )); }; let relationship = &relationship_target.relationship; let struct_name = &ast.ident; let (impl_generics, type_generics, where_clause) = &ast.generics.split_for_impl(); Ok(Some(quote! { impl #impl_generics #bevy_ecs_path::relationship::RelationshipTarget for #struct_name #type_generics #where_clause { type Relationship = #relationship; type Collection = #collection; #[inline] fn collection(&self) -> &Self::Collection { &self.0 } #[inline] fn collection_mut_risky(&mut self) -> &mut Self::Collection { &mut self.0 } #[inline] fn from_collection_risky(collection: Self::Collection) -> Self { Self(collection) } } })) }