bevy/crates/bevy_math/src/sampling/shape_sampling.rs
homersimpsons 0707c0717b
✏️ Fix typos across bevy (#16702)
# Objective

Fixes typos in bevy project, following suggestion in
https://github.com/bevyengine/bevy-website/pull/1912#pullrequestreview-2483499337

## Solution

I used https://github.com/crate-ci/typos to find them.

I included only the ones that feel undebatable too me, but I am not in
game engine so maybe some terms are expected.

I left out the following typos:
- `reparametrize` => `reparameterize`: There are a lot of occurences, I
believe this was expected
- `semicircles` => `hemicircles`: 2 occurences, may mean something
specific in geometry
- `invertation` => `inversion`: may mean something specific
- `unparented` => `parentless`: may mean something specific
- `metalness` => `metallicity`: may mean something specific

## Testing

- Did you test these changes? If so, how? I did not test the changes,
most changes are related to raw text. I expect the others to be tested
by the CI.
- Are there any parts that need more testing? I do not think
- How can other people (reviewers) test your changes? Is there anything
specific they need to know? To me there is nothing to test
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?

---

## Migration Guide

> This section is optional. If there are no breaking changes, you can
delete this section.

(kept in case I include the `reparameterize` change here)

- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable
design choice is not a breaking change.

## Questions

- [x] Should I include the above typos? No
(https://github.com/bevyengine/bevy/pull/16702#issuecomment-2525271152)
- [ ] Should I add `typos` to the CI? (I will check how to configure it
properly)

This project looks awesome, I really enjoy reading the progress made,
thanks to everyone involved.
2024-12-08 01:18:39 +00:00

641 lines
22 KiB
Rust

//! The [`ShapeSample`] trait, allowing random sampling from geometric shapes.
//!
//! At the most basic level, this allows sampling random points from the interior and boundary of
//! geometric primitives. For example:
//! ```
//! # use bevy_math::primitives::*;
//! # use bevy_math::ShapeSample;
//! # use rand::SeedableRng;
//! # use rand::rngs::StdRng;
//! // Get some `Rng`:
//! let rng = &mut StdRng::from_entropy();
//! // Make a circle of radius 2:
//! let circle = Circle::new(2.0);
//! // Get a point inside this circle uniformly at random:
//! let interior_pt = circle.sample_interior(rng);
//! // Get a point on the circle's boundary uniformly at random:
//! let boundary_pt = circle.sample_boundary(rng);
//! ```
//!
//! For repeated sampling, `ShapeSample` also includes methods for accessing a [`Distribution`]:
//! ```
//! # use bevy_math::primitives::*;
//! # use bevy_math::{Vec2, ShapeSample};
//! # use rand::SeedableRng;
//! # use rand::rngs::StdRng;
//! # use rand::distributions::Distribution;
//! # let rng1 = StdRng::from_entropy();
//! # let rng2 = StdRng::from_entropy();
//! // Use a rectangle this time:
//! let rectangle = Rectangle::new(1.0, 2.0);
//! // Get an iterator that spits out random interior points:
//! let interior_iter = rectangle.interior_dist().sample_iter(rng1);
//! // Collect random interior points from the iterator:
//! let interior_pts: Vec<Vec2> = interior_iter.take(1000).collect();
//! // Similarly, get an iterator over many random boundary points and collect them:
//! let boundary_pts: Vec<Vec2> = rectangle.boundary_dist().sample_iter(rng2).take(1000).collect();
//! ```
//!
//! In any case, the [`Rng`] used as the source of randomness must be provided explicitly.
use core::f32::consts::{PI, TAU};
use crate::{ops, primitives::*, NormedVectorSpace, Vec2, Vec3};
use rand::{
distributions::{Distribution, WeightedIndex},
Rng,
};
/// Exposes methods to uniformly sample a variety of primitive shapes.
pub trait ShapeSample {
/// The type of vector returned by the sample methods, [`Vec2`] for 2D shapes and [`Vec3`] for 3D shapes.
type Output;
/// Uniformly sample a point from inside the area/volume of this shape, centered on 0.
///
/// Shapes like [`Cylinder`], [`Capsule2d`] and [`Capsule3d`] are oriented along the y-axis.
///
/// # Example
/// ```
/// # use bevy_math::prelude::*;
/// let square = Rectangle::new(2.0, 2.0);
///
/// // Returns a Vec2 with both x and y between -1 and 1.
/// println!("{:?}", square.sample_interior(&mut rand::thread_rng()));
/// ```
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output;
/// Uniformly sample a point from the surface of this shape, centered on 0.
///
/// Shapes like [`Cylinder`], [`Capsule2d`] and [`Capsule3d`] are oriented along the y-axis.
///
/// # Example
/// ```
/// # use bevy_math::prelude::*;
/// let square = Rectangle::new(2.0, 2.0);
///
/// // Returns a Vec2 where one of the coordinates is at ±1,
/// // and the other is somewhere between -1 and 1.
/// println!("{:?}", square.sample_boundary(&mut rand::thread_rng()));
/// ```
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output;
/// Extract a [`Distribution`] whose samples are points of this shape's interior, taken uniformly.
///
/// # Example
///
/// ```
/// # use bevy_math::prelude::*;
/// # use rand::distributions::Distribution;
/// let square = Rectangle::new(2.0, 2.0);
/// let rng = rand::thread_rng();
///
/// // Iterate over points randomly drawn from `square`'s interior:
/// for random_val in square.interior_dist().sample_iter(rng).take(5) {
/// println!("{:?}", random_val);
/// }
/// ```
fn interior_dist(self) -> impl Distribution<Self::Output>
where
Self: Sized,
{
InteriorOf(self)
}
/// Extract a [`Distribution`] whose samples are points of this shape's boundary, taken uniformly.
///
/// # Example
///
/// ```
/// # use bevy_math::prelude::*;
/// # use rand::distributions::Distribution;
/// let square = Rectangle::new(2.0, 2.0);
/// let rng = rand::thread_rng();
///
/// // Iterate over points randomly drawn from `square`'s boundary:
/// for random_val in square.boundary_dist().sample_iter(rng).take(5) {
/// println!("{:?}", random_val);
/// }
/// ```
fn boundary_dist(self) -> impl Distribution<Self::Output>
where
Self: Sized,
{
BoundaryOf(self)
}
}
#[derive(Clone, Copy)]
/// A wrapper struct that allows interior sampling from a [`ShapeSample`] type directly as
/// a [`Distribution`].
pub struct InteriorOf<T: ShapeSample>(pub T);
#[derive(Clone, Copy)]
/// A wrapper struct that allows boundary sampling from a [`ShapeSample`] type directly as
/// a [`Distribution`].
pub struct BoundaryOf<T: ShapeSample>(pub T);
impl<T: ShapeSample> Distribution<<T as ShapeSample>::Output> for InteriorOf<T> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> <T as ShapeSample>::Output {
self.0.sample_interior(rng)
}
}
impl<T: ShapeSample> Distribution<<T as ShapeSample>::Output> for BoundaryOf<T> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> <T as ShapeSample>::Output {
self.0.sample_boundary(rng)
}
}
impl ShapeSample for Circle {
type Output = Vec2;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
// https://mathworld.wolfram.com/DiskPointPicking.html
let theta = rng.gen_range(0.0..TAU);
let r_squared = rng.gen_range(0.0..=(self.radius * self.radius));
let r = ops::sqrt(r_squared);
let (sin, cos) = ops::sin_cos(theta);
Vec2::new(r * cos, r * sin)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
let theta = rng.gen_range(0.0..TAU);
let (sin, cos) = ops::sin_cos(theta);
Vec2::new(self.radius * cos, self.radius * sin)
}
}
/// Boundary sampling for unit-spheres
#[inline]
fn sample_unit_sphere_boundary<R: Rng + ?Sized>(rng: &mut R) -> Vec3 {
let z = rng.gen_range(-1f32..=1f32);
let (a_sin, a_cos) = ops::sin_cos(rng.gen_range(-PI..=PI));
let c = ops::sqrt(1f32 - z * z);
let x = a_sin * c;
let y = a_cos * c;
Vec3::new(x, y, z)
}
impl ShapeSample for Sphere {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
let r_cubed = rng.gen_range(0.0..=(self.radius * self.radius * self.radius));
let r = ops::cbrt(r_cubed);
r * sample_unit_sphere_boundary(rng)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
self.radius * sample_unit_sphere_boundary(rng)
}
}
impl ShapeSample for Annulus {
type Output = Vec2;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
let inner_radius = self.inner_circle.radius;
let outer_radius = self.outer_circle.radius;
// Like random sampling for a circle, radius is weighted by the square.
let r_squared = rng.gen_range((inner_radius * inner_radius)..(outer_radius * outer_radius));
let r = ops::sqrt(r_squared);
let theta = rng.gen_range(0.0..TAU);
let (sin, cos) = ops::sin_cos(theta);
Vec2::new(r * cos, r * sin)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
let total_perimeter = self.inner_circle.perimeter() + self.outer_circle.perimeter();
let inner_prob = (self.inner_circle.perimeter() / total_perimeter) as f64;
// Sample from boundary circles, choosing which one by weighting by perimeter:
let inner = rng.gen_bool(inner_prob);
if inner {
self.inner_circle.sample_boundary(rng)
} else {
self.outer_circle.sample_boundary(rng)
}
}
}
impl ShapeSample for Rectangle {
type Output = Vec2;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
let x = rng.gen_range(-self.half_size.x..=self.half_size.x);
let y = rng.gen_range(-self.half_size.y..=self.half_size.y);
Vec2::new(x, y)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
let primary_side = rng.gen_range(-1.0..1.0);
let other_side = if rng.gen() { -1.0 } else { 1.0 };
if self.half_size.x + self.half_size.y > 0.0 {
if rng.gen_bool((self.half_size.x / (self.half_size.x + self.half_size.y)) as f64) {
Vec2::new(primary_side, other_side) * self.half_size
} else {
Vec2::new(other_side, primary_side) * self.half_size
}
} else {
Vec2::ZERO
}
}
}
impl ShapeSample for Cuboid {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
let x = rng.gen_range(-self.half_size.x..=self.half_size.x);
let y = rng.gen_range(-self.half_size.y..=self.half_size.y);
let z = rng.gen_range(-self.half_size.z..=self.half_size.z);
Vec3::new(x, y, z)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
let primary_side1 = rng.gen_range(-1.0..1.0);
let primary_side2 = rng.gen_range(-1.0..1.0);
let other_side = if rng.gen() { -1.0 } else { 1.0 };
if let Ok(dist) = WeightedIndex::new([
self.half_size.y * self.half_size.z,
self.half_size.x * self.half_size.z,
self.half_size.x * self.half_size.y,
]) {
match dist.sample(rng) {
0 => Vec3::new(other_side, primary_side1, primary_side2) * self.half_size,
1 => Vec3::new(primary_side1, other_side, primary_side2) * self.half_size,
2 => Vec3::new(primary_side1, primary_side2, other_side) * self.half_size,
_ => unreachable!(),
}
} else {
Vec3::ZERO
}
}
}
/// Interior sampling for triangles which doesn't depend on the ambient dimension.
fn sample_triangle_interior<P: NormedVectorSpace, R: Rng + ?Sized>(
vertices: [P; 3],
rng: &mut R,
) -> P {
let [a, b, c] = vertices;
let ab = b - a;
let ac = c - a;
// Generate random points on a parallelepiped and reflect so that
// we can use the points that lie outside the triangle
let u = rng.gen_range(0.0..=1.0);
let v = rng.gen_range(0.0..=1.0);
if u + v > 1. {
let u1 = 1. - v;
let v1 = 1. - u;
a + (ab * u1 + ac * v1)
} else {
a + (ab * u + ac * v)
}
}
/// Boundary sampling for triangles which doesn't depend on the ambient dimension.
fn sample_triangle_boundary<P: NormedVectorSpace, R: Rng + ?Sized>(
vertices: [P; 3],
rng: &mut R,
) -> P {
let [a, b, c] = vertices;
let ab = b - a;
let ac = c - a;
let bc = c - b;
let t = rng.gen_range(0.0..=1.0);
if let Ok(dist) = WeightedIndex::new([ab.norm(), ac.norm(), bc.norm()]) {
match dist.sample(rng) {
0 => a.lerp(b, t),
1 => a.lerp(c, t),
2 => b.lerp(c, t),
_ => unreachable!(),
}
} else {
// This should only occur when the triangle is 0-dimensional degenerate
// so this is actually the correct result.
a
}
}
impl ShapeSample for Triangle2d {
type Output = Vec2;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
sample_triangle_interior(self.vertices, rng)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
sample_triangle_boundary(self.vertices, rng)
}
}
impl ShapeSample for Triangle3d {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
sample_triangle_interior(self.vertices, rng)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
sample_triangle_boundary(self.vertices, rng)
}
}
impl ShapeSample for Tetrahedron {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
let [v0, v1, v2, v3] = self.vertices;
// Generate a random point in a cube:
let mut coords: [f32; 3] = [
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
];
// The cube is broken into six tetrahedra of the form 0 <= c_0 <= c_1 <= c_2 <= 1,
// where c_i are the three euclidean coordinates in some permutation. (Since 3! = 6,
// there are six of them). Sorting the coordinates folds these six tetrahedra into the
// tetrahedron 0 <= x <= y <= z <= 1 (i.e. a fundamental domain of the permutation action).
coords.sort_by(|x, y| x.partial_cmp(y).unwrap());
// Now, convert a point from the fundamental tetrahedron into barycentric coordinates by
// taking the four successive differences of coordinates; note that these telescope to sum
// to 1, and this transformation is linear, hence preserves the probability density, since
// the latter comes from the Lebesgue measure.
//
// (See https://en.wikipedia.org/wiki/Lebesgue_measure#Properties — specifically, that
// Lebesgue measure of a linearly transformed set is its original measure times the
// determinant.)
let (a, b, c, d) = (
coords[0],
coords[1] - coords[0],
coords[2] - coords[1],
1. - coords[2],
);
// This is also a linear mapping, so probability density is still preserved.
v0 * a + v1 * b + v2 * c + v3 * d
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
let triangles = self.faces();
let areas = triangles.iter().map(Measured2d::area);
if areas.clone().sum::<f32>() > 0.0 {
// There is at least one triangle with nonzero area, so this unwrap succeeds.
let dist = WeightedIndex::new(areas).unwrap();
// Get a random index, then sample the interior of the associated triangle.
let idx = dist.sample(rng);
triangles[idx].sample_interior(rng)
} else {
// In this branch the tetrahedron has zero surface area; just return a point that's on
// the tetrahedron.
self.vertices[0]
}
}
}
impl ShapeSample for Cylinder {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
let Vec2 { x, y: z } = self.base().sample_interior(rng);
let y = rng.gen_range(-self.half_height..=self.half_height);
Vec3::new(x, y, z)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
// This uses the area of the ends divided by the overall surface area (optimized)
// [2 (\pi r^2)]/[2 (\pi r^2) + 2 \pi r h] = r/(r + h)
if self.radius + 2.0 * self.half_height > 0.0 {
if rng.gen_bool((self.radius / (self.radius + 2.0 * self.half_height)) as f64) {
let Vec2 { x, y: z } = self.base().sample_interior(rng);
if rng.gen() {
Vec3::new(x, self.half_height, z)
} else {
Vec3::new(x, -self.half_height, z)
}
} else {
let Vec2 { x, y: z } = self.base().sample_boundary(rng);
let y = rng.gen_range(-self.half_height..=self.half_height);
Vec3::new(x, y, z)
}
} else {
Vec3::ZERO
}
}
}
impl ShapeSample for Capsule2d {
type Output = Vec2;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
let rectangle_area = self.half_length * self.radius * 4.0;
let capsule_area = rectangle_area + PI * self.radius * self.radius;
if capsule_area > 0.0 {
// Check if the random point should be inside the rectangle
if rng.gen_bool((rectangle_area / capsule_area) as f64) {
self.to_inner_rectangle().sample_interior(rng)
} else {
let circle = Circle::new(self.radius);
let point = circle.sample_interior(rng);
// Add half length if it is the top semi-circle, otherwise subtract half
if point.y > 0.0 {
point + Vec2::Y * self.half_length
} else {
point - Vec2::Y * self.half_length
}
}
} else {
Vec2::ZERO
}
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec2 {
let rectangle_surface = 4.0 * self.half_length;
let capsule_surface = rectangle_surface + TAU * self.radius;
if capsule_surface > 0.0 {
if rng.gen_bool((rectangle_surface / capsule_surface) as f64) {
let side_distance =
rng.gen_range((-2.0 * self.half_length)..=(2.0 * self.half_length));
if side_distance < 0.0 {
Vec2::new(self.radius, side_distance + self.half_length)
} else {
Vec2::new(-self.radius, side_distance - self.half_length)
}
} else {
let circle = Circle::new(self.radius);
let point = circle.sample_boundary(rng);
// Add half length if it is the top semi-circle, otherwise subtract half
if point.y > 0.0 {
point + Vec2::Y * self.half_length
} else {
point - Vec2::Y * self.half_length
}
}
} else {
Vec2::ZERO
}
}
}
impl ShapeSample for Capsule3d {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
let cylinder_vol = PI * self.radius * self.radius * 2.0 * self.half_length;
// Add 4/3 pi r^3
let capsule_vol = cylinder_vol + 4.0 / 3.0 * PI * self.radius * self.radius * self.radius;
if capsule_vol > 0.0 {
// Check if the random point should be inside the cylinder
if rng.gen_bool((cylinder_vol / capsule_vol) as f64) {
self.to_cylinder().sample_interior(rng)
} else {
let sphere = Sphere::new(self.radius);
let point = sphere.sample_interior(rng);
// Add half length if it is the top semi-sphere, otherwise subtract half
if point.y > 0.0 {
point + Vec3::Y * self.half_length
} else {
point - Vec3::Y * self.half_length
}
}
} else {
Vec3::ZERO
}
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
let cylinder_surface = TAU * self.radius * 2.0 * self.half_length;
let capsule_surface = cylinder_surface + 4.0 * PI * self.radius * self.radius;
if capsule_surface > 0.0 {
if rng.gen_bool((cylinder_surface / capsule_surface) as f64) {
let Vec2 { x, y: z } = Circle::new(self.radius).sample_boundary(rng);
let y = rng.gen_range(-self.half_length..=self.half_length);
Vec3::new(x, y, z)
} else {
let sphere = Sphere::new(self.radius);
let point = sphere.sample_boundary(rng);
// Add half length if it is the top semi-sphere, otherwise subtract half
if point.y > 0.0 {
point + Vec3::Y * self.half_length
} else {
point - Vec3::Y * self.half_length
}
}
} else {
Vec3::ZERO
}
}
}
impl<P: Primitive2d + Measured2d + ShapeSample<Output = Vec2>> ShapeSample for Extrusion<P> {
type Output = Vec3;
fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
let base_point = self.base_shape.sample_interior(rng);
let depth = rng.gen_range(-self.half_depth..self.half_depth);
base_point.extend(depth)
}
fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
let base_area = self.base_shape.area();
let total_area = self.area();
let random = rng.gen_range(0.0..total_area);
match random {
x if x < base_area => self.base_shape.sample_interior(rng).extend(self.half_depth),
x if x < 2. * base_area => self
.base_shape
.sample_interior(rng)
.extend(-self.half_depth),
_ => self
.base_shape
.sample_boundary(rng)
.extend(rng.gen_range(-self.half_depth..self.half_depth)),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::SeedableRng;
use rand_chacha::ChaCha8Rng;
#[test]
fn circle_interior_sampling() {
let mut rng = ChaCha8Rng::from_seed(Default::default());
let circle = Circle::new(8.0);
let boxes = [
(-3.0, 3.0),
(1.0, 2.0),
(-1.0, -2.0),
(3.0, -2.0),
(1.0, -6.0),
(-3.0, -7.0),
(-7.0, -3.0),
(-6.0, 1.0),
];
let mut box_hits = [0; 8];
// Checks which boxes (if any) the sampled points are in
for _ in 0..5000 {
let point = circle.sample_interior(&mut rng);
for (i, box_) in boxes.iter().enumerate() {
if (point.x > box_.0 && point.x < box_.0 + 4.0)
&& (point.y > box_.1 && point.y < box_.1 + 4.0)
{
box_hits[i] += 1;
}
}
}
assert_eq!(
box_hits,
[396, 377, 415, 404, 366, 408, 408, 430],
"samples will occur across all array items at statistically equal chance"
);
}
#[test]
fn circle_boundary_sampling() {
let mut rng = ChaCha8Rng::from_seed(Default::default());
let circle = Circle::new(1.0);
let mut wedge_hits = [0; 8];
// Checks in which eighth of the circle each sampled point is in
for _ in 0..5000 {
let point = circle.sample_boundary(&mut rng);
let angle = ops::atan(point.y / point.x) + PI / 2.0;
let wedge = ops::floor(angle * 8.0 / PI) as usize;
wedge_hits[wedge] += 1;
}
assert_eq!(
wedge_hits,
[636, 608, 639, 603, 614, 650, 640, 610],
"samples will occur across all array items at statistically equal chance"
);
}
}