bevy/examples/3d/fog_volumes.rs
Shaye Garg 0b5302d96a
Replace Ambient Lights with Environment Map Lights (#17482)
# Objective

Transparently uses simple `EnvironmentMapLight`s to mimic
`AmbientLight`s. Implements the first part of #17468, but I can
implement hemispherical lights in this PR too if needed.

## Solution

- A function `EnvironmentMapLight::solid_color(&mut Assets<Image>,
Color)` is provided to make an environment light with a solid color.
- A new system is added to `SimulationLightSystems` that maps
`AmbientLight`s on views or the world to a corresponding
`EnvironmentMapLight`.

I have never worked with (or on) Bevy before, so nitpicky comments on
how I did things are appreciated :).

## Testing

Testing was done on a modified version of the `3d/lighting` example,
where I removed all lights except the ambient light. I have not included
the example, but can if required.

## Migration
`bevy_pbr::AmbientLight` has been deprecated, so all usages of it should
be replaced by a `bevy_pbr::EnvironmentMapLight` created with
`EnvironmentMapLight::solid_color` placed on the camera. There is no
alternative to ambient lights as resources.
2025-03-04 07:40:53 +00:00

87 lines
2.7 KiB
Rust

//! Demonstrates fog volumes with voxel density textures.
//!
//! We render the Stanford bunny as a fog volume. Parts of the bunny become
//! lighter and darker as the camera rotates. This is physically-accurate
//! behavior that results from the scattering and absorption of the directional
//! light.
use bevy::{
math::vec3,
pbr::{FogVolume, VolumetricFog, VolumetricLight},
prelude::*,
};
/// Entry point.
fn main() {
#[expect(
deprecated,
reason = "Once AmbientLight is removed, the resource can be removed"
)]
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
title: "Bevy Fog Volumes Example".into(),
..default()
}),
..default()
}))
.insert_resource(AmbientLight::NONE)
.add_systems(Startup, setup)
.add_systems(Update, rotate_camera)
.run();
}
/// Spawns all the objects in the scene.
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// Spawn a fog volume with a voxelized version of the Stanford bunny.
commands.spawn((
Transform::from_xyz(0.0, 0.5, 0.0),
FogVolume {
density_texture: Some(asset_server.load("volumes/bunny.ktx2")),
density_factor: 1.0,
// Scatter as much of the light as possible, to brighten the bunny
// up.
scattering: 1.0,
..default()
},
));
// Spawn a bright directional light that illuminates the fog well.
commands.spawn((
Transform::from_xyz(1.0, 1.0, -0.3).looking_at(vec3(0.0, 0.5, 0.0), Vec3::Y),
DirectionalLight {
shadows_enabled: true,
illuminance: 32000.0,
..default()
},
// Make sure to add this for the light to interact with the fog.
VolumetricLight,
));
// Spawn a camera.
commands.spawn((
Camera3d::default(),
Transform::from_xyz(-0.75, 1.0, 2.0).looking_at(vec3(0.0, 0.0, 0.0), Vec3::Y),
Camera {
hdr: true,
..default()
},
VolumetricFog {
// Make this relatively high in order to increase the fog quality.
step_count: 64,
// Disable ambient light.
ambient_intensity: 0.0,
..default()
},
));
}
/// Rotates the camera a bit every frame.
fn rotate_camera(mut cameras: Query<&mut Transform, With<Camera3d>>) {
for mut camera_transform in cameras.iter_mut() {
*camera_transform =
Transform::from_translation(Quat::from_rotation_y(0.01) * camera_transform.translation)
.looking_at(vec3(0.0, 0.5, 0.0), Vec3::Y);
}
}