mod support; use glam::*; use std::f32; #[test] fn test_vec2_align() { use core::mem; assert_eq!(8, mem::size_of::()); assert_eq!(4, mem::align_of::()); assert_eq!(8, mem::size_of::()); assert_eq!(4, mem::align_of::()); } #[test] fn test_vec2_new() { let v = vec2(1.0, 2.0); assert_eq!(v.x(), 1.0); assert_eq!(v.y(), 2.0); let t = (1.0, 2.0); let v = Vec2::from(t); assert_eq!(t, v.into()); let a = [1.0, 2.0]; let v = Vec2::from(a); let a1: [f32; 2] = v.into(); assert_eq!(a, a1); let v = Vec2::new(t.0, t.1); assert_eq!(t, v.into()); assert_eq!(Vec2::new(1.0, 0.0), Vec2::unit_x()); assert_eq!(Vec2::new(0.0, 1.0), Vec2::unit_y()); } #[test] fn test_vec2_fmt() { let a = Vec2::new(1.0, 2.0); assert_eq!(format!("{:?}", a), "Vec2(1.0, 2.0)"); // assert_eq!(format!("{:#?}", a), "Vec2(\n 1.0,\n 2.0\n)"); assert_eq!(format!("{}", a), "[1, 2]"); } #[test] fn test_vec2_zero() { let v = Vec2::zero(); assert_eq!(vec2(0.0, 0.0), v); assert_eq!(v, Vec2::default()); } #[test] fn test_vec2_splat() { let v = Vec2::splat(1.0); assert_eq!(vec2(1.0, 1.0), v); } #[test] fn test_vec2_accessors() { let mut a = Vec2::zero(); a.set_x(1.0); a.set_y(2.0); assert_eq!(1.0, a.x()); assert_eq!(2.0, a.y()); assert_eq!(Vec2::new(1.0, 2.0), a); let mut a = Vec2::zero(); *a.x_mut() = 1.0; *a.y_mut() = 2.0; assert_eq!(1.0, a.x()); assert_eq!(2.0, a.y()); assert_eq!(Vec2::new(1.0, 2.0), a); let mut a = Vec2::zero(); a[0] = 1.0; a[1] = 2.0; assert_eq!(1.0, a[0]); assert_eq!(2.0, a[1]); assert_eq!(Vec2::new(1.0, 2.0), a); } #[test] fn test_vec2_funcs() { let x = vec2(1.0, 0.0); let y = vec2(0.0, 1.0); assert_eq!(1.0, x.dot(x)); assert_eq!(0.0, x.dot(y)); assert_eq!(-1.0, x.dot(-x)); assert_eq!(4.0, (2.0 * x).length_squared()); assert_eq!(9.0, (-3.0 * y).length_squared()); assert_eq!(2.0, (-2.0 * x).length()); assert_eq!(3.0, (3.0 * y).length()); assert_eq!(x, (2.0 * x).normalize()); assert_eq!(1.0 * 3.0 + 2.0 * 4.0, vec2(1.0, 2.0).dot(vec2(3.0, 4.0))); assert_eq!(2.0 * 2.0 + 3.0 * 3.0, vec2(2.0, 3.0).length_squared()); assert_eq!((2.0_f32 * 2.0 + 3.0 * 3.0).sqrt(), vec2(2.0, 3.0).length()); assert_eq!( 1.0 / (2.0_f32 * 2.0 + 3.0 * 3.0).sqrt(), vec2(2.0, 3.0).length_reciprocal() ); assert!(vec2(2.0, 3.0).normalize().is_normalized()); assert_eq!( vec2(2.0, 3.0) / (2.0_f32 * 2.0 + 3.0 * 3.0).sqrt(), vec2(2.0, 3.0).normalize() ); assert_eq!(vec2(0.5, 0.25), vec2(2.0, 4.0).reciprocal()); } #[test] fn test_vec2_ops() { let a = vec2(1.0, 2.0); assert_eq!(vec2(2.0, 4.0), (a + a)); assert_eq!(vec2(0.0, 0.0), (a - a)); assert_eq!(vec2(1.0, 4.0), (a * a)); assert_eq!(vec2(2.0, 4.0), (a * 2.0)); assert_eq!(vec2(1.0, 1.0), (a / a)); assert_eq!(vec2(0.5, 1.0), (a / 2.0)); assert_eq!(vec2(-1.0, -2.0), (-a)); } #[test] fn test_vec2_assign_ops() { let a = vec2(1.0, 2.0); let mut b = a; b += a; assert_eq!(vec2(2.0, 4.0), b); b -= a; assert_eq!(vec2(1.0, 2.0), b); b *= a; assert_eq!(vec2(1.0, 4.0), b); b /= a; assert_eq!(vec2(1.0, 2.0), b); b *= 2.0; assert_eq!(vec2(2.0, 4.0), b); b /= 2.0; assert_eq!(vec2(1.0, 2.0), b); } #[test] fn test_vec2_min_max() { let a = vec2(-1.0, 2.0); let b = vec2(1.0, -2.0); assert_eq!(vec2(-1.0, -2.0), a.min(b)); assert_eq!(vec2(-1.0, -2.0), b.min(a)); assert_eq!(vec2(1.0, 2.0), a.max(b)); assert_eq!(vec2(1.0, 2.0), b.max(a)); } #[test] fn test_vec2_hmin_hmax() { let a = vec2(-1.0, 2.0); assert_eq!(-1.0, a.min_element()); assert_eq!(2.0, a.max_element()); } #[test] fn test_vec2_eq() { let a = vec2(1.0, 1.0); let b = vec2(1.0, 2.0); assert!(a.cmpeq(a).all()); assert!(b.cmpeq(b).all()); assert!(a.cmpne(b).any()); assert!(b.cmpne(a).any()); assert!(b.cmpeq(a).any()); } #[test] fn test_vec2_cmp() { assert!(!Vec2Mask::default().any()); assert!(!Vec2Mask::default().all()); assert_eq!(Vec2Mask::default().bitmask(), 0x0); let a = vec2(-1.0, -1.0); let b = vec2(1.0, 1.0); let c = vec2(-1.0, -1.0); let d = vec2(1.0, -1.0); assert_eq!(a.cmplt(a).bitmask(), 0x0); assert_eq!(a.cmplt(b).bitmask(), 0x3); assert_eq!(a.cmplt(d).bitmask(), 0x1); assert_eq!(c.cmple(a).bitmask(), 0x3); assert!(a.cmplt(b).all()); assert!(a.cmplt(d).any()); assert!(a.cmple(b).all()); assert!(a.cmple(a).all()); assert!(b.cmpgt(a).all()); assert!(b.cmpge(a).all()); assert!(b.cmpge(b).all()); assert!(!(a.cmpge(d).all())); assert!(c.cmple(c).all()); assert!(c.cmpge(c).all()); assert!(a == a); assert!(a < b); assert!(b > a); } #[test] fn test_extend_truncate() { let a = vec2(1.0, 2.0); let b = a.extend(3.0); assert_eq!(vec3(1.0, 2.0, 3.0), b); } #[test] fn test_vec2b() { // make sure the unused 'w' value doesn't break Vec2b behaviour let a = Vec3::zero(); let mut b = a.truncate(); b.set_x(1.0); b.set_y(1.0); assert!(!b.cmpeq(Vec2::zero()).any()); assert!(b.cmpeq(Vec2::splat(1.0)).all()); } #[test] fn test_vec2mask_as_ref() { assert_eq!(Vec2Mask::new(false, false).as_ref(), &[0, 0]); assert_eq!(Vec2Mask::new(true, false).as_ref(), &[!0, 0]); assert_eq!(Vec2Mask::new(false, true).as_ref(), &[0, !0]); assert_eq!(Vec2Mask::new(true, true).as_ref(), &[!0, !0]); } #[test] fn test_vec2mask_from() { assert_eq!(Into::<[u32; 2]>::into(Vec2Mask::new(false, false)), [0, 0]); assert_eq!(Into::<[u32; 2]>::into(Vec2Mask::new(true, false)), [!0, 0]); assert_eq!(Into::<[u32; 2]>::into(Vec2Mask::new(false, true)), [0, !0]); assert_eq!(Into::<[u32; 2]>::into(Vec2Mask::new(true, true)), [!0, !0]); } #[test] fn test_vec2mask_bitmask() { assert_eq!(Vec2Mask::new(false, false).bitmask(), 0b00); assert_eq!(Vec2Mask::new(true, false).bitmask(), 0b01); assert_eq!(Vec2Mask::new(false, true).bitmask(), 0b10); assert_eq!(Vec2Mask::new(true, true).bitmask(), 0b11); } #[test] fn test_vec2mask_any() { assert_eq!(Vec2Mask::new(false, false).any(), false); assert_eq!(Vec2Mask::new(true, false).any(), true); assert_eq!(Vec2Mask::new(false, true).any(), true); assert_eq!(Vec2Mask::new(true, true).any(), true); } #[test] fn test_vec2mask_all() { assert_eq!(Vec2Mask::new(false, false).all(), false); assert_eq!(Vec2Mask::new(true, false).all(), false); assert_eq!(Vec2Mask::new(false, true).all(), false); assert_eq!(Vec2Mask::new(true, true).all(), true); } #[test] fn test_vec2mask_select() { let a = Vec2::new(1.0, 2.0); let b = Vec2::new(3.0, 4.0); assert_eq!(Vec2Mask::new(true, true).select(a, b), Vec2::new(1.0, 2.0),); assert_eq!(Vec2Mask::new(true, false).select(a, b), Vec2::new(1.0, 4.0),); assert_eq!(Vec2Mask::new(false, true).select(a, b), Vec2::new(3.0, 2.0),); assert_eq!( Vec2Mask::new(false, false).select(a, b), Vec2::new(3.0, 4.0), ); } #[test] fn test_vec2mask_and() { assert_eq!( (Vec2Mask::new(false, false) & Vec2Mask::new(false, false)).bitmask(), 0b00, ); assert_eq!( (Vec2Mask::new(true, true) & Vec2Mask::new(true, false)).bitmask(), 0b01, ); assert_eq!( (Vec2Mask::new(true, false) & Vec2Mask::new(false, true)).bitmask(), 0b00, ); assert_eq!( (Vec2Mask::new(true, true) & Vec2Mask::new(true, true)).bitmask(), 0b11, ); let mut mask = Vec2Mask::new(true, true); mask &= Vec2Mask::new(true, false); assert_eq!(mask.bitmask(), 0b01); } #[test] fn test_vec2mask_or() { assert_eq!( (Vec2Mask::new(false, false) | Vec2Mask::new(false, false)).bitmask(), 0b00, ); assert_eq!( (Vec2Mask::new(false, false) | Vec2Mask::new(false, true)).bitmask(), 0b10, ); assert_eq!( (Vec2Mask::new(true, false) | Vec2Mask::new(false, true)).bitmask(), 0b11, ); assert_eq!( (Vec2Mask::new(true, true) | Vec2Mask::new(true, true)).bitmask(), 0b11, ); let mut mask = Vec2Mask::new(true, true); mask |= Vec2Mask::new(true, false); assert_eq!(mask.bitmask(), 0b11); } #[test] fn test_vec2mask_not() { assert_eq!((!Vec2Mask::new(false, false)).bitmask(), 0b11); assert_eq!((!Vec2Mask::new(true, false)).bitmask(), 0b10); assert_eq!((!Vec2Mask::new(false, true)).bitmask(), 0b01); assert_eq!((!Vec2Mask::new(true, true)).bitmask(), 0b00); } #[test] fn test_vec2mask_fmt() { let a = Vec2Mask::new(true, false); assert_eq!(format!("{:?}", a), "Vec2Mask(0xffffffff, 0x0)"); assert_eq!(format!("{}", a), "[true, false]"); } #[test] fn test_vec2mask_eq() { let a = Vec2Mask::new(true, false); let b = Vec2Mask::new(true, false); let c = Vec2Mask::new(false, true); assert_eq!(a, b); assert_eq!(b, a); assert_ne!(a, c); assert_ne!(b, c); assert!(a > c); assert!(c < a); } #[test] fn test_vec2mask_hash() { use std::{ collections::hash_map::DefaultHasher, hash::{Hash, Hasher}, }; let a = Vec2Mask::new(true, false); let b = Vec2Mask::new(true, false); let c = Vec2Mask::new(false, true); let mut hasher = DefaultHasher::new(); a.hash(&mut hasher); let a_hashed = hasher.finish(); let mut hasher = DefaultHasher::new(); b.hash(&mut hasher); let b_hashed = hasher.finish(); let mut hasher = DefaultHasher::new(); c.hash(&mut hasher); let c_hashed = hasher.finish(); assert_eq!(a, b); assert_eq!(a_hashed, b_hashed); assert_ne!(a, c); assert_ne!(a_hashed, c_hashed); } #[test] fn test_vec2_sign() { assert_eq!(Vec2::zero().sign(), Vec2::one()); assert_eq!(-Vec2::zero().sign(), -Vec2::one()); assert_eq!(Vec2::one().sign(), Vec2::one()); assert_eq!((-Vec2::one()).sign(), -Vec2::one()); assert_eq!(Vec2::splat(core::f32::NEG_INFINITY).sign(), -Vec2::one()); } #[test] fn test_vec2_abs() { assert_eq!(Vec2::zero().abs(), Vec2::zero()); assert_eq!(Vec2::one().abs(), Vec2::one()); assert_eq!((-Vec2::one()).abs(), Vec2::one()); } #[test] fn test_vec2_round() { assert_eq!(Vec2::new(1.35, 0.0).round().x(), 1.0); assert_eq!(Vec2::new(0.0, 1.5).round().y(), 2.0); assert_eq!(Vec2::new(0.0, -15.5).round().y(), -16.0); assert_eq!(Vec2::new(0.0, 0.0).round().y(), 0.0); assert_eq!(Vec2::new(0.0, 21.1).round().y(), 21.0); assert_eq!(Vec2::new(0.0, 11.123).round().y(), 11.0); assert_eq!(Vec2::new(0.0, 11.499).round().y(), 11.0); assert_eq!( Vec2::new(f32::NEG_INFINITY, f32::INFINITY).round(), Vec2::new(f32::NEG_INFINITY, f32::INFINITY) ); assert!(Vec2::new(f32::NAN, 0.0).round().x().is_nan()); } #[test] fn test_vec2_floor() { assert_eq!(Vec2::new(1.35, -1.5).floor(), Vec2::new(1.0, -2.0)); assert_eq!( Vec2::new(f32::INFINITY, f32::NEG_INFINITY).floor(), Vec2::new(f32::INFINITY, f32::NEG_INFINITY) ); assert!(Vec2::new(f32::NAN, 0.0).floor().x().is_nan()); assert_eq!( Vec2::new(-2000000.123, 10000000.123).floor(), Vec2::new(-2000001.0, 10000000.0) ); } #[test] fn test_vec2_ceil() { assert_eq!(Vec2::new(1.35, -1.5).ceil(), Vec2::new(2.0, -1.0)); assert_eq!( Vec2::new(f32::INFINITY, f32::NEG_INFINITY).ceil(), Vec2::new(f32::INFINITY, f32::NEG_INFINITY) ); assert!(Vec2::new(f32::NAN, 0.0).ceil().x().is_nan()); assert_eq!( Vec2::new(-2000000.123, 1000000.123).ceil(), Vec2::new(-2000000.0, 1000001.0) ); } #[test] fn test_vec2_lerp() { let v0 = Vec2::new(-1.0, -1.0); let v1 = Vec2::new(1.0, 1.0); assert_approx_eq!(v0, v0.lerp(v1, 0.0)); assert_approx_eq!(v1, v0.lerp(v1, 1.0)); assert_approx_eq!(Vec2::zero(), v0.lerp(v1, 0.5)); } #[test] fn test_vec2_to_from_slice() { let v = Vec2::new(1.0, 2.0); let mut a = [0.0, 0.0]; v.write_to_slice_unaligned(&mut a); assert_eq!(v, Vec2::from_slice_unaligned(&a)); } #[test] fn test_vec2_angle_between() { let angle = Vec2::new(1.0, 0.0).angle_between(Vec2::new(0.0, 1.0)); assert_approx_eq!(f32::consts::FRAC_PI_2, angle, 1e-6); let angle = Vec2::new(10.0, 0.0).angle_between(Vec2::new(0.0, 5.0)); assert_approx_eq!(f32::consts::FRAC_PI_2, angle, 1e-6); let angle = Vec2::new(-1.0, 0.0).angle_between(Vec2::new(0.0, 1.0)); assert_approx_eq!(-f32::consts::FRAC_PI_2, angle, 1e-6); } #[cfg(feature = "serde")] #[test] fn test_vec2_serde() { let a = Vec2::new(1.0, 2.0); let serialized = serde_json::to_string(&a).unwrap(); assert_eq!(serialized, "[1.0,2.0]"); let deserialized = serde_json::from_str(&serialized).unwrap(); assert_eq!(a, deserialized); let deserialized = serde_json::from_str::("[]"); assert!(deserialized.is_err()); let deserialized = serde_json::from_str::("[1.0]"); assert!(deserialized.is_err()); let deserialized = serde_json::from_str::("[1.0,2.0,3.0]"); assert!(deserialized.is_err()); } #[cfg(feature = "rand")] #[test] fn test_vec2_rand() { use rand::{Rng, SeedableRng}; use rand_xoshiro::Xoshiro256Plus; let mut rng1 = Xoshiro256Plus::seed_from_u64(0); let a: (f32, f32) = rng1.gen(); let mut rng2 = Xoshiro256Plus::seed_from_u64(0); let b: Vec2 = rng2.gen(); assert_eq!(a, b.into()); }