#[cfg(target_pointer_width = "16")] compile_error!("bevy_render cannot compile for a 16-bit platform."); extern crate core; pub mod batching; pub mod camera; pub mod color; pub mod deterministic; pub mod extract_component; pub mod extract_instances; mod extract_param; pub mod extract_resource; pub mod globals; pub mod gpu_component_array_buffer; pub mod mesh; #[cfg(not(target_arch = "wasm32"))] pub mod pipelined_rendering; pub mod primitives; pub mod render_asset; pub mod render_graph; pub mod render_phase; pub mod render_resource; pub mod renderer; pub mod settings; mod spatial_bundle; pub mod texture; pub mod view; pub mod prelude { #[doc(hidden)] pub use crate::{ camera::{ Camera, ClearColor, ClearColorConfig, OrthographicProjection, PerspectiveProjection, Projection, }, color::Color, mesh::{morph::MorphWeights, primitives::Meshable, shape, Mesh}, render_resource::Shader, spatial_bundle::SpatialBundle, texture::{Image, ImagePlugin}, view::{InheritedVisibility, Msaa, ViewVisibility, Visibility, VisibilityBundle}, ExtractSchedule, }; } use bevy_ecs::schedule::ScheduleBuildSettings; use bevy_utils::prelude::default; pub use extract_param::Extract; use bevy_hierarchy::ValidParentCheckPlugin; use bevy_window::{PrimaryWindow, RawHandleWrapper}; use globals::GlobalsPlugin; use renderer::{RenderAdapter, RenderAdapterInfo, RenderDevice, RenderQueue}; use crate::deterministic::DeterministicRenderingConfig; use crate::{ camera::CameraPlugin, mesh::{morph::MorphPlugin, Mesh, MeshPlugin}, render_asset::prepare_assets, render_resource::{PipelineCache, Shader, ShaderLoader}, renderer::{render_system, RenderInstance}, settings::RenderCreation, view::{ViewPlugin, WindowRenderPlugin}, }; use bevy_app::{App, AppLabel, Plugin, SubApp}; use bevy_asset::{load_internal_asset, AssetApp, AssetServer, Handle}; use bevy_ecs::{prelude::*, schedule::ScheduleLabel, system::SystemState}; use bevy_utils::tracing::debug; use std::{ ops::{Deref, DerefMut}, sync::{Arc, Mutex}, }; /// Contains the default Bevy rendering backend based on wgpu. /// /// Rendering is done in a [`SubApp`], which exchanges data with the main app /// between main schedule iterations. /// /// Rendering can be executed between iterations of the main schedule, /// or it can be executed in parallel with main schedule when /// [`PipelinedRenderingPlugin`](pipelined_rendering::PipelinedRenderingPlugin) is enabled. #[derive(Default)] pub struct RenderPlugin { pub render_creation: RenderCreation, } /// The labels of the default App rendering sets. /// /// that runs immediately after the matching system set. /// These can be useful for ordering, but you almost never want to add your systems to these sets. #[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)] pub enum RenderSet { /// This is used for applying the commands from the [`ExtractSchedule`] ExtractCommands, /// Prepare assets that have been created/modified/removed this frame. PrepareAssets, /// Create any additional views such as those used for shadow mapping. ManageViews, /// Queue drawable entities as phase items in [`RenderPhase`](crate::render_phase::RenderPhase)s /// ready for sorting Queue, /// A sub-set within [`Queue`](RenderSet::Queue) where mesh entity queue systems are executed. Ensures `prepare_assets::` is completed. QueueMeshes, // TODO: This could probably be moved in favor of a system ordering abstraction in `Render` or `Queue` /// Sort the [`RenderPhases`](render_phase::RenderPhase) here. PhaseSort, /// Prepare render resources from extracted data for the GPU based on their sorted order. /// Create [`BindGroups`](render_resource::BindGroup) that depend on those data. Prepare, /// A sub-set within [`Prepare`](RenderSet::Prepare) for initializing buffers, textures and uniforms for use in bind groups. PrepareResources, /// Flush buffers after [`PrepareResources`](RenderSet::PrepareResources), but before ['PrepareBindGroups'](RenderSet::PrepareBindGroups). PrepareResourcesFlush, /// A sub-set within [`Prepare`](RenderSet::Prepare) for constructing bind groups, or other data that relies on render resources prepared in [`PrepareResources`](RenderSet::PrepareResources). PrepareBindGroups, /// Actual rendering happens here. /// In most cases, only the render backend should insert resources here. Render, /// Cleanup render resources here. Cleanup, } /// The main render schedule. #[derive(ScheduleLabel, Debug, Hash, PartialEq, Eq, Clone)] pub struct Render; impl Render { /// Sets up the base structure of the rendering [`Schedule`]. /// /// The sets defined in this enum are configured to run in order. pub fn base_schedule() -> Schedule { use RenderSet::*; let mut schedule = Schedule::new(Self); schedule.configure_sets( ( ExtractCommands, ManageViews, Queue, PhaseSort, Prepare, Render, Cleanup, ) .chain(), ); schedule.configure_sets((ExtractCommands, PrepareAssets, Prepare).chain()); schedule.configure_sets(QueueMeshes.in_set(Queue).after(prepare_assets::)); schedule.configure_sets( (PrepareResources, PrepareResourcesFlush, PrepareBindGroups) .chain() .in_set(Prepare), ); schedule } } /// Schedule which extract data from the main world and inserts it into the render world. /// /// This step should be kept as short as possible to increase the "pipelining potential" for /// running the next frame while rendering the current frame. /// /// This schedule is run on the main world, but its buffers are not applied /// until it is returned to the render world. #[derive(ScheduleLabel, PartialEq, Eq, Debug, Clone, Hash)] pub struct ExtractSchedule; /// The simulation [`World`] of the application, stored as a resource. /// This resource is only available during [`ExtractSchedule`] and not /// during command application of that schedule. /// See [`Extract`] for more details. #[derive(Resource, Default)] pub struct MainWorld(World); impl Deref for MainWorld { type Target = World; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for MainWorld { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } pub mod graph { use crate::render_graph::RenderLabel; #[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)] pub struct CameraDriverLabel; } #[derive(Resource)] struct FutureRendererResources( Arc< Mutex< Option<( RenderDevice, RenderQueue, RenderAdapterInfo, RenderAdapter, RenderInstance, )>, >, >, ); /// A Label for the rendering sub-app. #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, AppLabel)] pub struct RenderApp; pub const INSTANCE_INDEX_SHADER_HANDLE: Handle = Handle::weak_from_u128(10313207077636615845); pub const MATHS_SHADER_HANDLE: Handle = Handle::weak_from_u128(10665356303104593376); impl Plugin for RenderPlugin { /// Initializes the renderer, sets up the [`RenderSet`] and creates the rendering sub-app. fn build(&self, app: &mut App) { app.init_resource::(); app.init_asset::() .init_asset_loader::(); match &self.render_creation { RenderCreation::Manual(device, queue, adapter_info, adapter, instance) => { let future_renderer_resources_wrapper = Arc::new(Mutex::new(Some(( device.clone(), queue.clone(), adapter_info.clone(), adapter.clone(), instance.clone(), )))); app.insert_resource(FutureRendererResources( future_renderer_resources_wrapper.clone(), )); // SAFETY: Plugins should be set up on the main thread. unsafe { initialize_render_app(app) }; } RenderCreation::Automatic(render_creation) => { if let Some(backends) = render_creation.backends { let future_renderer_resources_wrapper = Arc::new(Mutex::new(None)); app.insert_resource(FutureRendererResources( future_renderer_resources_wrapper.clone(), )); let mut system_state: SystemState< Query<&RawHandleWrapper, With>, > = SystemState::new(&mut app.world); let primary_window = system_state.get(&app.world).get_single().ok().cloned(); let settings = render_creation.clone(); let async_renderer = async move { let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends, dx12_shader_compiler: settings.dx12_shader_compiler.clone(), flags: settings.instance_flags, gles_minor_version: settings.gles3_minor_version, }); // SAFETY: Plugins should be set up on the main thread. let surface = primary_window.map(|wrapper| unsafe { let handle = wrapper.get_handle(); instance .create_surface(handle) .expect("Failed to create wgpu surface") }); let request_adapter_options = wgpu::RequestAdapterOptions { power_preference: settings.power_preference, compatible_surface: surface.as_ref(), ..Default::default() }; let (device, queue, adapter_info, render_adapter) = renderer::initialize_renderer( &instance, &settings, &request_adapter_options, ) .await; debug!("Configured wgpu adapter Limits: {:#?}", device.limits()); debug!("Configured wgpu adapter Features: {:#?}", device.features()); let mut future_renderer_resources_inner = future_renderer_resources_wrapper.lock().unwrap(); *future_renderer_resources_inner = Some(( device, queue, adapter_info, render_adapter, RenderInstance(Arc::new(instance)), )); }; // In wasm, spawn a task and detach it for execution #[cfg(target_arch = "wasm32")] bevy_tasks::IoTaskPool::get() .spawn_local(async_renderer) .detach(); // Otherwise, just block for it to complete #[cfg(not(target_arch = "wasm32"))] futures_lite::future::block_on(async_renderer); // SAFETY: Plugins should be set up on the main thread. unsafe { initialize_render_app(app) }; } } }; app.add_plugins(( ValidParentCheckPlugin::::default(), WindowRenderPlugin, CameraPlugin, ViewPlugin, MeshPlugin, GlobalsPlugin, MorphPlugin, )); app.register_type::() .register_type::() .register_type::() .register_type::() .register_type::(); } fn ready(&self, app: &App) -> bool { app.world .get_resource::() .and_then(|frr| frr.0.try_lock().map(|locked| locked.is_some()).ok()) .unwrap_or(true) } fn finish(&self, app: &mut App) { load_internal_asset!(app, MATHS_SHADER_HANDLE, "maths.wgsl", Shader::from_wgsl); if let Some(future_renderer_resources) = app.world.remove_resource::() { let (device, queue, adapter_info, render_adapter, instance) = future_renderer_resources.0.lock().unwrap().take().unwrap(); app.insert_resource(device.clone()) .insert_resource(queue.clone()) .insert_resource(adapter_info.clone()) .insert_resource(render_adapter.clone()); let render_app = app.sub_app_mut(RenderApp); render_app .insert_resource(instance) .insert_resource(PipelineCache::new(device.clone())) .insert_resource(device) .insert_resource(queue) .insert_resource(render_adapter) .insert_resource(adapter_info); } } } /// A "scratch" world used to avoid allocating new worlds every frame when /// swapping out the [`MainWorld`] for [`ExtractSchedule`]. #[derive(Resource, Default)] struct ScratchMainWorld(World); /// Executes the [`ExtractSchedule`] step of the renderer. /// This updates the render world with the extracted ECS data of the current frame. fn extract(main_world: &mut World, render_app: &mut App) { // temporarily add the app world to the render world as a resource let scratch_world = main_world.remove_resource::().unwrap(); let inserted_world = std::mem::replace(main_world, scratch_world.0); render_app.world.insert_resource(MainWorld(inserted_world)); render_app.world.run_schedule(ExtractSchedule); // move the app world back, as if nothing happened. let inserted_world = render_app.world.remove_resource::().unwrap(); let scratch_world = std::mem::replace(main_world, inserted_world.0); main_world.insert_resource(ScratchMainWorld(scratch_world)); } /// SAFETY: this function must be called from the main thread. unsafe fn initialize_render_app(app: &mut App) { app.init_resource::(); let mut render_app = App::empty(); render_app.main_schedule_label = Render.intern(); let mut extract_schedule = Schedule::new(ExtractSchedule); // We skip applying any commands during the ExtractSchedule // so commands can be applied on the render thread. extract_schedule.set_build_settings(ScheduleBuildSettings { auto_insert_apply_deferred: false, ..default() }); extract_schedule.set_apply_final_deferred(false); render_app .add_schedule(extract_schedule) .add_schedule(Render::base_schedule()) .init_resource::() .insert_resource(app.world.resource::().clone()) .add_systems(ExtractSchedule, PipelineCache::extract_shaders) .add_systems( Render, ( // This set applies the commands from the extract schedule while the render schedule // is running in parallel with the main app. apply_extract_commands.in_set(RenderSet::ExtractCommands), ( PipelineCache::process_pipeline_queue_system.before(render_system), render_system, ) .in_set(RenderSet::Render), World::clear_entities.in_set(RenderSet::Cleanup), ), ); let (sender, receiver) = bevy_time::create_time_channels(); app.insert_resource(receiver); render_app.insert_resource(sender); app.insert_sub_app(RenderApp, SubApp::new(render_app, move |main_world, render_app| { #[cfg(feature = "trace")] let _render_span = bevy_utils::tracing::info_span!("extract main app to render subapp").entered(); { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("reserve_and_flush") .entered(); // reserve all existing main world entities for use in render_app // they can only be spawned using `get_or_spawn()` let total_count = main_world.entities().total_count(); assert_eq!( render_app.world.entities().len(), 0, "An entity was spawned after the entity list was cleared last frame and before the extract schedule began. This is not supported", ); // SAFETY: This is safe given the clear_entities call in the past frame and the assert above unsafe { render_app .world .entities_mut() .flush_and_reserve_invalid_assuming_no_entities(total_count); } } // run extract schedule extract(main_world, render_app); })); } /// Applies the commands from the extract schedule. This happens during /// the render schedule rather than during extraction to allow the commands to run in parallel with the /// main app when pipelined rendering is enabled. fn apply_extract_commands(render_world: &mut World) { render_world.resource_scope(|render_world, mut schedules: Mut| { schedules .get_mut(ExtractSchedule) .unwrap() .apply_deferred(render_world); }); }