use crate::{IRect, URect, Vec2}; #[cfg(feature = "bevy_reflect")] use bevy_reflect::{std_traits::ReflectDefault, Reflect}; #[cfg(all(feature = "serialize", feature = "bevy_reflect"))] use bevy_reflect::{ReflectDeserialize, ReflectSerialize}; /// A rectangle defined by two opposite corners. /// /// The rectangle is axis aligned, and defined by its minimum and maximum coordinates, /// stored in `Rect::min` and `Rect::max`, respectively. The minimum/maximum invariant /// must be upheld by the user when directly assigning the fields, otherwise some methods /// produce invalid results. It is generally recommended to use one of the constructor /// methods instead, which will ensure this invariant is met, unless you already have /// the minimum and maximum corners. #[repr(C)] #[derive(Default, Clone, Copy, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] #[cfg_attr( feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq, Default, Clone) )] #[cfg_attr( all(feature = "serialize", feature = "bevy_reflect"), reflect(Serialize, Deserialize) )] pub struct Rect { /// The minimum corner point of the rect. pub min: Vec2, /// The maximum corner point of the rect. pub max: Vec2, } impl Rect { /// An empty `Rect`, represented by maximum and minimum corner points /// at `Vec2::NEG_INFINITY` and `Vec2::INFINITY`, respectively. /// This is so the `Rect` has a infinitely negative size. /// This is useful, because when taking a union B of a non-empty `Rect` A and /// this empty `Rect`, B will simply equal A. pub const EMPTY: Self = Self { max: Vec2::NEG_INFINITY, min: Vec2::INFINITY, }; /// Create a new rectangle from two corner points. /// /// The two points do not need to be the minimum and/or maximum corners. /// They only need to be two opposite corners. /// /// # Examples /// /// ``` /// # use bevy_math::Rect; /// let r = Rect::new(0., 4., 10., 6.); // w=10 h=2 /// let r = Rect::new(2., 3., 5., -1.); // w=3 h=4 /// ``` #[inline] pub fn new(x0: f32, y0: f32, x1: f32, y1: f32) -> Self { Self::from_corners(Vec2::new(x0, y0), Vec2::new(x1, y1)) } /// Create a new rectangle from two corner points. /// /// The two points do not need to be the minimum and/or maximum corners. /// They only need to be two opposite corners. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// // Unit rect from [0,0] to [1,1] /// let r = Rect::from_corners(Vec2::ZERO, Vec2::ONE); // w=1 h=1 /// // Same; the points do not need to be ordered /// let r = Rect::from_corners(Vec2::ONE, Vec2::ZERO); // w=1 h=1 /// ``` #[inline] pub fn from_corners(p0: Vec2, p1: Vec2) -> Self { Self { min: p0.min(p1), max: p0.max(p1), } } /// Create a new rectangle from its center and size. /// /// # Panics /// /// This method panics if any of the components of the size is negative. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // w=1 h=1 /// assert!(r.min.abs_diff_eq(Vec2::splat(-0.5), 1e-5)); /// assert!(r.max.abs_diff_eq(Vec2::splat(0.5), 1e-5)); /// ``` #[inline] pub fn from_center_size(origin: Vec2, size: Vec2) -> Self { assert!(size.cmpge(Vec2::ZERO).all(), "Rect size must be positive"); let half_size = size / 2.; Self::from_center_half_size(origin, half_size) } /// Create a new rectangle from its center and half-size. /// /// # Panics /// /// This method panics if any of the components of the half-size is negative. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::from_center_half_size(Vec2::ZERO, Vec2::ONE); // w=2 h=2 /// assert!(r.min.abs_diff_eq(Vec2::splat(-1.), 1e-5)); /// assert!(r.max.abs_diff_eq(Vec2::splat(1.), 1e-5)); /// ``` #[inline] pub fn from_center_half_size(origin: Vec2, half_size: Vec2) -> Self { assert!( half_size.cmpge(Vec2::ZERO).all(), "Rect half_size must be positive" ); Self { min: origin - half_size, max: origin + half_size, } } /// Check if the rectangle is empty. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::from_corners(Vec2::ZERO, Vec2::new(0., 1.)); // w=0 h=1 /// assert!(r.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.min.cmpge(self.max).any() } /// Rectangle width (max.x - min.x). /// /// # Examples /// /// ``` /// # use bevy_math::Rect; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// assert!((r.width() - 5.).abs() <= 1e-5); /// ``` #[inline] pub fn width(&self) -> f32 { self.max.x - self.min.x } /// Rectangle height (max.y - min.y). /// /// # Examples /// /// ``` /// # use bevy_math::Rect; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// assert!((r.height() - 1.).abs() <= 1e-5); /// ``` #[inline] pub fn height(&self) -> f32 { self.max.y - self.min.y } /// Rectangle size. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// assert!(r.size().abs_diff_eq(Vec2::new(5., 1.), 1e-5)); /// ``` #[inline] pub fn size(&self) -> Vec2 { self.max - self.min } /// Rectangle half-size. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// assert!(r.half_size().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5)); /// ``` #[inline] pub fn half_size(&self) -> Vec2 { self.size() * 0.5 } /// The center point of the rectangle. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// assert!(r.center().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5)); /// ``` #[inline] pub fn center(&self) -> Vec2 { (self.min + self.max) * 0.5 } /// Check if a point lies within this rectangle, inclusive of its edges. /// /// # Examples /// /// ``` /// # use bevy_math::Rect; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// assert!(r.contains(r.center())); /// assert!(r.contains(r.min)); /// assert!(r.contains(r.max)); /// ``` #[inline] pub fn contains(&self, point: Vec2) -> bool { (point.cmpge(self.min) & point.cmple(self.max)).all() } /// Build a new rectangle formed of the union of this rectangle and another rectangle. /// /// The union is the smallest rectangle enclosing both rectangles. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4 /// let r = r1.union(r2); /// assert!(r.min.abs_diff_eq(Vec2::new(0., -1.), 1e-5)); /// assert!(r.max.abs_diff_eq(Vec2::new(5., 3.), 1e-5)); /// ``` #[inline] pub fn union(&self, other: Self) -> Self { Self { min: self.min.min(other.min), max: self.max.max(other.max), } } /// Build a new rectangle formed of the union of this rectangle and a point. /// /// The union is the smallest rectangle enclosing both the rectangle and the point. If the /// point is already inside the rectangle, this method returns a copy of the rectangle. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// let u = r.union_point(Vec2::new(3., 6.)); /// assert!(u.min.abs_diff_eq(Vec2::ZERO, 1e-5)); /// assert!(u.max.abs_diff_eq(Vec2::new(5., 6.), 1e-5)); /// ``` #[inline] pub fn union_point(&self, other: Vec2) -> Self { Self { min: self.min.min(other), max: self.max.max(other), } } /// Build a new rectangle formed of the intersection of this rectangle and another rectangle. /// /// The intersection is the largest rectangle enclosed in both rectangles. If the intersection /// is empty, this method returns an empty rectangle ([`Rect::is_empty()`] returns `true`), but /// the actual values of [`Rect::min`] and [`Rect::max`] are implementation-dependent. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4 /// let r = r1.intersect(r2); /// assert!(r.min.abs_diff_eq(Vec2::new(1., 0.), 1e-5)); /// assert!(r.max.abs_diff_eq(Vec2::new(3., 1.), 1e-5)); /// ``` #[inline] pub fn intersect(&self, other: Self) -> Self { let mut r = Self { min: self.min.max(other.min), max: self.max.min(other.max), }; // Collapse min over max to enforce invariants and ensure e.g. width() or // height() never return a negative value. r.min = r.min.min(r.max); r } /// Create a new rectangle by expanding it evenly on all sides. /// /// A positive expansion value produces a larger rectangle, /// while a negative expansion value produces a smaller rectangle. /// If this would result in zero or negative width or height, [`Rect::EMPTY`] is returned instead. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1 /// let r2 = r.inflate(3.); // w=11 h=7 /// assert!(r2.min.abs_diff_eq(Vec2::splat(-3.), 1e-5)); /// assert!(r2.max.abs_diff_eq(Vec2::new(8., 4.), 1e-5)); /// /// let r = Rect::new(0., -1., 6., 7.); // w=6 h=8 /// let r2 = r.inflate(-2.); // w=11 h=7 /// assert!(r2.min.abs_diff_eq(Vec2::new(2., 1.), 1e-5)); /// assert!(r2.max.abs_diff_eq(Vec2::new(4., 5.), 1e-5)); /// ``` #[inline] pub fn inflate(&self, expansion: f32) -> Self { let mut r = Self { min: self.min - expansion, max: self.max + expansion, }; // Collapse min over max to enforce invariants and ensure e.g. width() or // height() never return a negative value. r.min = r.min.min(r.max); r } /// Build a new rectangle from this one with its coordinates expressed /// relative to `other` in a normalized ([0..1] x [0..1]) coordinate system. /// /// # Examples /// /// ``` /// # use bevy_math::{Rect, Vec2}; /// let r = Rect::new(2., 3., 4., 6.); /// let s = Rect::new(0., 0., 10., 10.); /// let n = r.normalize(s); /// /// assert_eq!(n.min.x, 0.2); /// assert_eq!(n.min.y, 0.3); /// assert_eq!(n.max.x, 0.4); /// assert_eq!(n.max.y, 0.6); /// ``` pub fn normalize(&self, other: Self) -> Self { let outer_size = other.size(); Self { min: (self.min - other.min) / outer_size, max: (self.max - other.min) / outer_size, } } /// Returns self as [`IRect`] (i32) #[inline] pub fn as_irect(&self) -> IRect { IRect::from_corners(self.min.as_ivec2(), self.max.as_ivec2()) } /// Returns self as [`URect`] (u32) #[inline] pub fn as_urect(&self) -> URect { URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2()) } } #[cfg(test)] mod tests { use crate::ops; use super::*; #[test] fn well_formed() { let r = Rect::from_center_size(Vec2::new(3., -5.), Vec2::new(8., 11.)); assert!(r.min.abs_diff_eq(Vec2::new(-1., -10.5), 1e-5)); assert!(r.max.abs_diff_eq(Vec2::new(7., 0.5), 1e-5)); assert!(r.center().abs_diff_eq(Vec2::new(3., -5.), 1e-5)); assert!(ops::abs(r.width() - 8.) <= 1e-5); assert!(ops::abs(r.height() - 11.) <= 1e-5); assert!(r.size().abs_diff_eq(Vec2::new(8., 11.), 1e-5)); assert!(r.half_size().abs_diff_eq(Vec2::new(4., 5.5), 1e-5)); assert!(r.contains(Vec2::new(3., -5.))); assert!(r.contains(Vec2::new(-1., -10.5))); assert!(r.contains(Vec2::new(-1., 0.5))); assert!(r.contains(Vec2::new(7., -10.5))); assert!(r.contains(Vec2::new(7., 0.5))); assert!(!r.contains(Vec2::new(50., -5.))); } #[test] fn rect_union() { let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5] // overlapping let r2 = Rect { min: Vec2::new(-0.8, 0.3), max: Vec2::new(0.1, 0.7), }; let u = r.union(r2); assert!(u.min.abs_diff_eq(Vec2::new(-0.8, -0.5), 1e-5)); assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.7), 1e-5)); // disjoint let r2 = Rect { min: Vec2::new(-1.8, -0.5), max: Vec2::new(-1.5, 0.3), }; let u = r.union(r2); assert!(u.min.abs_diff_eq(Vec2::new(-1.8, -0.5), 1e-5)); assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.5), 1e-5)); // included let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5)); let u = r.union(r2); assert!(u.min.abs_diff_eq(r.min, 1e-5)); assert!(u.max.abs_diff_eq(r.max, 1e-5)); // including let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5)); let u = r.union(r2); assert!(u.min.abs_diff_eq(r2.min, 1e-5)); assert!(u.max.abs_diff_eq(r2.max, 1e-5)); } #[test] fn rect_union_pt() { let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5] // inside let v = Vec2::new(0.3, -0.2); let u = r.union_point(v); assert!(u.min.abs_diff_eq(r.min, 1e-5)); assert!(u.max.abs_diff_eq(r.max, 1e-5)); // outside let v = Vec2::new(10., -3.); let u = r.union_point(v); assert!(u.min.abs_diff_eq(Vec2::new(-0.5, -3.), 1e-5)); assert!(u.max.abs_diff_eq(Vec2::new(10., 0.5), 1e-5)); } #[test] fn rect_intersect() { let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5] // overlapping let r2 = Rect { min: Vec2::new(-0.8, 0.3), max: Vec2::new(0.1, 0.7), }; let u = r.intersect(r2); assert!(u.min.abs_diff_eq(Vec2::new(-0.5, 0.3), 1e-5)); assert!(u.max.abs_diff_eq(Vec2::new(0.1, 0.5), 1e-5)); // disjoint let r2 = Rect { min: Vec2::new(-1.8, -0.5), max: Vec2::new(-1.5, 0.3), }; let u = r.intersect(r2); assert!(u.is_empty()); assert!(u.width() <= 1e-5); // included let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5)); let u = r.intersect(r2); assert!(u.min.abs_diff_eq(r2.min, 1e-5)); assert!(u.max.abs_diff_eq(r2.max, 1e-5)); // including let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5)); let u = r.intersect(r2); assert!(u.min.abs_diff_eq(r.min, 1e-5)); assert!(u.max.abs_diff_eq(r.max, 1e-5)); } #[test] fn rect_inflate() { let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5] let r2 = r.inflate(0.3); assert!(r2.min.abs_diff_eq(Vec2::new(-0.8, -0.8), 1e-5)); assert!(r2.max.abs_diff_eq(Vec2::new(0.8, 0.8), 1e-5)); } }