bevy/crates/bevy_animation/src/animation_curves.rs
Patrick Walton 0094bcbc07
Implement additive blending for animation graphs. (#15631)
*Additive blending* is an ubiquitous feature in game engines that allows
animations to be concatenated instead of blended. The canonical use case
is to allow a character to hold a weapon while performing arbitrary
poses. For example, if you had a character that needed to be able to
walk or run while attacking with a weapon, the typical workflow is to
have an additive blend node that combines walking and running animation
clips with an animation clip of one of the limbs performing a weapon
attack animation.

This commit adds support for additive blending to Bevy. It builds on top
of the flexible infrastructure in #15589 and introduces a new type of
node, the *add node*. Like blend nodes, add nodes combine the animations
of their children according to their weights. Unlike blend nodes,
however, add nodes don't normalize the weights to 1.0.

The `animation_masks` example has been overhauled to demonstrate the use
of additive blending in combination with masks. There are now controls
to choose an animation clip for every limb of the fox individually.

This patch also fixes a bug whereby masks were incorrectly accumulated
with `insert()` during the graph threading phase, which could cause
corruption of computed masks in some cases.

Note that the `clip` field has been replaced with an `AnimationNodeType`
enum, which breaks `animgraph.ron` files. The `Fox.animgraph.ron` asset
has been updated to the new format.

Closes #14395.

## Showcase


https://github.com/user-attachments/assets/52dfe05f-fdb3-477a-9462-ec150f93df33

## Migration Guide

* The `animgraph.ron` format has changed to accommodate the new
*additive blending* feature. You'll need to change `clip` fields to
instances of the new `AnimationNodeType` enum.
2024-10-04 22:13:22 +00:00

1134 lines
38 KiB
Rust

//! The [`AnimationCurve`] trait and adaptors that allow curves to implement it.
//!
//! # Overview
//!
//! The flow of curves into the animation system generally begins with something that
//! implements the [`Curve`] trait. Let's imagine, for example, that we have some
//! `Curve<Vec3>` that we want to use to animate something. That could be defined in
//! a number of different ways, but let's imagine that we've defined it [using a function]:
//!
//! # use bevy_math::curve::{Curve, Interval, function_curve};
//! # use bevy_math::vec3;
//! let wobble_curve = function_curve(
//! Interval::UNIT,
//! |t| { vec3(t.cos(), 0.0, 0.0) },
//! );
//!
//! Okay, so we have a curve, but the animation system also needs to know, in some way,
//! how the values from this curve should actually be used. That is, it needs to know what
//! to animate! That's what [`AnimationCurve`] is for. In particular, what we need to do
//! is take our curve and turn it into an `AnimationCurve` which will be usable by the
//! animation system.
//!
//! For instance, let's imagine that we want to use the `Vec3` output
//! from our curve to animate the [translation component of a `Transform`]. For this, there is
//! the adaptor [`TranslationCurve`], which wraps any `Curve<Vec3>` and turns it into an
//! [`AnimationCurve`] that will use the given curve to animate the entity's translation:
//!
//! # use bevy_math::curve::{Curve, Interval, function_curve};
//! # use bevy_math::vec3;
//! # use bevy_animation::animation_curves::*;
//! # let wobble_curve = function_curve(
//! # Interval::UNIT,
//! # |t| vec3(t.cos(), 0.0, 0.0)
//! # );
//! let wobble_animation = TranslationCurve(wobble_curve);
//!
//! And finally, this `AnimationCurve` needs to be added to an [`AnimationClip`] in order to
//! actually animate something. This is what that looks like:
//!
//! # use bevy_math::curve::{Curve, Interval, function_curve};
//! # use bevy_animation::{AnimationClip, AnimationTargetId, animation_curves::*};
//! # use bevy_core::Name;
//! # use bevy_math::vec3;
//! # let wobble_curve = function_curve(
//! # Interval::UNIT,
//! # |t| { vec3(t.cos(), 0.0, 0.0) },
//! # );
//! # let wobble_animation = TranslationCurve(wobble_curve);
//! # let animation_target_id = AnimationTargetId::from(&Name::new("Test"));
//! let mut animation_clip = AnimationClip::default();
//! animation_clip.add_curve_to_target(
//! animation_target_id,
//! wobble_animation,
//! );
//!
//! # Making animation curves
//!
//! The overview showed one example, but in general there are a few different ways of going from
//! a [`Curve`], which produces time-related data of some kind, to an [`AnimationCurve`], which
//! knows how to apply that data to an entity.
//!
//! ## `Transform`
//!
//! [`Transform`] is special and has its own adaptors:
//! - [`TranslationCurve`], which uses `Vec3` output to animate [`Transform::translation`]
//! - [`RotationCurve`], which uses `Quat` output to animate [`Transform::rotation`]
//! - [`ScaleCurve`], which uses `Vec3` output to animate [`Transform::scale`]
//!
//! ## Animatable properties
//!
//! Animation of arbitrary components can be accomplished using [`AnimatableProperty`] in
//! conjunction with [`AnimatableCurve`]. See the documentation [there] for details.
//!
//! [using a function]: bevy_math::curve::function_curve
//! [translation component of a `Transform`]: bevy_transform::prelude::Transform::translation
//! [`AnimationClip`]: crate::AnimationClip
//! [there]: AnimatableProperty
use core::{
any::TypeId,
fmt::{self, Debug, Formatter},
marker::PhantomData,
};
use bevy_ecs::{component::Component, world::Mut};
use bevy_math::{
curve::{
cores::{UnevenCore, UnevenCoreError},
iterable::IterableCurve,
Curve, Interval,
},
Quat, Vec3,
};
use bevy_reflect::{FromReflect, Reflect, Reflectable, TypePath};
use bevy_render::mesh::morph::MorphWeights;
use bevy_transform::prelude::Transform;
use crate::{
graph::AnimationNodeIndex,
prelude::{Animatable, BlendInput},
AnimationEntityMut, AnimationEvaluationError,
};
/// A value on a component that Bevy can animate.
///
/// You can implement this trait on a unit struct in order to support animating
/// custom components other than transforms and morph weights. Use that type in
/// conjunction with [`AnimatableCurve`] (and perhaps [`AnimatableKeyframeCurve`]
/// to define the animation itself).
/// For example, in order to animate field of view, you might use:
///
/// # use bevy_animation::prelude::AnimatableProperty;
/// # use bevy_reflect::Reflect;
/// # use bevy_render::camera::PerspectiveProjection;
/// #[derive(Reflect)]
/// struct FieldOfViewProperty;
///
/// impl AnimatableProperty for FieldOfViewProperty {
/// type Component = PerspectiveProjection;
/// type Property = f32;
/// fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
/// Some(&mut component.fov)
/// }
/// }
///
/// You can then create an [`AnimationClip`] to animate this property like so:
///
/// # use bevy_animation::{AnimationClip, AnimationTargetId, VariableCurve};
/// # use bevy_animation::prelude::{AnimatableProperty, AnimatableKeyframeCurve, AnimatableCurve};
/// # use bevy_core::Name;
/// # use bevy_reflect::Reflect;
/// # use bevy_render::camera::PerspectiveProjection;
/// # let animation_target_id = AnimationTargetId::from(&Name::new("Test"));
/// # #[derive(Reflect)]
/// # struct FieldOfViewProperty;
/// # impl AnimatableProperty for FieldOfViewProperty {
/// # type Component = PerspectiveProjection;
/// # type Property = f32;
/// # fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
/// # Some(&mut component.fov)
/// # }
/// # }
/// let mut animation_clip = AnimationClip::default();
/// animation_clip.add_curve_to_target(
/// animation_target_id,
/// AnimatableKeyframeCurve::new(
/// [
/// (0.0, core::f32::consts::PI / 4.0),
/// (1.0, core::f32::consts::PI / 3.0),
/// ]
/// )
/// .map(AnimatableCurve::<FieldOfViewProperty, _>::from_curve)
/// .expect("Failed to create font size curve")
/// );
///
/// Here, the use of [`AnimatableKeyframeCurve`] creates a curve out of the given keyframe time-value
/// pairs, using the [`Animatable`] implementation of `f32` to interpolate between them. The
/// invocation of [`AnimatableCurve::from_curve`] with `FieldOfViewProperty` indicates that the `f32`
/// output from that curve is to be used to animate the font size of a `PerspectiveProjection` component (as
/// configured above).
///
/// [`AnimationClip`]: crate::AnimationClip
pub trait AnimatableProperty: Reflect + TypePath {
/// The type of the component that the property lives on.
type Component: Component;
/// The type of the property to be animated.
type Property: Animatable + FromReflect + Reflectable + Clone + Sync + Debug;
/// Given a reference to the component, returns a reference to the property.
///
/// If the property couldn't be found, returns `None`.
fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property>;
}
/// This trait collects the additional requirements on top of [`Curve<T>`] needed for a
/// curve to be used as an [`AnimationCurve`].
pub trait AnimationCompatibleCurve<T>: Curve<T> + Debug + Clone + Reflectable {}
impl<T, C> AnimationCompatibleCurve<T> for C where C: Curve<T> + Debug + Clone + Reflectable {}
/// This type allows the conversion of a [curve] valued in the [property type] of an
/// [`AnimatableProperty`] into an [`AnimationCurve`] which animates that property.
///
/// [curve]: Curve
/// [property type]: AnimatableProperty::Property
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct AnimatableCurve<P, C> {
curve: C,
#[reflect(ignore)]
_phantom: PhantomData<P>,
}
/// An [`AnimatableCurveEvaluator`] for [`AnimatableProperty`] instances.
///
/// You shouldn't ordinarily need to instantiate one of these manually. Bevy
/// will automatically do so when you use an [`AnimatableCurve`] instance.
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct AnimatableCurveEvaluator<P>
where
P: AnimatableProperty,
{
evaluator: BasicAnimationCurveEvaluator<P::Property>,
#[reflect(ignore)]
phantom: PhantomData<P>,
}
impl<P, C> AnimatableCurve<P, C>
where
P: AnimatableProperty,
C: AnimationCompatibleCurve<P::Property>,
{
/// Create an [`AnimatableCurve`] (and thus an [`AnimationCurve`]) from a curve
/// valued in an [animatable property].
///
/// [animatable property]: AnimatableProperty::Property
pub fn from_curve(curve: C) -> Self {
Self {
curve,
_phantom: PhantomData,
}
}
}
impl<P, C> Clone for AnimatableCurve<P, C>
where
C: Clone,
{
fn clone(&self) -> Self {
Self {
curve: self.curve.clone(),
_phantom: PhantomData,
}
}
}
impl<P, C> Debug for AnimatableCurve<P, C>
where
C: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("AnimatableCurve")
.field("curve", &self.curve)
.finish()
}
}
impl<P, C> AnimationCurve for AnimatableCurve<P, C>
where
P: AnimatableProperty,
C: AnimationCompatibleCurve<P::Property>,
{
fn clone_value(&self) -> Box<dyn AnimationCurve> {
Box::new(self.clone())
}
fn domain(&self) -> Interval {
self.curve.domain()
}
fn evaluator_type(&self) -> TypeId {
TypeId::of::<AnimatableCurveEvaluator<P>>()
}
fn create_evaluator(&self) -> Box<dyn AnimationCurveEvaluator> {
Box::new(AnimatableCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator::default(),
phantom: PhantomData::<P>,
})
}
fn apply(
&self,
curve_evaluator: &mut dyn AnimationCurveEvaluator,
t: f32,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
let curve_evaluator = (*Reflect::as_any_mut(curve_evaluator))
.downcast_mut::<AnimatableCurveEvaluator<P>>()
.unwrap();
let value = self.curve.sample_clamped(t);
curve_evaluator
.evaluator
.stack
.push(BasicAnimationCurveEvaluatorStackElement {
value,
weight,
graph_node,
});
Ok(())
}
}
impl<P> AnimationCurveEvaluator for AnimatableCurveEvaluator<P>
where
P: AnimatableProperty,
{
fn blend(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ false)
}
fn add(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ true)
}
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
self.evaluator.push_blend_register(weight, graph_node)
}
fn commit<'a>(
&mut self,
_: Option<Mut<'a, Transform>>,
mut entity: AnimationEntityMut<'a>,
) -> Result<(), AnimationEvaluationError> {
let mut component = entity.get_mut::<P::Component>().ok_or_else(|| {
AnimationEvaluationError::ComponentNotPresent(TypeId::of::<P::Component>())
})?;
let property = P::get_mut(&mut component)
.ok_or_else(|| AnimationEvaluationError::PropertyNotPresent(TypeId::of::<P>()))?;
*property = self
.evaluator
.stack
.pop()
.ok_or_else(inconsistent::<AnimatableCurveEvaluator<P>>)?
.value;
Ok(())
}
}
/// This type allows a [curve] valued in `Vec3` to become an [`AnimationCurve`] that animates
/// the translation component of a transform.
///
/// [curve]: Curve
#[derive(Debug, Clone, Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct TranslationCurve<C>(pub C);
/// An [`AnimationCurveEvaluator`] for use with [`TranslationCurve`]s.
///
/// You shouldn't need to instantiate this manually; Bevy will automatically do
/// so.
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct TranslationCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator<Vec3>,
}
impl<C> AnimationCurve for TranslationCurve<C>
where
C: AnimationCompatibleCurve<Vec3>,
{
fn clone_value(&self) -> Box<dyn AnimationCurve> {
Box::new(self.clone())
}
fn domain(&self) -> Interval {
self.0.domain()
}
fn evaluator_type(&self) -> TypeId {
TypeId::of::<TranslationCurveEvaluator>()
}
fn create_evaluator(&self) -> Box<dyn AnimationCurveEvaluator> {
Box::new(TranslationCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator::default(),
})
}
fn apply(
&self,
curve_evaluator: &mut dyn AnimationCurveEvaluator,
t: f32,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
let curve_evaluator = (*Reflect::as_any_mut(curve_evaluator))
.downcast_mut::<TranslationCurveEvaluator>()
.unwrap();
let value = self.0.sample_clamped(t);
curve_evaluator
.evaluator
.stack
.push(BasicAnimationCurveEvaluatorStackElement {
value,
weight,
graph_node,
});
Ok(())
}
}
impl AnimationCurveEvaluator for TranslationCurveEvaluator {
fn blend(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ false)
}
fn add(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ true)
}
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
self.evaluator.push_blend_register(weight, graph_node)
}
fn commit<'a>(
&mut self,
transform: Option<Mut<'a, Transform>>,
_: AnimationEntityMut<'a>,
) -> Result<(), AnimationEvaluationError> {
let mut component = transform.ok_or_else(|| {
AnimationEvaluationError::ComponentNotPresent(TypeId::of::<Transform>())
})?;
component.translation = self
.evaluator
.stack
.pop()
.ok_or_else(inconsistent::<TranslationCurveEvaluator>)?
.value;
Ok(())
}
}
/// This type allows a [curve] valued in `Quat` to become an [`AnimationCurve`] that animates
/// the rotation component of a transform.
///
/// [curve]: Curve
#[derive(Debug, Clone, Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct RotationCurve<C>(pub C);
/// An [`AnimationCurveEvaluator`] for use with [`RotationCurve`]s.
///
/// You shouldn't need to instantiate this manually; Bevy will automatically do
/// so.
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct RotationCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator<Quat>,
}
impl<C> AnimationCurve for RotationCurve<C>
where
C: AnimationCompatibleCurve<Quat>,
{
fn clone_value(&self) -> Box<dyn AnimationCurve> {
Box::new(self.clone())
}
fn domain(&self) -> Interval {
self.0.domain()
}
fn evaluator_type(&self) -> TypeId {
TypeId::of::<RotationCurveEvaluator>()
}
fn create_evaluator(&self) -> Box<dyn AnimationCurveEvaluator> {
Box::new(RotationCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator::default(),
})
}
fn apply(
&self,
curve_evaluator: &mut dyn AnimationCurveEvaluator,
t: f32,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
let curve_evaluator = (*Reflect::as_any_mut(curve_evaluator))
.downcast_mut::<RotationCurveEvaluator>()
.unwrap();
let value = self.0.sample_clamped(t);
curve_evaluator
.evaluator
.stack
.push(BasicAnimationCurveEvaluatorStackElement {
value,
weight,
graph_node,
});
Ok(())
}
}
impl AnimationCurveEvaluator for RotationCurveEvaluator {
fn blend(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ false)
}
fn add(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ true)
}
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
self.evaluator.push_blend_register(weight, graph_node)
}
fn commit<'a>(
&mut self,
transform: Option<Mut<'a, Transform>>,
_: AnimationEntityMut<'a>,
) -> Result<(), AnimationEvaluationError> {
let mut component = transform.ok_or_else(|| {
AnimationEvaluationError::ComponentNotPresent(TypeId::of::<Transform>())
})?;
component.rotation = self
.evaluator
.stack
.pop()
.ok_or_else(inconsistent::<RotationCurveEvaluator>)?
.value;
Ok(())
}
}
/// This type allows a [curve] valued in `Vec3` to become an [`AnimationCurve`] that animates
/// the scale component of a transform.
///
/// [curve]: Curve
#[derive(Debug, Clone, Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct ScaleCurve<C>(pub C);
/// An [`AnimationCurveEvaluator`] for use with [`ScaleCurve`]s.
///
/// You shouldn't need to instantiate this manually; Bevy will automatically do
/// so.
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct ScaleCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator<Vec3>,
}
impl<C> AnimationCurve for ScaleCurve<C>
where
C: AnimationCompatibleCurve<Vec3>,
{
fn clone_value(&self) -> Box<dyn AnimationCurve> {
Box::new(self.clone())
}
fn domain(&self) -> Interval {
self.0.domain()
}
fn evaluator_type(&self) -> TypeId {
TypeId::of::<ScaleCurveEvaluator>()
}
fn create_evaluator(&self) -> Box<dyn AnimationCurveEvaluator> {
Box::new(ScaleCurveEvaluator {
evaluator: BasicAnimationCurveEvaluator::default(),
})
}
fn apply(
&self,
curve_evaluator: &mut dyn AnimationCurveEvaluator,
t: f32,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
let curve_evaluator = (*Reflect::as_any_mut(curve_evaluator))
.downcast_mut::<ScaleCurveEvaluator>()
.unwrap();
let value = self.0.sample_clamped(t);
curve_evaluator
.evaluator
.stack
.push(BasicAnimationCurveEvaluatorStackElement {
value,
weight,
graph_node,
});
Ok(())
}
}
impl AnimationCurveEvaluator for ScaleCurveEvaluator {
fn blend(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ false)
}
fn add(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.evaluator.combine(graph_node, /*additive=*/ true)
}
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
self.evaluator.push_blend_register(weight, graph_node)
}
fn commit<'a>(
&mut self,
transform: Option<Mut<'a, Transform>>,
_: AnimationEntityMut<'a>,
) -> Result<(), AnimationEvaluationError> {
let mut component = transform.ok_or_else(|| {
AnimationEvaluationError::ComponentNotPresent(TypeId::of::<Transform>())
})?;
component.scale = self
.evaluator
.stack
.pop()
.ok_or_else(inconsistent::<ScaleCurveEvaluator>)?
.value;
Ok(())
}
}
/// This type allows an [`IterableCurve`] valued in `f32` to be used as an [`AnimationCurve`]
/// that animates [morph weights].
///
/// [morph weights]: MorphWeights
#[derive(Debug, Clone, Reflect, FromReflect)]
#[reflect(from_reflect = false)]
pub struct WeightsCurve<C>(pub C);
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
struct WeightsCurveEvaluator {
/// The values of the stack, in which each element is a list of morph target
/// weights.
///
/// The stack elements are concatenated and tightly packed together.
///
/// The number of elements in this stack will always be a multiple of
/// [`Self::morph_target_count`].
stack_morph_target_weights: Vec<f32>,
/// The blend weights and graph node indices for each element of the stack.
///
/// This should have as many elements as there are stack nodes. In other
/// words, `Self::stack_morph_target_weights.len() *
/// Self::morph_target_counts as usize ==
/// Self::stack_blend_weights_and_graph_nodes`.
stack_blend_weights_and_graph_nodes: Vec<(f32, AnimationNodeIndex)>,
/// The morph target weights in the blend register, if any.
///
/// This field should be ignored if [`Self::blend_register_blend_weight`] is
/// `None`. If non-empty, it will always have [`Self::morph_target_count`]
/// elements in it.
blend_register_morph_target_weights: Vec<f32>,
/// The weight in the blend register.
///
/// This will be `None` if the blend register is empty. In that case,
/// [`Self::blend_register_morph_target_weights`] will be empty.
blend_register_blend_weight: Option<f32>,
/// The number of morph targets that are to be animated.
morph_target_count: Option<u32>,
}
impl<C> AnimationCurve for WeightsCurve<C>
where
C: IterableCurve<f32> + Debug + Clone + Reflectable,
{
fn clone_value(&self) -> Box<dyn AnimationCurve> {
Box::new(self.clone())
}
fn domain(&self) -> Interval {
self.0.domain()
}
fn evaluator_type(&self) -> TypeId {
TypeId::of::<WeightsCurveEvaluator>()
}
fn create_evaluator(&self) -> Box<dyn AnimationCurveEvaluator> {
Box::new(WeightsCurveEvaluator {
stack_morph_target_weights: vec![],
stack_blend_weights_and_graph_nodes: vec![],
blend_register_morph_target_weights: vec![],
blend_register_blend_weight: None,
morph_target_count: None,
})
}
fn apply(
&self,
curve_evaluator: &mut dyn AnimationCurveEvaluator,
t: f32,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
let curve_evaluator = (*Reflect::as_any_mut(curve_evaluator))
.downcast_mut::<WeightsCurveEvaluator>()
.unwrap();
let prev_morph_target_weights_len = curve_evaluator.stack_morph_target_weights.len();
curve_evaluator
.stack_morph_target_weights
.extend(self.0.sample_iter_clamped(t));
curve_evaluator.morph_target_count = Some(
(curve_evaluator.stack_morph_target_weights.len() - prev_morph_target_weights_len)
as u32,
);
curve_evaluator
.stack_blend_weights_and_graph_nodes
.push((weight, graph_node));
Ok(())
}
}
impl WeightsCurveEvaluator {
fn combine(
&mut self,
graph_node: AnimationNodeIndex,
additive: bool,
) -> Result<(), AnimationEvaluationError> {
let Some(&(_, top_graph_node)) = self.stack_blend_weights_and_graph_nodes.last() else {
return Ok(());
};
if top_graph_node != graph_node {
return Ok(());
}
let (weight_to_blend, _) = self.stack_blend_weights_and_graph_nodes.pop().unwrap();
let stack_iter = self.stack_morph_target_weights.drain(
(self.stack_morph_target_weights.len() - self.morph_target_count.unwrap() as usize)..,
);
match self.blend_register_blend_weight {
None => {
self.blend_register_blend_weight = Some(weight_to_blend);
self.blend_register_morph_target_weights.clear();
self.blend_register_morph_target_weights.extend(stack_iter);
}
Some(ref mut current_weight) => {
*current_weight += weight_to_blend;
for (dest, src) in self
.blend_register_morph_target_weights
.iter_mut()
.zip(stack_iter)
{
if additive {
*dest += src * weight_to_blend;
} else {
*dest = f32::interpolate(dest, &src, weight_to_blend / *current_weight);
}
}
}
}
Ok(())
}
}
impl AnimationCurveEvaluator for WeightsCurveEvaluator {
fn blend(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.combine(graph_node, /*additive=*/ false)
}
fn add(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
self.combine(graph_node, /*additive=*/ true)
}
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
if self.blend_register_blend_weight.take().is_some() {
self.stack_morph_target_weights
.append(&mut self.blend_register_morph_target_weights);
self.stack_blend_weights_and_graph_nodes
.push((weight, graph_node));
}
Ok(())
}
fn commit<'a>(
&mut self,
_: Option<Mut<'a, Transform>>,
mut entity: AnimationEntityMut<'a>,
) -> Result<(), AnimationEvaluationError> {
if self.stack_morph_target_weights.is_empty() {
return Ok(());
}
// Compute the index of the first morph target in the last element of
// the stack.
let index_of_first_morph_target =
self.stack_morph_target_weights.len() - self.morph_target_count.unwrap() as usize;
for (dest, src) in entity
.get_mut::<MorphWeights>()
.ok_or_else(|| {
AnimationEvaluationError::ComponentNotPresent(TypeId::of::<MorphWeights>())
})?
.weights_mut()
.iter_mut()
.zip(self.stack_morph_target_weights[index_of_first_morph_target..].iter())
{
*dest = *src;
}
self.stack_morph_target_weights.clear();
self.stack_blend_weights_and_graph_nodes.clear();
Ok(())
}
}
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
struct BasicAnimationCurveEvaluator<A>
where
A: Animatable,
{
stack: Vec<BasicAnimationCurveEvaluatorStackElement<A>>,
blend_register: Option<(A, f32)>,
}
#[derive(Reflect, FromReflect)]
#[reflect(from_reflect = false)]
struct BasicAnimationCurveEvaluatorStackElement<A>
where
A: Animatable,
{
value: A,
weight: f32,
graph_node: AnimationNodeIndex,
}
impl<A> Default for BasicAnimationCurveEvaluator<A>
where
A: Animatable,
{
fn default() -> Self {
BasicAnimationCurveEvaluator {
stack: vec![],
blend_register: None,
}
}
}
impl<A> BasicAnimationCurveEvaluator<A>
where
A: Animatable,
{
fn combine(
&mut self,
graph_node: AnimationNodeIndex,
additive: bool,
) -> Result<(), AnimationEvaluationError> {
let Some(top) = self.stack.last() else {
return Ok(());
};
if top.graph_node != graph_node {
return Ok(());
}
let BasicAnimationCurveEvaluatorStackElement {
value: value_to_blend,
weight: weight_to_blend,
graph_node: _,
} = self.stack.pop().unwrap();
match self.blend_register.take() {
None => self.blend_register = Some((value_to_blend, weight_to_blend)),
Some((mut current_value, mut current_weight)) => {
current_weight += weight_to_blend;
if additive {
current_value = A::blend(
[
BlendInput {
weight: 1.0,
value: current_value,
additive: true,
},
BlendInput {
weight: weight_to_blend,
value: value_to_blend,
additive: true,
},
]
.into_iter(),
);
} else {
current_value = A::interpolate(
&current_value,
&value_to_blend,
weight_to_blend / current_weight,
);
}
self.blend_register = Some((current_value, current_weight));
}
}
Ok(())
}
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
if let Some((value, _)) = self.blend_register.take() {
self.stack.push(BasicAnimationCurveEvaluatorStackElement {
value,
weight,
graph_node,
});
}
Ok(())
}
}
/// A low-level trait that provides control over how curves are actually applied
/// to entities by the animation system.
///
/// Typically, this will not need to be implemented manually, since it is
/// automatically implemented by [`AnimatableCurve`] and other curves used by
/// the animation system (e.g. those that animate parts of transforms or morph
/// weights). However, this can be implemented manually when `AnimatableCurve`
/// is not sufficiently expressive.
///
/// In many respects, this behaves like a type-erased form of [`Curve`], where
/// the output type of the curve is remembered only in the components that are
/// mutated in the implementation of [`apply`].
///
/// [`apply`]: AnimationCurve::apply
pub trait AnimationCurve: Reflect + Debug + Send + Sync {
/// Returns a boxed clone of this value.
fn clone_value(&self) -> Box<dyn AnimationCurve>;
/// The range of times for which this animation is defined.
fn domain(&self) -> Interval;
/// Returns the type ID of the [`AnimationCurveEvaluator`].
///
/// This must match the type returned by [`Self::create_evaluator`]. It must
/// be a single type that doesn't depend on the type of the curve.
fn evaluator_type(&self) -> TypeId;
/// Returns a newly-instantiated [`AnimationCurveEvaluator`] for use with
/// this curve.
///
/// All curve types must return the same type of
/// [`AnimationCurveEvaluator`]. The returned value must match the type
/// returned by [`Self::evaluator_type`].
fn create_evaluator(&self) -> Box<dyn AnimationCurveEvaluator>;
/// Samples the curve at the given time `t`, and pushes the sampled value
/// onto the evaluation stack of the `curve_evaluator`.
///
/// The `curve_evaluator` parameter points to the value returned by
/// [`Self::create_evaluator`], upcast to an `&mut dyn
/// AnimationCurveEvaluator`. Typically, implementations of [`Self::apply`]
/// will want to downcast the `curve_evaluator` parameter to the concrete
/// type [`Self::evaluator_type`] in order to push values of the appropriate
/// type onto its evaluation stack.
///
/// Be sure not to confuse the `t` and `weight` values. The former
/// determines the position at which the *curve* is sampled, while `weight`
/// ultimately determines how much the *stack values* will be blended
/// together (see the definition of [`AnimationCurveEvaluator::blend`]).
fn apply(
&self,
curve_evaluator: &mut dyn AnimationCurveEvaluator,
t: f32,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError>;
}
/// A low-level trait for use in [`crate::VariableCurve`] that provides fine
/// control over how animations are evaluated.
///
/// You can implement this trait when the generic [`AnimatableCurveEvaluator`]
/// isn't sufficiently-expressive for your needs. For example, [`MorphWeights`]
/// implements this trait instead of using [`AnimatableCurveEvaluator`] because
/// it needs to animate arbitrarily many weights at once, which can't be done
/// with [`Animatable`] as that works on fixed-size values only.
///
/// If you implement this trait, you should also implement [`AnimationCurve`] on
/// your curve type, as that trait allows creating instances of this one.
///
/// Implementations of [`AnimatableCurveEvaluator`] should maintain a *stack* of
/// (value, weight, node index) triples, as well as a *blend register*, which is
/// either a (value, weight) pair or empty. *Value* here refers to an instance
/// of the value being animated: for example, [`Vec3`] in the case of
/// translation keyframes. The stack stores intermediate values generated while
/// evaluating the [`crate::graph::AnimationGraph`], while the blend register
/// stores the result of a blend operation.
pub trait AnimationCurveEvaluator: Reflect {
/// Blends the top element of the stack with the blend register.
///
/// The semantics of this method are as follows:
///
/// 1. Pop the top element of the stack. Call its value vₘ and its weight
/// wₘ. If the stack was empty, return success.
///
/// 2. If the blend register is empty, set the blend register value to vₘ
/// and the blend register weight to wₘ; then, return success.
///
/// 3. If the blend register is nonempty, call its current value vₙ and its
/// current weight wₙ. Then, set the value of the blend register to
/// `interpolate(vₙ, vₘ, wₘ / (wₘ + wₙ))`, and set the weight of the blend
/// register to wₘ + wₙ.
///
/// 4. Return success.
fn blend(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError>;
/// Additively blends the top element of the stack with the blend register.
///
/// The semantics of this method are as follows:
///
/// 1. Pop the top element of the stack. Call its value vₘ and its weight
/// wₘ. If the stack was empty, return success.
///
/// 2. If the blend register is empty, set the blend register value to vₘ
/// and the blend register weight to wₘ; then, return success.
///
/// 3. If the blend register is nonempty, call its current value vₙ.
/// Then, set the value of the blend register to vₙ + vₘwₘ.
///
/// 4. Return success.
fn add(&mut self, graph_node: AnimationNodeIndex) -> Result<(), AnimationEvaluationError>;
/// Pushes the current value of the blend register onto the stack.
///
/// If the blend register is empty, this method does nothing successfully.
/// Otherwise, this method pushes the current value of the blend register
/// onto the stack, alongside the weight and graph node supplied to this
/// function. The weight present in the blend register is discarded; only
/// the weight parameter to this function is pushed onto the stack. The
/// blend register is emptied after this process.
fn push_blend_register(
&mut self,
weight: f32,
graph_node: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError>;
/// Pops the top value off the stack and writes it into the appropriate
/// component.
///
/// If the stack is empty, this method does nothing successfully. Otherwise,
/// it pops the top value off the stack, fetches the associated component
/// from either the `transform` or `entity` values as appropriate, and
/// updates the appropriate property with the value popped from the stack.
/// The weight and node index associated with the popped stack element are
/// discarded. After doing this, the stack is emptied.
///
/// The property on the component must be overwritten with the value from
/// the stack, not blended with it.
fn commit<'a>(
&mut self,
transform: Option<Mut<'a, Transform>>,
entity: AnimationEntityMut<'a>,
) -> Result<(), AnimationEvaluationError>;
}
/// A [curve] defined by keyframes with values in an [animatable] type.
///
/// The keyframes are interpolated using the type's [`Animatable::interpolate`] implementation.
///
/// [curve]: Curve
/// [animatable]: Animatable
#[derive(Debug, Clone, Reflect)]
pub struct AnimatableKeyframeCurve<T> {
core: UnevenCore<T>,
}
impl<T> Curve<T> for AnimatableKeyframeCurve<T>
where
T: Animatable + Clone,
{
#[inline]
fn domain(&self) -> Interval {
self.core.domain()
}
#[inline]
fn sample_clamped(&self, t: f32) -> T {
// `UnevenCore::sample_with` is implicitly clamped.
self.core.sample_with(t, <T as Animatable>::interpolate)
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
self.sample_clamped(t)
}
}
impl<T> AnimatableKeyframeCurve<T>
where
T: Animatable,
{
/// Create a new [`AnimatableKeyframeCurve`] from the given `keyframes`. The values of this
/// curve are interpolated from the keyframes using the output type's implementation of
/// [`Animatable::interpolate`].
///
/// There must be at least two samples in order for this method to succeed.
pub fn new(keyframes: impl IntoIterator<Item = (f32, T)>) -> Result<Self, UnevenCoreError> {
Ok(Self {
core: UnevenCore::new(keyframes)?,
})
}
}
fn inconsistent<P>() -> AnimationEvaluationError
where
P: 'static + ?Sized,
{
AnimationEvaluationError::InconsistentEvaluatorImplementation(TypeId::of::<P>())
}