bevy/crates/bevy_ecs/src/relationship/relationship_query.rs
Chris Russell f7e112a3c9
Let query items borrow from query state to avoid needing to clone (#15396)
# Objective

Improve the performance of `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`FilteredEntityRef` needs an `Access<ComponentId>` to determine what
components it can access. There is one stored in the query state, but
query items cannot borrow from the state, so it has to `clone()` the
access for each row. Cloning the access involves memory allocations and
can be expensive.


## Solution

Let query items borrow from their query state.  

Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`,
similar to the one in `SystemParam`, and provide `&'s Self::State` to
the fetch so that it can borrow from the state.

Unfortunately, there are a few cases where we currently return query
items from temporary query states: the sorted iteration methods create a
temporary state to query the sort keys, and the
`EntityRef::components<Q>()` methods create a temporary state for their
query.

To allow these to continue to work with most `QueryData`
implementations, introduce a new subtrait `ReleaseStateQueryData` that
converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is
implemented for everything except `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`#[derive(QueryData)]` will generate `ReleaseStateQueryData`
implementations that apply when all of the subqueries implement
`ReleaseStateQueryData`.

This PR does not actually change the implementation of
`FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done
as a follow-up PR so that the changes are easier to review. I have
pushed the changes as chescock/bevy#5.

## Testing

I ran performance traces of many_foxes, both against main and against
chescock/bevy#5, both including #15282. These changes do appear to make
generalized animation a bit faster:

(Red is main, yellow is chescock/bevy#5)

![image](https://github.com/user-attachments/assets/de900117-0c6a-431d-ab62-c013834f97a9)


## Migration Guide

The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the
`QueryItem` and `ROQueryItem` type aliases now have an additional
lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual
implementations of `WorldQuery` will need to update the method
signatures to include the new lifetimes. Other uses of the types will
need to be updated to include a lifetime parameter, although it can
usually be passed as `'_`. In particular, `ROQueryItem` is used when
implementing `RenderCommand`.

Before: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

After: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, '_, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

---

Methods on `QueryState` that take `&mut self` may now result in
conflicting borrows if the query items capture the lifetime of the
mutable reference. This affects `get()`, `iter()`, and others. To fix
the errors, first call `QueryState::update_archetypes()`, and then
replace a call `state.foo(world, param)` with
`state.query_manual(world).foo_inner(param)`. Alternately, you may be
able to restructure the code to call `state.query(world)` once and then
make multiple calls using the `Query`.

Before:
```rust
let mut state: QueryState<_, _> = ...;
let d1 = state.get(world, e1);
let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time
println!("{d1:?}");
println!("{d2:?}");
```

After: 
```rust
let mut state: QueryState<_, _> = ...;

state.update_archetypes(world);
let d1 = state.get_manual(world, e1);
let d2 = state.get_manual(world, e2);
// OR
state.update_archetypes(world);
let d1 = state.query(world).get_inner(e1);
let d2 = state.query(world).get_inner(e2);
// OR
let query = state.query(world);
let d1 = query.get_inner(e1);
let d1 = query.get_inner(e2);

println!("{d1:?}");
println!("{d2:?}");
```
2025-06-16 21:05:41 +00:00

273 lines
9.1 KiB
Rust

use crate::{
entity::Entity,
query::{QueryData, QueryFilter},
relationship::{Relationship, RelationshipTarget},
system::Query,
};
use alloc::collections::VecDeque;
use smallvec::SmallVec;
use super::SourceIter;
impl<'w, 's, D: QueryData, F: QueryFilter> Query<'w, 's, D, F> {
/// If the given `entity` contains the `R` [`Relationship`] component, returns the
/// target entity of that relationship.
pub fn related<R: Relationship>(&'w self, entity: Entity) -> Option<Entity>
where
<D as QueryData>::ReadOnly: QueryData<Item<'w, 's> = &'w R>,
{
self.get(entity).map(R::get).ok()
}
/// If the given `entity` contains the `S` [`RelationshipTarget`] component, returns the
/// source entities stored on that component.
pub fn relationship_sources<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + 'w
where
<D as QueryData>::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
{
self.get(entity)
.into_iter()
.flat_map(RelationshipTarget::iter)
}
/// Recursively walks up the tree defined by the given `R` [`Relationship`] until
/// there are no more related entities, returning the "root entity" of the relationship hierarchy.
///
/// # Warning
///
/// For relationship graphs that contain loops, this could loop infinitely.
/// If your relationship is not a tree (like Bevy's hierarchy), be sure to stop if you encounter a duplicate entity.
pub fn root_ancestor<R: Relationship>(&'w self, entity: Entity) -> Entity
where
<D as QueryData>::ReadOnly: QueryData<Item<'w, 's> = &'w R>,
{
// Recursively search up the tree until we're out of parents
match self.get(entity) {
Ok(parent) => self.root_ancestor(parent.get()),
Err(_) => entity,
}
}
/// Iterates all "leaf entities" as defined by the [`RelationshipTarget`] hierarchy.
///
/// # Warning
///
/// For relationship graphs that contain loops, this could loop infinitely.
/// If your relationship is not a tree (like Bevy's hierarchy), be sure to stop if you encounter a duplicate entity.
pub fn iter_leaves<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + use<'w, 's, S, D, F>
where
<D as QueryData>::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
SourceIter<'w, S>: DoubleEndedIterator,
{
self.iter_descendants_depth_first(entity).filter(|entity| {
self.get(*entity)
// These are leaf nodes if they have the `Children` component but it's empty
.map(|children| children.len() == 0)
// Or if they don't have the `Children` component at all
.unwrap_or(true)
})
}
/// Iterates all sibling entities that also have the `R` [`Relationship`] with the same target entity.
pub fn iter_siblings<R: Relationship>(
&'w self,
entity: Entity,
) -> impl Iterator<Item = Entity> + 'w
where
D::ReadOnly: QueryData<Item<'w, 's> = (Option<&'w R>, Option<&'w R::RelationshipTarget>)>,
{
self.get(entity)
.ok()
.and_then(|(maybe_parent, _)| maybe_parent.map(R::get))
.and_then(|parent| self.get(parent).ok())
.and_then(|(_, maybe_children)| maybe_children)
.into_iter()
.flat_map(move |children| children.iter().filter(move |child| *child != entity))
}
/// Iterates all descendant entities as defined by the given `entity`'s [`RelationshipTarget`] and their recursive
/// [`RelationshipTarget`].
///
/// # Warning
///
/// For relationship graphs that contain loops, this could loop infinitely.
/// If your relationship is not a tree (like Bevy's hierarchy), be sure to stop if you encounter a duplicate entity.
pub fn iter_descendants<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> DescendantIter<'w, 's, D, F, S>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
{
DescendantIter::new(self, entity)
}
/// Iterates all descendant entities as defined by the given `entity`'s [`RelationshipTarget`] and their recursive
/// [`RelationshipTarget`] in depth-first order.
///
/// # Warning
///
/// For relationship graphs that contain loops, this could loop infinitely.
/// If your relationship is not a tree (like Bevy's hierarchy), be sure to stop if you encounter a duplicate entity.
pub fn iter_descendants_depth_first<S: RelationshipTarget>(
&'w self,
entity: Entity,
) -> DescendantDepthFirstIter<'w, 's, D, F, S>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
SourceIter<'w, S>: DoubleEndedIterator,
{
DescendantDepthFirstIter::new(self, entity)
}
/// Iterates all ancestors of the given `entity` as defined by the `R` [`Relationship`].
///
/// # Warning
///
/// For relationship graphs that contain loops, this could loop infinitely.
/// If your relationship is not a tree (like Bevy's hierarchy), be sure to stop if you encounter a duplicate entity.
pub fn iter_ancestors<R: Relationship>(
&'w self,
entity: Entity,
) -> AncestorIter<'w, 's, D, F, R>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w R>,
{
AncestorIter::new(self, entity)
}
}
/// An [`Iterator`] of [`Entity`]s over the descendants of an [`Entity`].
///
/// Traverses the hierarchy breadth-first.
pub struct DescendantIter<'w, 's, D: QueryData, F: QueryFilter, S: RelationshipTarget>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
{
children_query: &'w Query<'w, 's, D, F>,
vecdeque: VecDeque<Entity>,
}
impl<'w, 's, D: QueryData, F: QueryFilter, S: RelationshipTarget> DescendantIter<'w, 's, D, F, S>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
{
/// Returns a new [`DescendantIter`].
pub fn new(children_query: &'w Query<'w, 's, D, F>, entity: Entity) -> Self {
DescendantIter {
children_query,
vecdeque: children_query
.get(entity)
.into_iter()
.flat_map(RelationshipTarget::iter)
.collect(),
}
}
}
impl<'w, 's, D: QueryData, F: QueryFilter, S: RelationshipTarget> Iterator
for DescendantIter<'w, 's, D, F, S>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
{
type Item = Entity;
fn next(&mut self) -> Option<Self::Item> {
let entity = self.vecdeque.pop_front()?;
if let Ok(children) = self.children_query.get(entity) {
self.vecdeque.extend(children.iter());
}
Some(entity)
}
}
/// An [`Iterator`] of [`Entity`]s over the descendants of an [`Entity`].
///
/// Traverses the hierarchy depth-first.
pub struct DescendantDepthFirstIter<'w, 's, D: QueryData, F: QueryFilter, S: RelationshipTarget>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
{
children_query: &'w Query<'w, 's, D, F>,
stack: SmallVec<[Entity; 8]>,
}
impl<'w, 's, D: QueryData, F: QueryFilter, S: RelationshipTarget>
DescendantDepthFirstIter<'w, 's, D, F, S>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
SourceIter<'w, S>: DoubleEndedIterator,
{
/// Returns a new [`DescendantDepthFirstIter`].
pub fn new(children_query: &'w Query<'w, 's, D, F>, entity: Entity) -> Self {
DescendantDepthFirstIter {
children_query,
stack: children_query
.get(entity)
.map_or(SmallVec::new(), |children| children.iter().rev().collect()),
}
}
}
impl<'w, 's, D: QueryData, F: QueryFilter, S: RelationshipTarget> Iterator
for DescendantDepthFirstIter<'w, 's, D, F, S>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w S>,
SourceIter<'w, S>: DoubleEndedIterator,
{
type Item = Entity;
fn next(&mut self) -> Option<Self::Item> {
let entity = self.stack.pop()?;
if let Ok(children) = self.children_query.get(entity) {
self.stack.extend(children.iter().rev());
}
Some(entity)
}
}
/// An [`Iterator`] of [`Entity`]s over the ancestors of an [`Entity`].
pub struct AncestorIter<'w, 's, D: QueryData, F: QueryFilter, R: Relationship>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w R>,
{
parent_query: &'w Query<'w, 's, D, F>,
next: Option<Entity>,
}
impl<'w, 's, D: QueryData, F: QueryFilter, R: Relationship> AncestorIter<'w, 's, D, F, R>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w R>,
{
/// Returns a new [`AncestorIter`].
pub fn new(parent_query: &'w Query<'w, 's, D, F>, entity: Entity) -> Self {
AncestorIter {
parent_query,
next: Some(entity),
}
}
}
impl<'w, 's, D: QueryData, F: QueryFilter, R: Relationship> Iterator
for AncestorIter<'w, 's, D, F, R>
where
D::ReadOnly: QueryData<Item<'w, 's> = &'w R>,
{
type Item = Entity;
fn next(&mut self) -> Option<Self::Item> {
self.next = self.parent_query.get(self.next?).ok().map(R::get);
self.next
}
}