
# Objective - The `path` module was getting fairly large. - The code in `AccessRef::read_element` and mut equivalent was very complex and difficult to understand. - The `ReflectPathError` had a lot of variants, and was difficult to read. ## Solution - Split the file in two, `access` now has its own module - Rewrite the `read_element` methods, they were ~200 lines long, they are now ~70 lines long — I didn't change any of the logic. It's really just the same code, but error handling is separated. - Split the `ReflectPathError` error - Merge `AccessRef` and `Access` - A few other changes that aim to reduce code complexity ### Fully detailed change list - `Display` impl of `ParsedPath` now includes prefix dots — this allows simplifying its implementation, and IMO `.path.to.field` is a better way to express a "path" than `path.to.field` which could suggest we are reading the `to` field of a variable named `path` - Add a test to check that dot prefixes and other are correctly parsed — Until now, no test contained a prefixing dot - Merge `Access` and `AccessRef`, using a `Cow<'a, str>`. Generated code seems to agree with this decision (`ParsedPath::parse` sheds 5% of instructions) - Remove `Access::as_ref` since there is no such thing as an `AccessRef` anymore. - Rename `AccessRef::to_owned` into `AccessRef::into_owned()` since it takes ownership of `self` now. - Add a `parse_static` that doesn't allocate new strings for named fields! - Add a section about path reflection in the `bevy_reflect` crate root doc — I saw a few people that weren't aware of path reflection, so I thought it was pertinent to add it to the root doc - a lot of nits - rename `index` to `offset` when it refers to offset in the path string — There is no more confusion with the other kind of indices in this context, also it's a common naming convention for parsing. - Make a dedicated enum for parsing errors - rename the `read_element` methods to `element` — shorter, but also `read_element_mut` was a fairly poor name - The error values now not only contain the expected type but also the actual type. - Remove lifetimes that could be inferred from the `GetPath` trait methods. --- ## Change log - Added the `ParsedPath::parse_static` method, avoids allocating when parsing `&'static str`. ## Migration Guide If you were matching on the `Err(ReflectPathError)` value returned by `GetPath` and `ParsedPath` methods, now only the parse-related errors and the offset are publicly accessible. You can always use the `fmt::Display` to get a clear error message, but if you need programmatic access to the error types, please open an issue. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
850 lines
27 KiB
Rust
850 lines
27 KiB
Rust
mod access;
|
|
|
|
use std::fmt;
|
|
use std::num::ParseIntError;
|
|
|
|
use crate::Reflect;
|
|
use access::Access;
|
|
use thiserror::Error;
|
|
|
|
type ParseResult<T> = Result<T, ReflectPathParseError>;
|
|
|
|
/// An error specific to accessing a field/index on a `Reflect`.
|
|
#[derive(Debug, PartialEq, Eq, Error)]
|
|
#[error(transparent)]
|
|
pub struct AccessError<'a>(access::Error<'a>);
|
|
|
|
/// A parse error for a path string.
|
|
#[derive(Debug, PartialEq, Eq, Error)]
|
|
pub enum ReflectPathParseError {
|
|
#[error("expected an identifier at offset {offset}")]
|
|
ExpectedIdent { offset: usize },
|
|
|
|
#[error("encountered an unexpected token `{token}`")]
|
|
UnexpectedToken { offset: usize, token: &'static str },
|
|
|
|
#[error("expected token `{token}`, but it wasn't there.")]
|
|
ExpectedToken { offset: usize, token: &'static str },
|
|
|
|
#[error("failed to parse a usize")]
|
|
IndexParseError(#[from] ParseIntError),
|
|
}
|
|
|
|
/// An error returned from a failed path string query.
|
|
#[derive(Debug, PartialEq, Eq, Error)]
|
|
pub enum ReflectPathError<'a> {
|
|
#[error("{error}")]
|
|
InvalidAccess {
|
|
/// Position in the path string.
|
|
offset: usize,
|
|
error: AccessError<'a>,
|
|
},
|
|
#[error("failed to downcast to the path result to the given type")]
|
|
InvalidDowncast,
|
|
|
|
#[error(transparent)]
|
|
Parse(#[from] ReflectPathParseError),
|
|
}
|
|
|
|
/// A trait which allows nested [`Reflect`] values to be retrieved with path strings.
|
|
///
|
|
/// Using these functions repeatedly with the same string requires parsing the string every time.
|
|
/// To avoid this cost, it's recommended to construct a [`ParsedPath`] instead.
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// ## Structs
|
|
///
|
|
/// Field paths for [`Struct`] elements use the standard Rust field access syntax of
|
|
/// dot and field name: `.field_name`.
|
|
///
|
|
/// Additionally, struct fields may be accessed by their index within the struct's definition.
|
|
/// This is accomplished by using the hash symbol (`#`) in place of the standard dot: `#0`.
|
|
///
|
|
/// Accessing a struct's field by index can speed up fetches at runtime due to the removed
|
|
/// need for string matching.
|
|
/// And while this can be more performant, it's best to keep in mind the tradeoffs when
|
|
/// utilizing such optimizations.
|
|
/// For example, this can result in fairly fragile code as the string paths will need to be
|
|
/// kept in sync with the struct definitions since the order of fields could be easily changed.
|
|
/// Because of this, storing these kinds of paths in persistent storage (i.e. game assets)
|
|
/// is strongly discouraged.
|
|
///
|
|
/// Note that a leading dot (`.`) or hash (`#`) token is implied for the first item in a path,
|
|
/// and may therefore be omitted.
|
|
///
|
|
/// ### Example
|
|
/// ```
|
|
/// # use bevy_reflect::{GetPath, Reflect};
|
|
/// #[derive(Reflect)]
|
|
/// struct MyStruct {
|
|
/// value: u32
|
|
/// }
|
|
///
|
|
/// let my_struct = MyStruct { value: 123 };
|
|
/// // Access via field name
|
|
/// assert_eq!(my_struct.path::<u32>(".value").unwrap(), &123);
|
|
/// // Access via field index
|
|
/// assert_eq!(my_struct.path::<u32>("#0").unwrap(), &123);
|
|
/// ```
|
|
///
|
|
/// ## Tuples and Tuple Structs
|
|
///
|
|
/// [`Tuple`] and [`TupleStruct`] elements also follow a conventional Rust syntax.
|
|
/// Fields are accessed with a dot and the field index: `.0`.
|
|
///
|
|
/// Note that a leading dot (`.`) token is implied for the first item in a path,
|
|
/// and may therefore be omitted.
|
|
///
|
|
/// ### Example
|
|
/// ```
|
|
/// # use bevy_reflect::{GetPath, Reflect};
|
|
/// #[derive(Reflect)]
|
|
/// struct MyTupleStruct(u32);
|
|
///
|
|
/// let my_tuple_struct = MyTupleStruct(123);
|
|
/// assert_eq!(my_tuple_struct.path::<u32>(".0").unwrap(), &123);
|
|
/// ```
|
|
///
|
|
/// ## Lists and Arrays
|
|
///
|
|
/// [`List`] and [`Array`] elements are accessed with brackets: `[0]`.
|
|
///
|
|
/// ### Example
|
|
/// ```
|
|
/// # use bevy_reflect::{GetPath};
|
|
/// let my_list: Vec<u32> = vec![1, 2, 3];
|
|
/// assert_eq!(my_list.path::<u32>("[2]").unwrap(), &3);
|
|
/// ```
|
|
///
|
|
/// ## Enums
|
|
///
|
|
/// Pathing for [`Enum`] elements works a bit differently than in normal Rust.
|
|
/// Usually, you would need to pattern match an enum, branching off on the desired variants.
|
|
/// Paths used by this trait do not have any pattern matching capabilities;
|
|
/// instead, they assume the variant is already known ahead of time.
|
|
///
|
|
/// The syntax used, therefore, depends on the variant being accessed:
|
|
/// - Struct variants use the struct syntax (outlined above)
|
|
/// - Tuple variants use the tuple syntax (outlined above)
|
|
/// - Unit variants have no fields to access
|
|
///
|
|
/// If the variant cannot be known ahead of time, the path will need to be split up
|
|
/// and proper enum pattern matching will need to be handled manually.
|
|
///
|
|
/// ### Example
|
|
/// ```
|
|
/// # use bevy_reflect::{GetPath, Reflect};
|
|
/// #[derive(Reflect)]
|
|
/// enum MyEnum {
|
|
/// Unit,
|
|
/// Tuple(bool),
|
|
/// Struct {
|
|
/// value: u32
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let tuple_variant = MyEnum::Tuple(true);
|
|
/// assert_eq!(tuple_variant.path::<bool>(".0").unwrap(), &true);
|
|
///
|
|
/// let struct_variant = MyEnum::Struct { value: 123 };
|
|
/// // Access via field name
|
|
/// assert_eq!(struct_variant.path::<u32>(".value").unwrap(), &123);
|
|
/// // Access via field index
|
|
/// assert_eq!(struct_variant.path::<u32>("#0").unwrap(), &123);
|
|
///
|
|
/// // Error: Expected struct variant
|
|
/// assert!(matches!(tuple_variant.path::<u32>(".value"), Err(_)));
|
|
/// ```
|
|
///
|
|
/// # Chaining
|
|
///
|
|
/// Using the aforementioned syntax, path items may be chained one after another
|
|
/// to create a full path to a nested element.
|
|
///
|
|
/// ## Example
|
|
/// ```
|
|
/// # use bevy_reflect::{GetPath, Reflect};
|
|
/// #[derive(Reflect)]
|
|
/// struct MyStruct {
|
|
/// value: Vec<Option<u32>>
|
|
/// }
|
|
///
|
|
/// let my_struct = MyStruct {
|
|
/// value: vec![None, None, Some(123)],
|
|
/// };
|
|
/// assert_eq!(
|
|
/// my_struct.path::<u32>(".value[2].0").unwrap(),
|
|
/// &123,
|
|
/// );
|
|
/// ```
|
|
///
|
|
/// [`Struct`]: crate::Struct
|
|
/// [`Tuple`]: crate::Tuple
|
|
/// [`TupleStruct`]: crate::TupleStruct
|
|
/// [`List`]: crate::List
|
|
/// [`Array`]: crate::Array
|
|
/// [`Enum`]: crate::Enum
|
|
pub trait GetPath {
|
|
/// Returns a reference to the value specified by `path`.
|
|
///
|
|
/// To retrieve a statically typed reference, use
|
|
/// [`path`][GetPath::path].
|
|
fn reflect_path<'p>(&self, path: &'p str) -> Result<&dyn Reflect, ReflectPathError<'p>>;
|
|
|
|
/// Returns a mutable reference to the value specified by `path`.
|
|
///
|
|
/// To retrieve a statically typed mutable reference, use
|
|
/// [`path_mut`][GetPath::path_mut].
|
|
fn reflect_path_mut<'p>(
|
|
&mut self,
|
|
path: &'p str,
|
|
) -> Result<&mut dyn Reflect, ReflectPathError<'p>>;
|
|
|
|
/// Returns a statically typed reference to the value specified by `path`.
|
|
///
|
|
/// This will automatically handle downcasting to type `T`.
|
|
/// The downcast will fail if this value is not of type `T`
|
|
/// (which may be the case when using dynamic types like [`DynamicStruct`]).
|
|
///
|
|
/// [`DynamicStruct`]: crate::DynamicStruct
|
|
fn path<'p, T: Reflect>(&self, path: &'p str) -> Result<&T, ReflectPathError<'p>> {
|
|
self.reflect_path(path).and_then(|p| {
|
|
p.downcast_ref::<T>()
|
|
.ok_or(ReflectPathError::InvalidDowncast)
|
|
})
|
|
}
|
|
|
|
/// Returns a statically typed mutable reference to the value specified by `path`.
|
|
///
|
|
/// This will automatically handle downcasting to type `T`.
|
|
/// The downcast will fail if this value is not of type `T`
|
|
/// (which may be the case when using dynamic types like [`DynamicStruct`]).
|
|
///
|
|
/// [`DynamicStruct`]: crate::DynamicStruct
|
|
fn path_mut<'p, T: Reflect>(&mut self, path: &'p str) -> Result<&mut T, ReflectPathError<'p>> {
|
|
self.reflect_path_mut(path).and_then(|p| {
|
|
p.downcast_mut::<T>()
|
|
.ok_or(ReflectPathError::InvalidDowncast)
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<T: Reflect> GetPath for T {
|
|
fn reflect_path<'p>(&self, path: &'p str) -> Result<&dyn Reflect, ReflectPathError<'p>> {
|
|
(self as &dyn Reflect).reflect_path(path)
|
|
}
|
|
|
|
fn reflect_path_mut<'p>(
|
|
&mut self,
|
|
path: &'p str,
|
|
) -> Result<&mut dyn Reflect, ReflectPathError<'p>> {
|
|
(self as &mut dyn Reflect).reflect_path_mut(path)
|
|
}
|
|
}
|
|
|
|
impl GetPath for dyn Reflect {
|
|
fn reflect_path<'p>(&self, path: &'p str) -> Result<&dyn Reflect, ReflectPathError<'p>> {
|
|
let mut current: &dyn Reflect = self;
|
|
for (access, offset) in PathParser::new(path) {
|
|
current = access?.element(current, offset)?;
|
|
}
|
|
Ok(current)
|
|
}
|
|
|
|
fn reflect_path_mut<'p>(
|
|
&mut self,
|
|
path: &'p str,
|
|
) -> Result<&mut dyn Reflect, ReflectPathError<'p>> {
|
|
let mut current: &mut dyn Reflect = self;
|
|
for (access, offset) in PathParser::new(path) {
|
|
current = access?.element_mut(current, offset)?;
|
|
}
|
|
Ok(current)
|
|
}
|
|
}
|
|
|
|
/// A pre-parsed path to an element within a type.
|
|
///
|
|
/// This struct may be used like [`GetPath`] but removes the cost of parsing the path
|
|
/// string at each element access.
|
|
///
|
|
/// It's recommended to use this in place of `GetPath` when the path string is
|
|
/// unlikely to be changed and will be accessed repeatedly.
|
|
#[derive(Clone, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
|
|
pub struct ParsedPath(
|
|
/// This is the boxed slice of pre-parsed accesses.
|
|
///
|
|
/// Each item in the slice contains the access along with the character
|
|
/// index of the start of the access within the parsed path string.
|
|
///
|
|
/// The index is mainly used for more helpful error reporting.
|
|
Box<[(Access<'static>, usize)]>,
|
|
);
|
|
|
|
impl ParsedPath {
|
|
/// Parses a [`ParsedPath`] from a string.
|
|
///
|
|
/// Returns an error if the string does not represent a valid path to an element.
|
|
///
|
|
/// The exact format for path strings can be found in the documentation for [`GetPath`].
|
|
/// In short, though, a path consists of one or more chained accessor strings.
|
|
/// These are:
|
|
/// - Named field access (`.field`)
|
|
/// - Unnamed field access (`.1`)
|
|
/// - Field index access (`#0`)
|
|
/// - Sequence access (`[2]`)
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use bevy_reflect::{ParsedPath, Reflect};
|
|
/// #[derive(Reflect)]
|
|
/// struct Foo {
|
|
/// bar: Bar,
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// struct Bar {
|
|
/// baz: Baz,
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// struct Baz(f32, Vec<Option<u32>>);
|
|
///
|
|
/// let foo = Foo {
|
|
/// bar: Bar {
|
|
/// baz: Baz(3.14, vec![None, None, Some(123)])
|
|
/// },
|
|
/// };
|
|
///
|
|
/// let parsed_path = ParsedPath::parse("bar#0.1[2].0").unwrap();
|
|
/// // Breakdown:
|
|
/// // "bar" - Access struct field named "bar"
|
|
/// // "#0" - Access struct field at index 0
|
|
/// // ".1" - Access tuple struct field at index 1
|
|
/// // "[2]" - Access list element at index 2
|
|
/// // ".0" - Access tuple variant field at index 0
|
|
///
|
|
/// assert_eq!(parsed_path.element::<u32>(&foo).unwrap(), &123);
|
|
/// ```
|
|
///
|
|
pub fn parse(string: &str) -> Result<Self, ReflectPathError<'_>> {
|
|
let mut parts = Vec::new();
|
|
for (access, offset) in PathParser::new(string) {
|
|
parts.push((access?.into_owned(), offset));
|
|
}
|
|
Ok(Self(parts.into_boxed_slice()))
|
|
}
|
|
|
|
/// Similar to [`Self::parse`] but only works on `&'static str`
|
|
/// and does not allocate per named field.
|
|
pub fn parse_static(string: &'static str) -> Result<Self, ReflectPathError<'_>> {
|
|
let mut parts = Vec::new();
|
|
for (access, offset) in PathParser::new(string) {
|
|
parts.push((access?, offset));
|
|
}
|
|
Ok(Self(parts.into_boxed_slice()))
|
|
}
|
|
|
|
/// Gets a read-only reference to the specified element on the given [`Reflect`] object.
|
|
///
|
|
/// Returns an error if the path is invalid for the provided type.
|
|
///
|
|
/// See [`element_mut`](Self::reflect_element_mut) for a typed version of this method.
|
|
pub fn reflect_element<'r, 'p>(
|
|
&'p self,
|
|
root: &'r dyn Reflect,
|
|
) -> Result<&'r dyn Reflect, ReflectPathError<'p>> {
|
|
let mut current = root;
|
|
for (access, offset) in self.0.iter() {
|
|
current = access.element(current, *offset)?;
|
|
}
|
|
Ok(current)
|
|
}
|
|
|
|
/// Gets a mutable reference to the specified element on the given [`Reflect`] object.
|
|
///
|
|
/// Returns an error if the path is invalid for the provided type.
|
|
///
|
|
/// See [`element_mut`](Self::element_mut) for a typed version of this method.
|
|
pub fn reflect_element_mut<'r, 'p>(
|
|
&'p self,
|
|
root: &'r mut dyn Reflect,
|
|
) -> Result<&'r mut dyn Reflect, ReflectPathError<'p>> {
|
|
let mut current = root;
|
|
for (access, offset) in self.0.iter() {
|
|
current = access.element_mut(current, *offset)?;
|
|
}
|
|
Ok(current)
|
|
}
|
|
|
|
/// Gets a typed, read-only reference to the specified element on the given [`Reflect`] object.
|
|
///
|
|
/// Returns an error if the path is invalid for the provided type.
|
|
///
|
|
/// See [`reflect_element`](Self::reflect_element) for an untyped version of this method.
|
|
pub fn element<'r, 'p, T: Reflect>(
|
|
&'p self,
|
|
root: &'r dyn Reflect,
|
|
) -> Result<&'r T, ReflectPathError<'p>> {
|
|
self.reflect_element(root).and_then(|p| {
|
|
p.downcast_ref::<T>()
|
|
.ok_or(ReflectPathError::InvalidDowncast)
|
|
})
|
|
}
|
|
|
|
/// Gets a typed, read-only reference to the specified element on the given [`Reflect`] object.
|
|
///
|
|
/// Returns an error if the path is invalid for the provided type.
|
|
///
|
|
/// See [`reflect_element_mut`](Self::reflect_element_mut) for an untyped version of this method.
|
|
pub fn element_mut<'r, 'p, T: Reflect>(
|
|
&'p self,
|
|
root: &'r mut dyn Reflect,
|
|
) -> Result<&'r mut T, ReflectPathError<'p>> {
|
|
self.reflect_element_mut(root).and_then(|p| {
|
|
p.downcast_mut::<T>()
|
|
.ok_or(ReflectPathError::InvalidDowncast)
|
|
})
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for ParsedPath {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
for (access, _) in self.0.iter() {
|
|
write!(f, "{access}")?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
struct PathParser<'a> {
|
|
path: &'a str,
|
|
index: usize,
|
|
}
|
|
|
|
impl<'a> PathParser<'a> {
|
|
fn new(path: &'a str) -> Self {
|
|
Self { path, index: 0 }
|
|
}
|
|
|
|
fn next_token(&mut self) -> Option<Token<'a>> {
|
|
if self.index >= self.path.len() {
|
|
return None;
|
|
}
|
|
|
|
match self.path[self.index..].chars().next().unwrap() {
|
|
Token::DOT => {
|
|
self.index += 1;
|
|
return Some(Token::Dot);
|
|
}
|
|
Token::CROSSHATCH => {
|
|
self.index += 1;
|
|
return Some(Token::CrossHatch);
|
|
}
|
|
Token::OPEN_BRACKET => {
|
|
self.index += 1;
|
|
return Some(Token::OpenBracket);
|
|
}
|
|
Token::CLOSE_BRACKET => {
|
|
self.index += 1;
|
|
return Some(Token::CloseBracket);
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// we can assume we are parsing an ident now
|
|
for (char_index, character) in self.path[self.index..].chars().enumerate() {
|
|
match character {
|
|
Token::DOT | Token::CROSSHATCH | Token::OPEN_BRACKET | Token::CLOSE_BRACKET => {
|
|
let ident = Token::Ident(&self.path[self.index..self.index + char_index]);
|
|
self.index += char_index;
|
|
return Some(ident);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
let ident = Token::Ident(&self.path[self.index..]);
|
|
self.index = self.path.len();
|
|
Some(ident)
|
|
}
|
|
|
|
fn token_to_access(&mut self, token: Token<'a>) -> ParseResult<Access<'a>> {
|
|
let current_offset = self.index;
|
|
match token {
|
|
Token::Dot => {
|
|
if let Some(Token::Ident(value)) = self.next_token() {
|
|
value
|
|
.parse::<usize>()
|
|
.map(Access::TupleIndex)
|
|
.or(Ok(Access::Field(value.into())))
|
|
} else {
|
|
Err(ReflectPathParseError::ExpectedIdent {
|
|
offset: current_offset,
|
|
})
|
|
}
|
|
}
|
|
Token::CrossHatch => {
|
|
if let Some(Token::Ident(value)) = self.next_token() {
|
|
Ok(Access::FieldIndex(value.parse::<usize>()?))
|
|
} else {
|
|
Err(ReflectPathParseError::ExpectedIdent {
|
|
offset: current_offset,
|
|
})
|
|
}
|
|
}
|
|
Token::OpenBracket => {
|
|
let access = if let Some(Token::Ident(value)) = self.next_token() {
|
|
Access::ListIndex(value.parse::<usize>()?)
|
|
} else {
|
|
return Err(ReflectPathParseError::ExpectedIdent {
|
|
offset: current_offset,
|
|
});
|
|
};
|
|
|
|
if !matches!(self.next_token(), Some(Token::CloseBracket)) {
|
|
return Err(ReflectPathParseError::ExpectedToken {
|
|
offset: current_offset,
|
|
token: Token::OPEN_BRACKET_STR,
|
|
});
|
|
}
|
|
|
|
Ok(access)
|
|
}
|
|
Token::CloseBracket => Err(ReflectPathParseError::UnexpectedToken {
|
|
offset: current_offset,
|
|
token: Token::CLOSE_BRACKET_STR,
|
|
}),
|
|
Token::Ident(value) => value
|
|
.parse::<usize>()
|
|
.map(Access::TupleIndex)
|
|
.or(Ok(Access::Field(value.into()))),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Iterator for PathParser<'a> {
|
|
type Item = (ParseResult<Access<'a>>, usize);
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
let token = self.next_token()?;
|
|
let index = self.index;
|
|
Some((self.token_to_access(token), index))
|
|
}
|
|
}
|
|
|
|
enum Token<'a> {
|
|
Dot,
|
|
CrossHatch,
|
|
OpenBracket,
|
|
CloseBracket,
|
|
Ident(&'a str),
|
|
}
|
|
|
|
impl<'a> Token<'a> {
|
|
const DOT: char = '.';
|
|
const CROSSHATCH: char = '#';
|
|
const OPEN_BRACKET: char = '[';
|
|
const CLOSE_BRACKET: char = ']';
|
|
const OPEN_BRACKET_STR: &'static str = "[";
|
|
const CLOSE_BRACKET_STR: &'static str = "]";
|
|
}
|
|
|
|
#[cfg(test)]
|
|
#[allow(clippy::float_cmp, clippy::approx_constant)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate as bevy_reflect;
|
|
use crate::*;
|
|
use access::TypeShape;
|
|
|
|
#[derive(Reflect)]
|
|
struct A {
|
|
w: usize,
|
|
x: B,
|
|
y: Vec<C>,
|
|
z: D,
|
|
unit_variant: F,
|
|
tuple_variant: F,
|
|
struct_variant: F,
|
|
array: [i32; 3],
|
|
tuple: (bool, f32),
|
|
}
|
|
|
|
#[derive(Reflect)]
|
|
struct B {
|
|
foo: usize,
|
|
bar: C,
|
|
}
|
|
|
|
#[derive(Reflect)]
|
|
struct C {
|
|
baz: f32,
|
|
}
|
|
|
|
#[derive(Reflect)]
|
|
struct D(E);
|
|
|
|
#[derive(Reflect)]
|
|
struct E(f32, usize);
|
|
|
|
#[derive(Reflect, PartialEq, Debug)]
|
|
enum F {
|
|
Unit,
|
|
Tuple(u32, u32),
|
|
Struct { value: char },
|
|
}
|
|
|
|
fn a_sample() -> A {
|
|
A {
|
|
w: 1,
|
|
x: B {
|
|
foo: 10,
|
|
bar: C { baz: 3.14 },
|
|
},
|
|
y: vec![C { baz: 1.0 }, C { baz: 2.0 }],
|
|
z: D(E(10.0, 42)),
|
|
unit_variant: F::Unit,
|
|
tuple_variant: F::Tuple(123, 321),
|
|
struct_variant: F::Struct { value: 'm' },
|
|
array: [86, 75, 309],
|
|
tuple: (true, 1.23),
|
|
}
|
|
}
|
|
|
|
fn access_field(field: &'static str) -> Access {
|
|
Access::Field(field.into())
|
|
}
|
|
|
|
#[test]
|
|
fn parsed_path_parse() {
|
|
assert_eq!(
|
|
&*ParsedPath::parse("w").unwrap().0,
|
|
&[(access_field("w"), 1)]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("x.foo").unwrap().0,
|
|
&[(access_field("x"), 1), (access_field("foo"), 2)]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("x.bar.baz").unwrap().0,
|
|
&[
|
|
(access_field("x"), 1),
|
|
(access_field("bar"), 2),
|
|
(access_field("baz"), 6)
|
|
]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("y[1].baz").unwrap().0,
|
|
&[
|
|
(access_field("y"), 1),
|
|
(Access::ListIndex(1), 2),
|
|
(access_field("baz"), 5)
|
|
]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("z.0.1").unwrap().0,
|
|
&[
|
|
(access_field("z"), 1),
|
|
(Access::TupleIndex(0), 2),
|
|
(Access::TupleIndex(1), 4),
|
|
]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("x#0").unwrap().0,
|
|
&[(access_field("x"), 1), (Access::FieldIndex(0), 2)]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("x#0#1").unwrap().0,
|
|
&[
|
|
(access_field("x"), 1),
|
|
(Access::FieldIndex(0), 2),
|
|
(Access::FieldIndex(1), 4)
|
|
]
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn parsed_path_get_field() {
|
|
let a = a_sample();
|
|
|
|
let b = ParsedPath::parse("w").unwrap();
|
|
let c = ParsedPath::parse("x.foo").unwrap();
|
|
let d = ParsedPath::parse("x.bar.baz").unwrap();
|
|
let e = ParsedPath::parse("y[1].baz").unwrap();
|
|
let f = ParsedPath::parse("z.0.1").unwrap();
|
|
let g = ParsedPath::parse("x#0").unwrap();
|
|
let h = ParsedPath::parse("x#1#0").unwrap();
|
|
let i = ParsedPath::parse("unit_variant").unwrap();
|
|
let j = ParsedPath::parse("tuple_variant.1").unwrap();
|
|
let k = ParsedPath::parse("struct_variant.value").unwrap();
|
|
let l = ParsedPath::parse("struct_variant#0").unwrap();
|
|
let m = ParsedPath::parse("array[2]").unwrap();
|
|
let n = ParsedPath::parse("tuple.1").unwrap();
|
|
|
|
for _ in 0..30 {
|
|
assert_eq!(*b.element::<usize>(&a).unwrap(), 1);
|
|
assert_eq!(*c.element::<usize>(&a).unwrap(), 10);
|
|
assert_eq!(*d.element::<f32>(&a).unwrap(), 3.14);
|
|
assert_eq!(*e.element::<f32>(&a).unwrap(), 2.0);
|
|
assert_eq!(*f.element::<usize>(&a).unwrap(), 42);
|
|
assert_eq!(*g.element::<usize>(&a).unwrap(), 10);
|
|
assert_eq!(*h.element::<f32>(&a).unwrap(), 3.14);
|
|
assert_eq!(*i.element::<F>(&a).unwrap(), F::Unit);
|
|
assert_eq!(*j.element::<u32>(&a).unwrap(), 321);
|
|
assert_eq!(*k.element::<char>(&a).unwrap(), 'm');
|
|
assert_eq!(*l.element::<char>(&a).unwrap(), 'm');
|
|
assert_eq!(*m.element::<i32>(&a).unwrap(), 309);
|
|
assert_eq!(*n.element::<f32>(&a).unwrap(), 1.23);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn reflect_array_behaves_like_list() {
|
|
#[derive(Reflect)]
|
|
struct A {
|
|
list: Vec<u8>,
|
|
array: [u8; 10],
|
|
}
|
|
|
|
let a = A {
|
|
list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
|
array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
|
};
|
|
|
|
assert_eq!(*a.path::<u8>("list[5]").unwrap(), 5);
|
|
assert_eq!(*a.path::<u8>("array[5]").unwrap(), 5);
|
|
assert_eq!(*a.path::<u8>("list[0]").unwrap(), 0);
|
|
assert_eq!(*a.path::<u8>("array[0]").unwrap(), 0);
|
|
}
|
|
|
|
#[test]
|
|
fn reflect_array_behaves_like_list_mut() {
|
|
#[derive(Reflect)]
|
|
struct A {
|
|
list: Vec<u8>,
|
|
array: [u8; 10],
|
|
}
|
|
|
|
let mut a = A {
|
|
list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
|
array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
|
};
|
|
|
|
assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 5);
|
|
assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 5);
|
|
|
|
*a.path_mut::<u8>("list[5]").unwrap() = 10;
|
|
*a.path_mut::<u8>("array[5]").unwrap() = 10;
|
|
|
|
assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 10);
|
|
assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 10);
|
|
}
|
|
|
|
#[test]
|
|
fn reflect_path() {
|
|
let mut a = a_sample();
|
|
|
|
assert_eq!(*a.path::<usize>("w").unwrap(), 1);
|
|
assert_eq!(*a.path::<usize>("x.foo").unwrap(), 10);
|
|
assert_eq!(*a.path::<f32>("x.bar.baz").unwrap(), 3.14);
|
|
assert_eq!(*a.path::<f32>("y[1].baz").unwrap(), 2.0);
|
|
assert_eq!(*a.path::<usize>("z.0.1").unwrap(), 42);
|
|
assert_eq!(*a.path::<usize>("x#0").unwrap(), 10);
|
|
assert_eq!(*a.path::<f32>("x#1#0").unwrap(), 3.14);
|
|
|
|
assert_eq!(*a.path::<F>("unit_variant").unwrap(), F::Unit);
|
|
assert_eq!(*a.path::<u32>("tuple_variant.1").unwrap(), 321);
|
|
assert_eq!(*a.path::<char>("struct_variant.value").unwrap(), 'm');
|
|
assert_eq!(*a.path::<char>("struct_variant#0").unwrap(), 'm');
|
|
|
|
assert_eq!(*a.path::<i32>("array[2]").unwrap(), 309);
|
|
|
|
assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 1.23);
|
|
*a.path_mut::<f32>("tuple.1").unwrap() = 3.21;
|
|
assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 3.21);
|
|
|
|
*a.path_mut::<f32>("y[1].baz").unwrap() = 3.0;
|
|
assert_eq!(a.y[1].baz, 3.0);
|
|
|
|
*a.path_mut::<u32>("tuple_variant.0").unwrap() = 1337;
|
|
assert_eq!(a.tuple_variant, F::Tuple(1337, 321));
|
|
|
|
assert_eq!(
|
|
a.reflect_path("x.notreal").err().unwrap(),
|
|
ReflectPathError::InvalidAccess {
|
|
offset: 2,
|
|
error: AccessError(access::Error::Access {
|
|
ty: TypeShape::Struct,
|
|
access: access_field("notreal"),
|
|
}),
|
|
}
|
|
);
|
|
|
|
assert_eq!(
|
|
a.reflect_path("unit_variant.0").err().unwrap(),
|
|
ReflectPathError::InvalidAccess {
|
|
offset: 13,
|
|
error: AccessError(access::Error::Enum {
|
|
actual: TypeShape::Unit,
|
|
expected: TypeShape::Tuple
|
|
}),
|
|
}
|
|
);
|
|
|
|
assert_eq!(
|
|
a.reflect_path("x..").err().unwrap(),
|
|
ReflectPathError::Parse(ReflectPathParseError::ExpectedIdent { offset: 2 })
|
|
);
|
|
|
|
assert_eq!(
|
|
a.reflect_path("x[0]").err().unwrap(),
|
|
ReflectPathError::InvalidAccess {
|
|
offset: 2,
|
|
error: AccessError(access::Error::Type {
|
|
actual: TypeShape::Struct,
|
|
expected: TypeShape::List
|
|
}),
|
|
}
|
|
);
|
|
|
|
assert_eq!(
|
|
a.reflect_path("y.x").err().unwrap(),
|
|
ReflectPathError::InvalidAccess {
|
|
offset: 2,
|
|
error: AccessError(access::Error::Type {
|
|
actual: TypeShape::List,
|
|
expected: TypeShape::Struct
|
|
}),
|
|
}
|
|
);
|
|
|
|
assert!(matches!(
|
|
a.reflect_path("y[badindex]"),
|
|
Err(ReflectPathError::Parse(
|
|
ReflectPathParseError::IndexParseError(_)
|
|
))
|
|
));
|
|
}
|
|
|
|
#[test]
|
|
fn accept_leading_tokens() {
|
|
assert_eq!(
|
|
&*ParsedPath::parse(".w").unwrap().0,
|
|
&[(access_field("w"), 1)]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("#0.foo").unwrap().0,
|
|
&[(Access::FieldIndex(0), 1), (access_field("foo"), 3)]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse(".5").unwrap().0,
|
|
&[(Access::TupleIndex(5), 1)]
|
|
);
|
|
assert_eq!(
|
|
&*ParsedPath::parse("[0].bar").unwrap().0,
|
|
&[(Access::ListIndex(0), 1), (access_field("bar"), 4)]
|
|
);
|
|
}
|
|
}
|