use crate::storage::SparseSetIndex; use bevy_utils::HashSet; use core::fmt; use fixedbitset::FixedBitSet; use std::marker::PhantomData; /// A wrapper struct to make Debug representations of [`FixedBitSet`] easier /// to read, when used to store [`SparseSetIndex`]. /// /// Instead of the raw integer representation of the `FixedBitSet`, the list of /// `T` valid for [`SparseSetIndex`] is shown. /// /// Normal `FixedBitSet` `Debug` output: /// ```text /// read_and_writes: FixedBitSet { data: [ 160 ], length: 8 } /// ``` /// /// Which, unless you are a computer, doesn't help much understand what's in /// the set. With `FormattedBitSet`, we convert the present set entries into /// what they stand for, it is much clearer what is going on: /// ```text /// read_and_writes: [ ComponentId(5), ComponentId(7) ] /// ``` struct FormattedBitSet<'a, T: SparseSetIndex> { bit_set: &'a FixedBitSet, _marker: PhantomData, } impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> { fn new(bit_set: &'a FixedBitSet) -> Self { Self { bit_set, _marker: PhantomData, } } } impl<'a, T: SparseSetIndex + fmt::Debug> fmt::Debug for FormattedBitSet<'a, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list() .entries(self.bit_set.ones().map(T::get_sparse_set_index)) .finish() } } /// Tracks read and write access to specific elements in a collection. /// /// Used internally to ensure soundness during system initialization and execution. /// See the [`is_compatible`](Access::is_compatible) and [`get_conflicts`](Access::get_conflicts) functions. #[derive(Clone, Eq, PartialEq)] pub struct Access { /// All accessed elements. reads_and_writes: FixedBitSet, /// The exclusively-accessed elements. writes: FixedBitSet, /// Is `true` if this has access to all elements in the collection. /// This field is a performance optimization for `&World` (also harder to mess up for soundness). reads_all: bool, /// Is `true` if this has mutable access to all elements in the collection. /// If this is true, then `reads_all` must also be true. writes_all: bool, // Elements that are not accessed, but whose presence in an archetype affect query results. archetypal: FixedBitSet, marker: PhantomData, } impl fmt::Debug for Access { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Access") .field( "read_and_writes", &FormattedBitSet::::new(&self.reads_and_writes), ) .field("writes", &FormattedBitSet::::new(&self.writes)) .field("reads_all", &self.reads_all) .field("writes_all", &self.writes_all) .finish() } } impl Default for Access { fn default() -> Self { Self::new() } } impl Access { /// Creates an empty [`Access`] collection. pub const fn new() -> Self { Self { reads_all: false, writes_all: false, reads_and_writes: FixedBitSet::new(), writes: FixedBitSet::new(), archetypal: FixedBitSet::new(), marker: PhantomData, } } /// Adds access to the element given by `index`. pub fn add_read(&mut self, index: T) { self.reads_and_writes .grow_and_insert(index.sparse_set_index()); } /// Adds exclusive access to the element given by `index`. pub fn add_write(&mut self, index: T) { self.reads_and_writes .grow_and_insert(index.sparse_set_index()); self.writes.grow_and_insert(index.sparse_set_index()); } /// Adds an archetypal (indirect) access to the element given by `index`. /// /// This is for elements whose values are not accessed (and thus will never cause conflicts), /// but whose presence in an archetype may affect query results. /// /// Currently, this is only used for [`Has`]. /// /// [`Has`]: crate::query::Has pub fn add_archetypal(&mut self, index: T) { self.archetypal.grow_and_insert(index.sparse_set_index()); } /// Returns `true` if this can access the element given by `index`. pub fn has_read(&self, index: T) -> bool { self.reads_all || self.reads_and_writes.contains(index.sparse_set_index()) } /// Returns `true` if this can access anything. pub fn has_any_read(&self) -> bool { self.reads_all || !self.reads_and_writes.is_clear() } /// Returns `true` if this can exclusively access the element given by `index`. pub fn has_write(&self, index: T) -> bool { self.writes_all || self.writes.contains(index.sparse_set_index()) } /// Returns `true` if this accesses anything mutably. pub fn has_any_write(&self) -> bool { self.writes_all || !self.writes.is_clear() } /// Returns true if this has an archetypal (indirect) access to the element given by `index`. /// /// This is an element whose value is not accessed (and thus will never cause conflicts), /// but whose presence in an archetype may affect query results. /// /// Currently, this is only used for [`Has`]. /// /// [`Has`]: crate::query::Has pub fn has_archetypal(&self, index: T) -> bool { self.archetypal.contains(index.sparse_set_index()) } /// Sets this as having access to all indexed elements (i.e. `&World`). pub fn read_all(&mut self) { self.reads_all = true; } /// Sets this as having mutable access to all indexed elements (i.e. `EntityMut`). pub fn write_all(&mut self) { self.reads_all = true; self.writes_all = true; } /// Returns `true` if this has access to all indexed elements (i.e. `&World`). pub fn has_read_all(&self) -> bool { self.reads_all } /// Returns `true` if this has write access to all indexed elements (i.e. `EntityMut`). pub fn has_write_all(&self) -> bool { self.writes_all } /// Removes all writes. pub fn clear_writes(&mut self) { self.writes_all = false; self.writes.clear(); } /// Removes all accesses. pub fn clear(&mut self) { self.reads_all = false; self.writes_all = false; self.reads_and_writes.clear(); self.writes.clear(); } /// Adds all access from `other`. pub fn extend(&mut self, other: &Access) { self.reads_all = self.reads_all || other.reads_all; self.writes_all = self.writes_all || other.writes_all; self.reads_and_writes.union_with(&other.reads_and_writes); self.writes.union_with(&other.writes); } /// Returns `true` if the access and `other` can be active at the same time. /// /// [`Access`] instances are incompatible if one can write /// an element that the other can read or write. pub fn is_compatible(&self, other: &Access) -> bool { if self.writes_all { return !other.has_any_read(); } if other.writes_all { return !self.has_any_read(); } if self.reads_all { return !other.has_any_write(); } if other.reads_all { return !self.has_any_write(); } self.writes.is_disjoint(&other.reads_and_writes) && other.writes.is_disjoint(&self.reads_and_writes) } /// Returns `true` if the set is a subset of another, i.e. `other` contains /// at least all the values in `self`. pub fn is_subset(&self, other: &Access) -> bool { if self.writes_all { return other.writes_all; } if other.writes_all { return true; } if self.reads_all { return other.reads_all; } if other.reads_all { return self.writes.is_subset(&other.writes); } self.reads_and_writes.is_subset(&other.reads_and_writes) && self.writes.is_subset(&other.writes) } /// Returns a vector of elements that the access and `other` cannot access at the same time. pub fn get_conflicts(&self, other: &Access) -> Vec { let mut conflicts = FixedBitSet::default(); if self.reads_all { // QUESTION: How to handle `other.writes_all`? conflicts.extend(other.writes.ones()); } if other.reads_all { // QUESTION: How to handle `self.writes_all`. conflicts.extend(self.writes.ones()); } if self.writes_all { conflicts.extend(other.reads_and_writes.ones()); } if other.writes_all { conflicts.extend(self.reads_and_writes.ones()); } conflicts.extend(self.writes.intersection(&other.reads_and_writes)); conflicts.extend(self.reads_and_writes.intersection(&other.writes)); conflicts .ones() .map(SparseSetIndex::get_sparse_set_index) .collect() } /// Returns the indices of the elements this has access to. pub fn reads_and_writes(&self) -> impl Iterator + '_ { self.reads_and_writes.ones().map(T::get_sparse_set_index) } /// Returns the indices of the elements this has non-exclusive access to. pub fn reads(&self) -> impl Iterator + '_ { self.reads_and_writes .difference(&self.writes) .map(T::get_sparse_set_index) } /// Returns the indices of the elements this has exclusive access to. pub fn writes(&self) -> impl Iterator + '_ { self.writes.ones().map(T::get_sparse_set_index) } /// Returns the indices of the elements that this has an archetypal access to. /// /// These are elements whose values are not accessed (and thus will never cause conflicts), /// but whose presence in an archetype may affect query results. /// /// Currently, this is only used for [`Has`]. /// /// [`Has`]: crate::query::Has pub fn archetypal(&self) -> impl Iterator + '_ { self.archetypal.ones().map(T::get_sparse_set_index) } } /// An [`Access`] that has been filtered to include and exclude certain combinations of elements. /// /// Used internally to statically check if queries are disjoint. /// /// Subtle: a `read` or `write` in `access` should not be considered to imply a /// `with` access. /// /// For example consider `Query>` this only has a `read` of `T` as doing /// otherwise would allow for queries to be considered disjoint when they shouldn't: /// - `Query<(&mut T, Option<&U>)>` read/write `T`, read `U`, with `U` /// - `Query<&mut T, Without>` read/write `T`, without `U` /// from this we could reasonably conclude that the queries are disjoint but they aren't. /// /// In order to solve this the actual access that `Query<(&mut T, Option<&U>)>` has /// is read/write `T`, read `U`. It must still have a read `U` access otherwise the following /// queries would be incorrectly considered disjoint: /// - `Query<&mut T>` read/write `T` /// - `Query>` accesses nothing /// /// See comments the [`WorldQuery`](super::WorldQuery) impls of [`AnyOf`](super::AnyOf)/`Option`/[`Or`](super::Or) for more information. #[derive(Debug, Clone, Eq, PartialEq)] pub struct FilteredAccess { pub(crate) access: Access, pub(crate) required: FixedBitSet, // An array of filter sets to express `With` or `Without` clauses in disjunctive normal form, for example: `Or<(With, With)>`. // Filters like `(With, Or<(With, Without)>` are expanded into `Or<((With, With), (With, Without))>`. pub(crate) filter_sets: Vec>, } impl Default for FilteredAccess { fn default() -> Self { Self { access: Access::default(), required: FixedBitSet::default(), filter_sets: vec![AccessFilters::default()], } } } impl From> for FilteredAccessSet { fn from(filtered_access: FilteredAccess) -> Self { let mut base = FilteredAccessSet::::default(); base.add(filtered_access); base } } impl FilteredAccess { /// Returns a reference to the underlying unfiltered access. #[inline] pub fn access(&self) -> &Access { &self.access } /// Returns a mutable reference to the underlying unfiltered access. #[inline] pub fn access_mut(&mut self) -> &mut Access { &mut self.access } /// Adds access to the element given by `index`. pub fn add_read(&mut self, index: T) { self.access.add_read(index.clone()); self.add_required(index.clone()); self.and_with(index); } /// Adds exclusive access to the element given by `index`. pub fn add_write(&mut self, index: T) { self.access.add_write(index.clone()); self.add_required(index.clone()); self.and_with(index); } fn add_required(&mut self, index: T) { self.required.grow_and_insert(index.sparse_set_index()); } /// Adds a `With` filter: corresponds to a conjunction (AND) operation. /// /// Suppose we begin with `Or<(With, With)>`, which is represented by an array of two `AccessFilter` instances. /// Adding `AND With` via this method transforms it into the equivalent of `Or<((With, With), (With, With))>`. pub fn and_with(&mut self, index: T) { for filter in &mut self.filter_sets { filter.with.grow_and_insert(index.sparse_set_index()); } } /// Adds a `Without` filter: corresponds to a conjunction (AND) operation. /// /// Suppose we begin with `Or<(With, With)>`, which is represented by an array of two `AccessFilter` instances. /// Adding `AND Without` via this method transforms it into the equivalent of `Or<((With, Without), (With, Without))>`. pub fn and_without(&mut self, index: T) { for filter in &mut self.filter_sets { filter.without.grow_and_insert(index.sparse_set_index()); } } /// Appends an array of filters: corresponds to a disjunction (OR) operation. /// /// As the underlying array of filters represents a disjunction, /// where each element (`AccessFilters`) represents a conjunction, /// we can simply append to the array. pub fn append_or(&mut self, other: &FilteredAccess) { self.filter_sets.append(&mut other.filter_sets.clone()); } /// Adds all of the accesses from `other` to `self`. pub fn extend_access(&mut self, other: &FilteredAccess) { self.access.extend(&other.access); } /// Returns `true` if this and `other` can be active at the same time. pub fn is_compatible(&self, other: &FilteredAccess) -> bool { if self.access.is_compatible(&other.access) { return true; } // If the access instances are incompatible, we want to check that whether filters can // guarantee that queries are disjoint. // Since the `filter_sets` array represents a Disjunctive Normal Form formula ("ORs of ANDs"), // we need to make sure that each filter set (ANDs) rule out every filter set from the `other` instance. // // For example, `Query<&mut C, Or<(With, Without)>>` is compatible `Query<&mut C, (With, Without)>`, // but `Query<&mut C, Or<(Without, Without)>>` isn't compatible with `Query<&mut C, Or<(With, With)>>`. self.filter_sets.iter().all(|filter| { other .filter_sets .iter() .all(|other_filter| filter.is_ruled_out_by(other_filter)) }) } /// Returns a vector of elements that this and `other` cannot access at the same time. pub fn get_conflicts(&self, other: &FilteredAccess) -> Vec { if !self.is_compatible(other) { // filters are disjoint, so we can just look at the unfiltered intersection return self.access.get_conflicts(&other.access); } Vec::new() } /// Adds all access and filters from `other`. /// /// Corresponds to a conjunction operation (AND) for filters. /// /// Extending `Or<(With, Without)>` with `Or<(With, Without)>` will result in /// `Or<((With, With), (With, Without), (Without, With), (Without, Without))>`. pub fn extend(&mut self, other: &FilteredAccess) { self.access.extend(&other.access); self.required.union_with(&other.required); // We can avoid allocating a new array of bitsets if `other` contains just a single set of filters: // in this case we can short-circuit by performing an in-place union for each bitset. if other.filter_sets.len() == 1 { for filter in &mut self.filter_sets { filter.with.union_with(&other.filter_sets[0].with); filter.without.union_with(&other.filter_sets[0].without); } return; } let mut new_filters = Vec::with_capacity(self.filter_sets.len() * other.filter_sets.len()); for filter in &self.filter_sets { for other_filter in &other.filter_sets { let mut new_filter = filter.clone(); new_filter.with.union_with(&other_filter.with); new_filter.without.union_with(&other_filter.without); new_filters.push(new_filter); } } self.filter_sets = new_filters; } /// Sets the underlying unfiltered access as having access to all indexed elements. pub fn read_all(&mut self) { self.access.read_all(); } /// Sets the underlying unfiltered access as having mutable access to all indexed elements. pub fn write_all(&mut self) { self.access.write_all(); } /// Returns `true` if the set is a subset of another, i.e. `other` contains /// at least all the values in `self`. pub fn is_subset(&self, other: &FilteredAccess) -> bool { self.required.is_subset(&other.required) && self.access().is_subset(other.access()) } /// Returns the indices of the elements that this access filters for. pub fn with_filters(&self) -> impl Iterator + '_ { self.filter_sets .iter() .flat_map(|f| f.with.ones().map(T::get_sparse_set_index)) } /// Returns the indices of the elements that this access filters out. pub fn without_filters(&self) -> impl Iterator + '_ { self.filter_sets .iter() .flat_map(|f| f.without.ones().map(T::get_sparse_set_index)) } } #[derive(Clone, Eq, PartialEq)] pub(crate) struct AccessFilters { pub(crate) with: FixedBitSet, pub(crate) without: FixedBitSet, _index_type: PhantomData, } impl fmt::Debug for AccessFilters { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("AccessFilters") .field("with", &FormattedBitSet::::new(&self.with)) .field("without", &FormattedBitSet::::new(&self.without)) .finish() } } impl Default for AccessFilters { fn default() -> Self { Self { with: FixedBitSet::default(), without: FixedBitSet::default(), _index_type: PhantomData, } } } impl AccessFilters { fn is_ruled_out_by(&self, other: &Self) -> bool { // Although not technically complete, we don't consider the case when `AccessFilters`'s // `without` bitset contradicts its own `with` bitset (e.g. `(With, Without)`). // Such query would be considered compatible with any other query, but as it's almost // always an error, we ignore this case instead of treating such query as compatible // with others. !self.with.is_disjoint(&other.without) || !self.without.is_disjoint(&other.with) } } /// A collection of [`FilteredAccess`] instances. /// /// Used internally to statically check if systems have conflicting access. /// /// It stores multiple sets of accesses. /// - A "combined" set, which is the access of all filters in this set combined. /// - The set of access of each individual filters in this set. #[derive(Debug, Clone)] pub struct FilteredAccessSet { combined_access: Access, filtered_accesses: Vec>, } impl FilteredAccessSet { /// Returns a reference to the unfiltered access of the entire set. #[inline] pub fn combined_access(&self) -> &Access { &self.combined_access } /// Returns `true` if this and `other` can be active at the same time. /// /// Access conflict resolution happen in two steps: /// 1. A "coarse" check, if there is no mutual unfiltered conflict between /// `self` and `other`, we already know that the two access sets are /// compatible. /// 2. A "fine grained" check, it kicks in when the "coarse" check fails. /// the two access sets might still be compatible if some of the accesses /// are restricted with the [`With`](super::With) or [`Without`](super::Without) filters so that access is /// mutually exclusive. The fine grained phase iterates over all filters in /// the `self` set and compares it to all the filters in the `other` set, /// making sure they are all mutually compatible. pub fn is_compatible(&self, other: &FilteredAccessSet) -> bool { if self.combined_access.is_compatible(other.combined_access()) { return true; } for filtered in &self.filtered_accesses { for other_filtered in &other.filtered_accesses { if !filtered.is_compatible(other_filtered) { return false; } } } true } /// Returns a vector of elements that this set and `other` cannot access at the same time. pub fn get_conflicts(&self, other: &FilteredAccessSet) -> Vec { // if the unfiltered access is incompatible, must check each pair let mut conflicts = HashSet::new(); if !self.combined_access.is_compatible(other.combined_access()) { for filtered in &self.filtered_accesses { for other_filtered in &other.filtered_accesses { conflicts.extend(filtered.get_conflicts(other_filtered).into_iter()); } } } conflicts.into_iter().collect() } /// Returns a vector of elements that this set and `other` cannot access at the same time. pub fn get_conflicts_single(&self, filtered_access: &FilteredAccess) -> Vec { // if the unfiltered access is incompatible, must check each pair let mut conflicts = HashSet::new(); if !self.combined_access.is_compatible(filtered_access.access()) { for filtered in &self.filtered_accesses { conflicts.extend(filtered.get_conflicts(filtered_access).into_iter()); } } conflicts.into_iter().collect() } /// Adds the filtered access to the set. pub fn add(&mut self, filtered_access: FilteredAccess) { self.combined_access.extend(&filtered_access.access); self.filtered_accesses.push(filtered_access); } /// Adds a read access without filters to the set. pub(crate) fn add_unfiltered_read(&mut self, index: T) { let mut filter = FilteredAccess::default(); filter.add_read(index); self.add(filter); } /// Adds a write access without filters to the set. pub(crate) fn add_unfiltered_write(&mut self, index: T) { let mut filter = FilteredAccess::default(); filter.add_write(index); self.add(filter); } /// Adds all of the accesses from the passed set to `self`. pub fn extend(&mut self, filtered_access_set: FilteredAccessSet) { self.combined_access .extend(&filtered_access_set.combined_access); self.filtered_accesses .extend(filtered_access_set.filtered_accesses); } /// Removes all accesses stored in this set. pub fn clear(&mut self) { self.combined_access.clear(); self.filtered_accesses.clear(); } } impl Default for FilteredAccessSet { fn default() -> Self { Self { combined_access: Default::default(), filtered_accesses: Vec::new(), } } } #[cfg(test)] mod tests { use crate::query::access::AccessFilters; use crate::query::{Access, FilteredAccess, FilteredAccessSet}; use fixedbitset::FixedBitSet; use std::marker::PhantomData; #[test] fn read_all_access_conflicts() { // read_all / single write let mut access_a = Access::::default(); access_a.add_write(0); let mut access_b = Access::::default(); access_b.read_all(); assert!(!access_b.is_compatible(&access_a)); // read_all / read_all let mut access_a = Access::::default(); access_a.read_all(); let mut access_b = Access::::default(); access_b.read_all(); assert!(access_b.is_compatible(&access_a)); } #[test] fn access_get_conflicts() { let mut access_a = Access::::default(); access_a.add_read(0); access_a.add_read(1); let mut access_b = Access::::default(); access_b.add_read(0); access_b.add_write(1); assert_eq!(access_a.get_conflicts(&access_b), vec![1]); let mut access_c = Access::::default(); access_c.add_write(0); access_c.add_write(1); assert_eq!(access_a.get_conflicts(&access_c), vec![0, 1]); assert_eq!(access_b.get_conflicts(&access_c), vec![0, 1]); let mut access_d = Access::::default(); access_d.add_read(0); assert_eq!(access_d.get_conflicts(&access_a), vec![]); assert_eq!(access_d.get_conflicts(&access_b), vec![]); assert_eq!(access_d.get_conflicts(&access_c), vec![0]); } #[test] fn filtered_combined_access() { let mut access_a = FilteredAccessSet::::default(); access_a.add_unfiltered_read(1); let mut filter_b = FilteredAccess::::default(); filter_b.add_write(1); let conflicts = access_a.get_conflicts_single(&filter_b); assert_eq!( &conflicts, &[1_usize], "access_a: {access_a:?}, filter_b: {filter_b:?}" ); } #[test] fn filtered_access_extend() { let mut access_a = FilteredAccess::::default(); access_a.add_read(0); access_a.add_read(1); access_a.and_with(2); let mut access_b = FilteredAccess::::default(); access_b.add_read(0); access_b.add_write(3); access_b.and_without(4); access_a.extend(&access_b); let mut expected = FilteredAccess::::default(); expected.add_read(0); expected.add_read(1); expected.and_with(2); expected.add_write(3); expected.and_without(4); assert!(access_a.eq(&expected)); } #[test] fn filtered_access_extend_or() { let mut access_a = FilteredAccess::::default(); // Exclusive access to `(&mut A, &mut B)`. access_a.add_write(0); access_a.add_write(1); // Filter by `With`. let mut access_b = FilteredAccess::::default(); access_b.and_with(2); // Filter by `(With, Without)`. let mut access_c = FilteredAccess::::default(); access_c.and_with(3); access_c.and_without(4); // Turns `access_b` into `Or<(With, (With, Without))>`. access_b.append_or(&access_c); // Applies the filters to the initial query, which corresponds to the FilteredAccess' // representation of `Query<(&mut A, &mut B), Or<(With, (With, Without))>>`. access_a.extend(&access_b); // Construct the expected `FilteredAccess` struct. // The intention here is to test that exclusive access implied by `add_write` // forms correct normalized access structs when extended with `Or` filters. let mut expected = FilteredAccess::::default(); expected.add_write(0); expected.add_write(1); // The resulted access is expected to represent `Or<((With, With, With), (With, With, With, Without))>`. expected.filter_sets = vec![ AccessFilters { with: FixedBitSet::with_capacity_and_blocks(3, [0b111]), without: FixedBitSet::default(), _index_type: PhantomData, }, AccessFilters { with: FixedBitSet::with_capacity_and_blocks(4, [0b1011]), without: FixedBitSet::with_capacity_and_blocks(5, [0b10000]), _index_type: PhantomData, }, ]; assert_eq!(access_a, expected); } }