bevy/crates/bevy_render/src/render_phase/draw.rs
James Liu 88b353c4b1 Reduce the use of atomics in the render phase (#7084)
# Objective
Speed up the render phase of rendering. An extension of #6885.

`SystemState::get` increments the `World`'s change tick atomically every time it's called. This is notably more expensive than a unsynchronized increment, even without contention. It also updates the archetypes, even when there has been nothing to update when it's called repeatedly.

## Solution
Piggyback off of #6885. Split `SystemState::validate_world_and_update_archetypes` into `SystemState::validate_world` and `SystemState::update_archetypes`, and make the later `pub`. Then create safe variants of `SystemState::get_unchecked_manual` that still validate the `World` but do not update archetypes and do not increment the change tick using `World::read_change_tick` and `World::change_tick`. Update `RenderCommandState` to call `SystemState::update_archetypes` in `Draw::prepare` and `SystemState::get_manual` in `Draw::draw`.

## Performance
There's a slight perf benefit (~2%) for `main_opaque_pass_3d` on `many_foxes` (340.39 us -> 333.32 us)

![image](https://user-images.githubusercontent.com/3137680/210643746-25320b98-3e2b-4a95-8084-892c23bb8b4e.png)

## Alternatives
We can change `SystemState::get` to not increment the `World`'s change tick. Though this would still put updating the archetypes and an atomic read on the hot-path.

---

## Changelog
Added: `SystemState::get_manual`
Added: `SystemState::get_manual_mut`
Added: `SystemState::update_archetypes`
2023-01-18 02:19:19 +00:00

301 lines
11 KiB
Rust

use crate::render_phase::{PhaseItem, TrackedRenderPass};
use bevy_app::App;
use bevy_ecs::{
all_tuples,
entity::Entity,
query::{QueryState, ROQueryItem, ReadOnlyWorldQuery},
system::{ReadOnlySystemParam, Resource, SystemParam, SystemParamItem, SystemState},
world::World,
};
use bevy_utils::HashMap;
use parking_lot::{RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::{any::TypeId, fmt::Debug, hash::Hash};
/// A draw function used to draw [`PhaseItem`]s.
///
/// The draw function can retrieve and query the required ECS data from the render world.
///
/// This trait can either be implemented directly or implicitly composed out of multiple modular
/// [`RenderCommand`]s. For more details and an example see the [`RenderCommand`] documentation.
pub trait Draw<P: PhaseItem>: Send + Sync + 'static {
/// Prepares the draw function to be used. This is called once and only once before the phase
/// begins. There may be zero or more `draw` calls following a call to this function.
/// Implementing this is optional.
#[allow(unused_variables)]
fn prepare(&mut self, world: &'_ World) {}
/// Draws a [`PhaseItem`] by issuing zero or more `draw` calls via the [`TrackedRenderPass`].
fn draw<'w>(
&mut self,
world: &'w World,
pass: &mut TrackedRenderPass<'w>,
view: Entity,
item: &P,
);
}
// TODO: make this generic?
/// An identifier for a [`Draw`] function stored in [`DrawFunctions`].
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub struct DrawFunctionId(u32);
/// Stores all [`Draw`] functions for the [`PhaseItem`] type.
///
/// For retrieval, the [`Draw`] functions are mapped to their respective [`TypeId`]s.
pub struct DrawFunctionsInternal<P: PhaseItem> {
pub draw_functions: Vec<Box<dyn Draw<P>>>,
pub indices: HashMap<TypeId, DrawFunctionId>,
}
impl<P: PhaseItem> DrawFunctionsInternal<P> {
/// Prepares all draw function. This is called once and only once before the phase begins.
pub fn prepare(&mut self, world: &World) {
for function in &mut self.draw_functions {
function.prepare(world);
}
}
/// Adds the [`Draw`] function and maps it to its own type.
pub fn add<T: Draw<P>>(&mut self, draw_function: T) -> DrawFunctionId {
self.add_with::<T, T>(draw_function)
}
/// Adds the [`Draw`] function and maps it to the type `T`
pub fn add_with<T: 'static, D: Draw<P>>(&mut self, draw_function: D) -> DrawFunctionId {
let id = DrawFunctionId(self.draw_functions.len().try_into().unwrap());
self.draw_functions.push(Box::new(draw_function));
self.indices.insert(TypeId::of::<T>(), id);
id
}
/// Retrieves the [`Draw`] function corresponding to the `id` mutably.
pub fn get_mut(&mut self, id: DrawFunctionId) -> Option<&mut dyn Draw<P>> {
self.draw_functions.get_mut(id.0 as usize).map(|f| &mut **f)
}
/// Retrieves the id of the [`Draw`] function corresponding to their associated type `T`.
pub fn get_id<T: 'static>(&self) -> Option<DrawFunctionId> {
self.indices.get(&TypeId::of::<T>()).copied()
}
/// Retrieves the id of the [`Draw`] function corresponding to their associated type `T`.
///
/// Fallible wrapper for [`Self::get_id()`]
///
/// ## Panics
/// If the id doesn't exist, this function will panic.
pub fn id<T: 'static>(&self) -> DrawFunctionId {
self.get_id::<T>().unwrap_or_else(|| {
panic!(
"Draw function {} not found for {}",
std::any::type_name::<T>(),
std::any::type_name::<P>()
)
})
}
}
/// Stores all draw functions for the [`PhaseItem`] type hidden behind a reader-writer lock.
///
/// To access them the [`DrawFunctions::read`] and [`DrawFunctions::write`] methods are used.
#[derive(Resource)]
pub struct DrawFunctions<P: PhaseItem> {
internal: RwLock<DrawFunctionsInternal<P>>,
}
impl<P: PhaseItem> Default for DrawFunctions<P> {
fn default() -> Self {
Self {
internal: RwLock::new(DrawFunctionsInternal {
draw_functions: Vec::new(),
indices: HashMap::default(),
}),
}
}
}
impl<P: PhaseItem> DrawFunctions<P> {
/// Accesses the draw functions in read mode.
pub fn read(&self) -> RwLockReadGuard<'_, DrawFunctionsInternal<P>> {
self.internal.read()
}
/// Accesses the draw functions in write mode.
pub fn write(&self) -> RwLockWriteGuard<'_, DrawFunctionsInternal<P>> {
self.internal.write()
}
}
/// [`RenderCommand`]s are modular standardized pieces of render logic that can be composed into
/// [`Draw`] functions.
///
/// To turn a stateless render command into a usable draw function it has to be wrapped by a
/// [`RenderCommandState`].
/// This is done automatically when registering a render command as a [`Draw`] function via the
/// [`AddRenderCommand::add_render_command`] method.
///
/// Compared to the draw function the required ECS data is fetched automatically
/// (by the [`RenderCommandState`]) from the render world.
/// Therefore the three types [`Param`](RenderCommand::Param),
/// [`ViewWorldQuery`](RenderCommand::ViewWorldQuery) and
/// [`ItemWorldQuery`](RenderCommand::ItemWorldQuery) are used.
/// They specify which information is required to execute the render command.
///
/// Multiple render commands can be combined together by wrapping them in a tuple.
///
/// # Example
/// The `DrawPbr` draw function is created from the following render command
/// tuple. Const generics are used to set specific bind group locations:
///
/// ```ignore
/// pub type DrawPbr = (
/// SetItemPipeline,
/// SetMeshViewBindGroup<0>,
/// SetStandardMaterialBindGroup<1>,
/// SetTransformBindGroup<2>,
/// DrawMesh,
/// );
/// ```
pub trait RenderCommand<P: PhaseItem> {
/// Specifies the general ECS data (e.g. resources) required by [`RenderCommand::render`].
///
/// All parameters have to be read only.
type Param: SystemParam + 'static;
/// Specifies the ECS data of the view entity required by [`RenderCommand::render`].
///
/// The view entity refers to the camera, or shadow-casting light, etc. from which the phase
/// item will be rendered from.
/// All components have to be accessed read only.
type ViewWorldQuery: ReadOnlyWorldQuery;
/// Specifies the ECS data of the item entity required by [`RenderCommand::render`].
///
/// The item is the entity that will be rendered for the corresponding view.
/// All components have to be accessed read only.
type ItemWorldQuery: ReadOnlyWorldQuery;
/// Renders a [`PhaseItem`] by recording commands (e.g. setting pipelines, binding bind groups,
/// issuing draw calls, etc.) via the [`TrackedRenderPass`].
fn render<'w>(
item: &P,
view: ROQueryItem<'w, Self::ViewWorldQuery>,
entity: ROQueryItem<'w, Self::ItemWorldQuery>,
param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
}
/// The result of a [`RenderCommand`].
pub enum RenderCommandResult {
Success,
Failure,
}
macro_rules! render_command_tuple_impl {
($(($name: ident, $view: ident, $entity: ident)),*) => {
impl<P: PhaseItem, $($name: RenderCommand<P>),*> RenderCommand<P> for ($($name,)*) {
type Param = ($($name::Param,)*);
type ViewWorldQuery = ($($name::ViewWorldQuery,)*);
type ItemWorldQuery = ($($name::ItemWorldQuery,)*);
#[allow(non_snake_case)]
fn render<'w>(
_item: &P,
($($view,)*): ROQueryItem<'w, Self::ViewWorldQuery>,
($($entity,)*): ROQueryItem<'w, Self::ItemWorldQuery>,
($($name,)*): SystemParamItem<'w, '_, Self::Param>,
_pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
$(if let RenderCommandResult::Failure = $name::render(_item, $view, $entity, $name, _pass) {
return RenderCommandResult::Failure;
})*
RenderCommandResult::Success
}
}
};
}
all_tuples!(render_command_tuple_impl, 0, 15, C, V, E);
/// Wraps a [`RenderCommand`] into a state so that it can be used as a [`Draw`] function.
///
/// The [`RenderCommand::Param`], [`RenderCommand::ViewWorldQuery`] and
/// [`RenderCommand::ItemWorldQuery`] are fetched from the ECS and passed to the command.
pub struct RenderCommandState<P: PhaseItem + 'static, C: RenderCommand<P>> {
state: SystemState<C::Param>,
view: QueryState<C::ViewWorldQuery>,
entity: QueryState<C::ItemWorldQuery>,
}
impl<P: PhaseItem, C: RenderCommand<P>> RenderCommandState<P, C> {
/// Creates a new [`RenderCommandState`] for the [`RenderCommand`].
pub fn new(world: &mut World) -> Self {
Self {
state: SystemState::new(world),
view: world.query(),
entity: world.query(),
}
}
}
impl<P: PhaseItem, C: RenderCommand<P> + Send + Sync + 'static> Draw<P> for RenderCommandState<P, C>
where
C::Param: ReadOnlySystemParam,
{
/// Prepares the render command to be used. This is called once and only once before the phase
/// begins. There may be zero or more `draw` calls following a call to this function.
fn prepare(&mut self, world: &'_ World) {
self.state.update_archetypes(world);
self.view.update_archetypes(world);
self.entity.update_archetypes(world);
}
/// Fetches the ECS parameters for the wrapped [`RenderCommand`] and then renders it.
fn draw<'w>(
&mut self,
world: &'w World,
pass: &mut TrackedRenderPass<'w>,
view: Entity,
item: &P,
) {
let param = self.state.get_manual(world);
let view = self.view.get_manual(world, view).unwrap();
let entity = self.entity.get_manual(world, item.entity()).unwrap();
// TODO: handle/log `RenderCommand` failure
C::render(item, view, entity, param, pass);
}
}
/// Registers a [`RenderCommand`] as a [`Draw`] function.
/// They are stored inside the [`DrawFunctions`] resource of the app.
pub trait AddRenderCommand {
/// Adds the [`RenderCommand`] for the specified [`RenderPhase`](super::RenderPhase) to the app.
fn add_render_command<P: PhaseItem, C: RenderCommand<P> + Send + Sync + 'static>(
&mut self,
) -> &mut Self
where
C::Param: ReadOnlySystemParam;
}
impl AddRenderCommand for App {
fn add_render_command<P: PhaseItem, C: RenderCommand<P> + Send + Sync + 'static>(
&mut self,
) -> &mut Self
where
C::Param: ReadOnlySystemParam,
{
let draw_function = RenderCommandState::<P, C>::new(&mut self.world);
let draw_functions = self
.world
.get_resource::<DrawFunctions<P>>()
.unwrap_or_else(|| {
panic!(
"DrawFunctions<{}> must be added to the world as a resource \
before adding render commands to it",
std::any::type_name::<P>(),
);
});
draw_functions.write().add_with::<C, _>(draw_function);
self
}
}