//! The modular rendering abstraction responsible for queuing, preparing, sorting and drawing //! entities as part of separate render phases. //! //! In Bevy each view (camera, or shadow-casting light, etc.) has one or multiple [`RenderPhase`]s //! (e.g. opaque, transparent, shadow, etc). //! They are used to queue entities for rendering. //! Multiple phases might be required due to different sorting/batching behaviours //! (e.g. opaque: front to back, transparent: back to front) or because one phase depends on //! the rendered texture of the previous phase (e.g. for screen-space reflections). //! //! To draw an entity, a corresponding [`PhaseItem`] has to be added to one or multiple of these //! render phases for each view that it is visible in. //! This must be done in the [`RenderSet::Queue`](crate::RenderSet::Queue). //! After that the render phase sorts them in the //! [`RenderSet::PhaseSort`](crate::RenderSet::PhaseSort). //! Finally the items are rendered using a single [`TrackedRenderPass`], during the //! [`RenderSet::Render`](crate::RenderSet::Render). //! //! Therefore each phase item is assigned a [`Draw`] function. //! These set up the state of the [`TrackedRenderPass`] (i.e. select the //! [`RenderPipeline`](crate::render_resource::RenderPipeline), configure the //! [`BindGroup`](crate::render_resource::BindGroup)s, etc.) and then issue a draw call, //! for the corresponding item. //! //! The [`Draw`] function trait can either be implemented directly or such a function can be //! created by composing multiple [`RenderCommand`]s. mod draw; mod draw_state; mod rangefinder; pub use draw::*; pub use draw_state::*; pub use rangefinder::*; use crate::render_resource::{CachedRenderPipelineId, PipelineCache}; use bevy_ecs::{ prelude::*, system::{lifetimeless::SRes, SystemParamItem}, }; use std::ops::Range; /// A collection of all rendering instructions, that will be executed by the GPU, for a /// single render phase for a single view. /// /// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases. /// They are used to queue entities for rendering. /// Multiple phases might be required due to different sorting/batching behaviours /// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on /// the rendered texture of the previous phase (e.g. for screen-space reflections). /// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`]. /// The render pass might be reused for multiple phases to reduce GPU overhead. #[derive(Component)] pub struct RenderPhase { pub items: Vec, } impl Default for RenderPhase { fn default() -> Self { Self { items: Vec::new() } } } impl RenderPhase { /// Adds a [`PhaseItem`] to this render phase. #[inline] pub fn add(&mut self, item: I) { self.items.push(item); } /// Sorts all of its [`PhaseItem`]s. pub fn sort(&mut self) { I::sort(&mut self.items); } /// Renders all of its [`PhaseItem`]s using their corresponding draw functions. pub fn render<'w>( &self, render_pass: &mut TrackedRenderPass<'w>, world: &'w World, view: Entity, ) { let draw_functions = world.resource::>(); let mut draw_functions = draw_functions.write(); draw_functions.prepare(world); for item in &self.items { let draw_function = draw_functions.get_mut(item.draw_function()).unwrap(); draw_function.draw(world, render_pass, view, item); } } } impl RenderPhase { /// Batches the compatible [`BatchedPhaseItem`]s of this render phase pub fn batch(&mut self) { // TODO: this could be done in-place let mut items = std::mem::take(&mut self.items).into_iter(); self.items.reserve(items.len()); // Start the first batch from the first item if let Some(mut current_batch) = items.next() { // Batch following items until we find an incompatible item for next_item in items { if matches!( current_batch.add_to_batch(&next_item), BatchResult::IncompatibleItems ) { // Store the completed batch, and start a new one from the incompatible item self.items.push(current_batch); current_batch = next_item; } } // Store the last batch self.items.push(current_batch); } } } /// An item (entity of the render world) which will be drawn to a texture or the screen, /// as part of a [`RenderPhase`]. /// /// The data required for rendering an entity is extracted from the main world in the /// [`ExtractSchedule`](crate::ExtractSchedule). /// Then it has to be queued up for rendering during the /// [`RenderSet::Queue`](crate::RenderSet::Queue), by adding a corresponding phase item to /// a render phase. /// Afterwards it will be sorted and rendered automatically in the /// [`RenderSet::PhaseSort`](crate::RenderSet::PhaseSort) and /// [`RenderSet::Render`](crate::RenderSet::Render), respectively. pub trait PhaseItem: Sized + Send + Sync + 'static { /// The type used for ordering the items. The smallest values are drawn first. /// This order can be calculated using the [`ViewRangefinder3d`], /// based on the view-space `Z` value of the corresponding view matrix. type SortKey: Ord; /// The corresponding entity that will be drawn. /// /// This is used to fetch the render data of the entity, required by the draw function, /// from the render world . fn entity(&self) -> Entity; /// Determines the order in which the items are drawn. fn sort_key(&self) -> Self::SortKey; /// Specifies the [`Draw`] function used to render the item. fn draw_function(&self) -> DrawFunctionId; /// Sorts a slice of phase items into render order. Generally if the same type /// implements [`BatchedPhaseItem`], this should use a stable sort like [`slice::sort_by_key`]. /// In almost all other cases, this should not be altered from the default, /// which uses a unstable sort, as this provides the best balance of CPU and GPU /// performance. /// /// Implementers can optionally not sort the list at all. This is generally advisable if and /// only if the renderer supports a depth prepass, which is by default not supported by /// the rest of Bevy's first party rendering crates. Even then, this may have a negative /// impact on GPU-side performance due to overdraw. /// /// It's advised to always profile for performance changes when changing this implementation. #[inline] fn sort(items: &mut [Self]) { items.sort_unstable_by_key(|item| item.sort_key()); } } /// A [`PhaseItem`] item, that automatically sets the appropriate render pipeline, /// cached in the [`PipelineCache`]. /// /// You can use the [`SetItemPipeline`] render command to set the pipeline for this item. pub trait CachedRenderPipelinePhaseItem: PhaseItem { /// The id of the render pipeline, cached in the [`PipelineCache`], that will be used to draw /// this phase item. fn cached_pipeline(&self) -> CachedRenderPipelineId; } /// A [`RenderCommand`] that sets the pipeline for the [`CachedRenderPipelinePhaseItem`]. pub struct SetItemPipeline; impl RenderCommand

for SetItemPipeline { type Param = SRes; type ViewWorldQuery = (); type ItemWorldQuery = (); #[inline] fn render<'w>( item: &P, _view: (), _entity: (), pipeline_cache: SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult { if let Some(pipeline) = pipeline_cache .into_inner() .get_render_pipeline(item.cached_pipeline()) { pass.set_render_pipeline(pipeline); RenderCommandResult::Success } else { RenderCommandResult::Failure } } } /// A [`PhaseItem`] that can be batched dynamically. /// /// Batching is an optimization that regroups multiple items in the same vertex buffer /// to render them in a single draw call. /// /// If this is implemented on a type, the implementation of [`PhaseItem::sort`] should /// be changed to implement a stable sort, or incorrect/suboptimal batching may result. pub trait BatchedPhaseItem: PhaseItem { /// Range in the vertex buffer of this item. fn batch_range(&self) -> &Option>; /// Range in the vertex buffer of this item. fn batch_range_mut(&mut self) -> &mut Option>; /// Batches another item within this item if they are compatible. /// Items can be batched together if they have the same entity, and consecutive ranges. /// If batching is successful, the `other` item should be discarded from the render pass. #[inline] fn add_to_batch(&mut self, other: &Self) -> BatchResult { let self_entity = self.entity(); if let (Some(self_batch_range), Some(other_batch_range)) = ( self.batch_range_mut().as_mut(), other.batch_range().as_ref(), ) { // If the items are compatible, join their range into `self` if self_entity == other.entity() { if self_batch_range.end == other_batch_range.start { self_batch_range.end = other_batch_range.end; return BatchResult::Success; } else if self_batch_range.start == other_batch_range.end { self_batch_range.start = other_batch_range.start; return BatchResult::Success; } } } BatchResult::IncompatibleItems } } /// The result of a batching operation. pub enum BatchResult { /// The `other` item was batched into `self` Success, /// `self` and `other` cannot be batched together IncompatibleItems, } /// This system sorts the [`PhaseItem`]s of all [`RenderPhase`]s of this type. pub fn sort_phase_system(mut render_phases: Query<&mut RenderPhase>) { for mut phase in &mut render_phases { phase.sort(); } } /// This system batches the [`PhaseItem`]s of all [`RenderPhase`]s of this type. pub fn batch_phase_system(mut render_phases: Query<&mut RenderPhase>) { for mut phase in &mut render_phases { phase.batch(); } } #[cfg(test)] mod tests { use super::*; use bevy_ecs::entity::Entity; use std::ops::Range; #[test] fn batching() { #[derive(Debug, PartialEq)] struct TestPhaseItem { entity: Entity, batch_range: Option>, } impl PhaseItem for TestPhaseItem { type SortKey = (); fn entity(&self) -> Entity { self.entity } fn sort_key(&self) -> Self::SortKey {} fn draw_function(&self) -> DrawFunctionId { unimplemented!(); } } impl BatchedPhaseItem for TestPhaseItem { fn batch_range(&self) -> &Option> { &self.batch_range } fn batch_range_mut(&mut self) -> &mut Option> { &mut self.batch_range } } let mut render_phase = RenderPhase::::default(); let items = [ TestPhaseItem { entity: Entity::from_raw(0), batch_range: Some(0..5), }, // This item should be batched TestPhaseItem { entity: Entity::from_raw(0), batch_range: Some(5..10), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(0..5), }, TestPhaseItem { entity: Entity::from_raw(0), batch_range: Some(10..15), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(5..10), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: None, }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(10..15), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(20..25), }, // This item should be batched TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(25..30), }, // This item should be batched TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(30..35), }, ]; for item in items { render_phase.add(item); } render_phase.batch(); let items_batched = [ TestPhaseItem { entity: Entity::from_raw(0), batch_range: Some(0..10), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(0..5), }, TestPhaseItem { entity: Entity::from_raw(0), batch_range: Some(10..15), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(5..10), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: None, }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(10..15), }, TestPhaseItem { entity: Entity::from_raw(1), batch_range: Some(20..35), }, ]; assert_eq!(&*render_phase.items, items_batched); } }