
# Bevy Solari <img src="https://github.com/user-attachments/assets/94061fc8-01cf-4208-b72a-8eecad610d76" width="100" /> ## Preface - See release notes. - Please talk to me in #rendering-dev on discord or open a github discussion if you have questions about the long term plan, and keep discussion in this PR limited to the contents of the PR :) ## Connections - Works towards #639, #16408. - Spawned https://github.com/bevyengine/bevy/issues/18993. - Need to fix RT stuff in naga_oil first https://github.com/bevyengine/naga_oil/pull/116. ## This PR After nearly two years, I've revived the raytraced lighting effort I first started in https://github.com/bevyengine/bevy/pull/10000. Unlike that PR, which has realtime techniques, I've limited this PR to: * `RaytracingScenePlugin` - BLAS and TLAS building, geometry and texture binding, sampling functions. * `PathtracingPlugin` - A non-realtime path tracer intended to serve as a testbed and reference. ## What's implemented?  * BLAS building on mesh load * Emissive lights * Directional lights with soft shadows * Diffuse (lambert, not Bevy's diffuse BRDF) and emissive materials * A reference path tracer with: * Antialiasing * Direct light sampling (next event estimation) with 0/1 MIS weights * Importance-sampled BRDF bounces * Russian roulette ## What's _not_ implemented? * Anything realtime, including a real-time denoiser * Integration with Bevy's rasterized gbuffer * Specular materials * Non-opaque geometry * Any sort of CPU or GPU optimizations * BLAS compaction, proper bindless, and further RT APIs are things that we need wgpu to add * PointLights, SpotLights, or skyboxes / environment lighting * Support for materials other than StandardMaterial (and only a subset of properties are supported) * Skinned/morphed or otherwise animating/deformed meshes * Mipmaps * Adaptive self-intersection ray bias * A good way for developers to detect whether the user's GPU supports RT or not, and fallback to baked lighting. * Documentation and actual finalized APIs (literally everything is subject to change) ## End-user Usage * Have a GPU that supports RT with inline ray queries * Add `SolariPlugin` to your app * Ensure any `Mesh` asset you want to use for raytracing has `enable_raytracing: true` (defaults to true), and that it uses the standard uncompressed position/normal/uv_0/tangent vertex attribute set, triangle list topology, and 32-bit indices. * If you don't want to build a BLAS and use the mesh for RT, set enable_raytracing to false. * Add the `RaytracingMesh3d` component to your entity (separate from `Mesh3d` or `MeshletMesh3d`). ## Testing - Did you test these changes? If so, how? - Ran the solari example. - Are there any parts that need more testing? - Other test scenes probably. Normal mapping would be good to test. - How can other people (reviewers) test your changes? Is there anything specific they need to know? - See the solari.rs example for how to setup raytracing. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? - Windows 11, NVIDIA RTX 3080. --------- Co-authored-by: atlv <email@atlasdostal.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
114 lines
11 KiB
XML
114 lines
11 KiB
XML