
# Objective - Make bevy_light possible by making it possible to split out clusterable into bevy_camera ## Solution - move ClusteredDecal to cluster module - Depends on #19957 (because of the imports shuffling around) (draft until thats merged) ## Testing - 3d_scene runs Note: no breaking changes thanks to re-exports
915 lines
32 KiB
Rust
915 lines
32 KiB
Rust
//! Spatial clustering of objects, currently just point and spot lights.
|
||
|
||
use core::num::NonZero;
|
||
|
||
use bevy_asset::Handle;
|
||
use bevy_camera::visibility;
|
||
use bevy_core_pipeline::core_3d::Camera3d;
|
||
use bevy_ecs::{
|
||
component::Component,
|
||
entity::{Entity, EntityHashMap},
|
||
query::{With, Without},
|
||
reflect::ReflectComponent,
|
||
resource::Resource,
|
||
system::{Commands, Query, Res},
|
||
world::{FromWorld, World},
|
||
};
|
||
use bevy_image::Image;
|
||
use bevy_math::{uvec4, AspectRatio, UVec2, UVec3, UVec4, Vec3Swizzles as _, Vec4};
|
||
use bevy_platform::collections::HashSet;
|
||
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
|
||
use bevy_render::{
|
||
camera::Camera,
|
||
extract_component::ExtractComponent,
|
||
render_resource::{
|
||
BindingResource, BufferBindingType, ShaderSize as _, ShaderType, StorageBuffer,
|
||
UniformBuffer,
|
||
},
|
||
renderer::{RenderAdapter, RenderDevice, RenderQueue},
|
||
sync_world::RenderEntity,
|
||
view::{Visibility, VisibilityClass},
|
||
Extract,
|
||
};
|
||
use bevy_transform::components::Transform;
|
||
use tracing::warn;
|
||
|
||
pub(crate) use crate::cluster::assign::assign_objects_to_clusters;
|
||
use crate::{LightVisibilityClass, MeshPipeline};
|
||
|
||
pub(crate) mod assign;
|
||
|
||
#[cfg(test)]
|
||
mod test;
|
||
|
||
// NOTE: this must be kept in sync with the same constants in
|
||
// `mesh_view_types.wgsl`.
|
||
pub const MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS: usize = 204;
|
||
// Make sure that the clusterable object buffer doesn't overflow the maximum
|
||
// size of a UBO on WebGL 2.
|
||
const _: () =
|
||
assert!(size_of::<GpuClusterableObject>() * MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS <= 16384);
|
||
|
||
// NOTE: Clustered-forward rendering requires 3 storage buffer bindings so check that
|
||
// at least that many are supported using this constant and SupportedBindingType::from_device()
|
||
pub const CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT: u32 = 3;
|
||
|
||
// this must match CLUSTER_COUNT_SIZE in pbr.wgsl
|
||
// and must be large enough to contain MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
|
||
const CLUSTER_COUNT_SIZE: u32 = 9;
|
||
|
||
const CLUSTER_OFFSET_MASK: u32 = (1 << (32 - (CLUSTER_COUNT_SIZE * 2))) - 1;
|
||
const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;
|
||
|
||
// Clustered-forward rendering notes
|
||
// The main initial reference material used was this rather accessible article:
|
||
// http://www.aortiz.me/2018/12/21/CG.html
|
||
// Some inspiration was taken from “Practical Clustered Shading” which is part 2 of:
|
||
// https://efficientshading.com/2015/01/01/real-time-many-light-management-and-shadows-with-clustered-shading/
|
||
// (Also note that Part 3 of the above shows how we could support the shadow mapping for many lights.)
|
||
// The z-slicing method mentioned in the aortiz article is originally from Tiago Sousa's Siggraph 2016 talk about Doom 2016:
|
||
// http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
|
||
|
||
#[derive(Resource)]
|
||
pub struct GlobalClusterSettings {
|
||
pub supports_storage_buffers: bool,
|
||
pub clustered_decals_are_usable: bool,
|
||
}
|
||
|
||
pub(crate) fn make_global_cluster_settings(world: &World) -> GlobalClusterSettings {
|
||
let device = world.resource::<RenderDevice>();
|
||
let adapter = world.resource::<RenderAdapter>();
|
||
let clustered_decals_are_usable =
|
||
crate::decal::clustered::clustered_decals_are_usable(device, adapter);
|
||
let supports_storage_buffers = matches!(
|
||
device.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
|
||
BufferBindingType::Storage { .. }
|
||
);
|
||
GlobalClusterSettings {
|
||
supports_storage_buffers,
|
||
clustered_decals_are_usable,
|
||
}
|
||
}
|
||
|
||
/// Configure the far z-plane mode used for the furthest depth slice for clustered forward
|
||
/// rendering
|
||
#[derive(Debug, Copy, Clone, Reflect)]
|
||
#[reflect(Clone)]
|
||
pub enum ClusterFarZMode {
|
||
/// Calculate the required maximum z-depth based on currently visible
|
||
/// clusterable objects. Makes better use of available clusters, speeding
|
||
/// up GPU lighting operations at the expense of some CPU time and using
|
||
/// more indices in the clusterable object index lists.
|
||
MaxClusterableObjectRange,
|
||
/// Constant max z-depth
|
||
Constant(f32),
|
||
}
|
||
|
||
/// Configure the depth-slicing strategy for clustered forward rendering
|
||
#[derive(Debug, Copy, Clone, Reflect)]
|
||
#[reflect(Default, Clone)]
|
||
pub struct ClusterZConfig {
|
||
/// Far `Z` plane of the first depth slice
|
||
pub first_slice_depth: f32,
|
||
/// Strategy for how to evaluate the far `Z` plane of the furthest depth slice
|
||
pub far_z_mode: ClusterFarZMode,
|
||
}
|
||
|
||
/// Configuration of the clustering strategy for clustered forward rendering
|
||
#[derive(Debug, Copy, Clone, Component, Reflect)]
|
||
#[reflect(Component, Debug, Default, Clone)]
|
||
pub enum ClusterConfig {
|
||
/// Disable cluster calculations for this view
|
||
None,
|
||
/// One single cluster. Optimal for low-light complexity scenes or scenes where
|
||
/// most lights affect the entire scene.
|
||
Single,
|
||
/// Explicit `X`, `Y` and `Z` counts (may yield non-square `X/Y` clusters depending on the aspect ratio)
|
||
XYZ {
|
||
dimensions: UVec3,
|
||
z_config: ClusterZConfig,
|
||
/// Specify if clusters should automatically resize in `X/Y` if there is a risk of exceeding
|
||
/// the available cluster-object index limit
|
||
dynamic_resizing: bool,
|
||
},
|
||
/// Fixed number of `Z` slices, `X` and `Y` calculated to give square clusters
|
||
/// with at most total clusters. For top-down games where lights will generally always be within a
|
||
/// short depth range, it may be useful to use this configuration with 1 or few `Z` slices. This
|
||
/// would reduce the number of lights per cluster by distributing more clusters in screen space
|
||
/// `X/Y` which matches how lights are distributed in the scene.
|
||
FixedZ {
|
||
total: u32,
|
||
z_slices: u32,
|
||
z_config: ClusterZConfig,
|
||
/// Specify if clusters should automatically resize in `X/Y` if there is a risk of exceeding
|
||
/// the available clusterable object index limit
|
||
dynamic_resizing: bool,
|
||
},
|
||
}
|
||
|
||
#[derive(Component, Debug, Default)]
|
||
pub struct Clusters {
|
||
/// Tile size
|
||
pub(crate) tile_size: UVec2,
|
||
/// Number of clusters in `X` / `Y` / `Z` in the view frustum
|
||
pub(crate) dimensions: UVec3,
|
||
/// Distance to the far plane of the first depth slice. The first depth slice is special
|
||
/// and explicitly-configured to avoid having unnecessarily many slices close to the camera.
|
||
pub(crate) near: f32,
|
||
pub(crate) far: f32,
|
||
pub(crate) clusterable_objects: Vec<VisibleClusterableObjects>,
|
||
}
|
||
|
||
#[derive(Clone, Component, Debug, Default)]
|
||
pub struct VisibleClusterableObjects {
|
||
pub(crate) entities: Vec<Entity>,
|
||
counts: ClusterableObjectCounts,
|
||
}
|
||
|
||
#[derive(Resource, Default)]
|
||
pub struct GlobalVisibleClusterableObjects {
|
||
pub(crate) entities: HashSet<Entity>,
|
||
}
|
||
|
||
#[derive(Resource)]
|
||
pub struct GlobalClusterableObjectMeta {
|
||
pub gpu_clusterable_objects: GpuClusterableObjects,
|
||
pub entity_to_index: EntityHashMap<usize>,
|
||
}
|
||
|
||
#[derive(Copy, Clone, ShaderType, Default, Debug)]
|
||
pub struct GpuClusterableObject {
|
||
// For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
|
||
// For spot lights: 2 components of the direction (x,z), spot_scale and spot_offset
|
||
pub(crate) light_custom_data: Vec4,
|
||
pub(crate) color_inverse_square_range: Vec4,
|
||
pub(crate) position_radius: Vec4,
|
||
pub(crate) flags: u32,
|
||
pub(crate) shadow_depth_bias: f32,
|
||
pub(crate) shadow_normal_bias: f32,
|
||
pub(crate) spot_light_tan_angle: f32,
|
||
pub(crate) soft_shadow_size: f32,
|
||
pub(crate) shadow_map_near_z: f32,
|
||
pub(crate) decal_index: u32,
|
||
pub(crate) pad: f32,
|
||
}
|
||
|
||
pub enum GpuClusterableObjects {
|
||
Uniform(UniformBuffer<GpuClusterableObjectsUniform>),
|
||
Storage(StorageBuffer<GpuClusterableObjectsStorage>),
|
||
}
|
||
|
||
#[derive(ShaderType)]
|
||
pub struct GpuClusterableObjectsUniform {
|
||
data: Box<[GpuClusterableObject; MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS]>,
|
||
}
|
||
|
||
#[derive(ShaderType, Default)]
|
||
pub struct GpuClusterableObjectsStorage {
|
||
#[size(runtime)]
|
||
data: Vec<GpuClusterableObject>,
|
||
}
|
||
|
||
#[derive(Component)]
|
||
pub struct ExtractedClusterConfig {
|
||
/// Special near value for cluster calculations
|
||
pub(crate) near: f32,
|
||
pub(crate) far: f32,
|
||
/// Number of clusters in `X` / `Y` / `Z` in the view frustum
|
||
pub(crate) dimensions: UVec3,
|
||
}
|
||
|
||
/// Stores the number of each type of clusterable object in a single cluster.
|
||
///
|
||
/// Note that `reflection_probes` and `irradiance_volumes` won't be clustered if
|
||
/// fewer than 3 SSBOs are available, which usually means on WebGL 2.
|
||
#[derive(Clone, Copy, Default, Debug)]
|
||
struct ClusterableObjectCounts {
|
||
/// The number of point lights in the cluster.
|
||
point_lights: u32,
|
||
/// The number of spot lights in the cluster.
|
||
spot_lights: u32,
|
||
/// The number of reflection probes in the cluster.
|
||
reflection_probes: u32,
|
||
/// The number of irradiance volumes in the cluster.
|
||
irradiance_volumes: u32,
|
||
/// The number of decals in the cluster.
|
||
decals: u32,
|
||
}
|
||
|
||
/// An object that projects a decal onto surfaces within its bounds.
|
||
///
|
||
/// Conceptually, a clustered decal is a 1×1×1 cube centered on its origin. It
|
||
/// projects the given [`Self::image`] onto surfaces in the -Z direction (thus
|
||
/// you may find [`Transform::looking_at`] useful).
|
||
///
|
||
/// Clustered decals are the highest-quality types of decals that Bevy supports,
|
||
/// but they require bindless textures. This means that they presently can't be
|
||
/// used on WebGL 2, WebGPU, macOS, or iOS. Bevy's clustered decals can be used
|
||
/// with forward or deferred rendering and don't require a prepass.
|
||
#[derive(Component, Debug, Clone, Reflect, ExtractComponent)]
|
||
#[reflect(Component, Debug, Clone)]
|
||
#[require(Transform, Visibility, VisibilityClass)]
|
||
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
|
||
pub struct ClusteredDecal {
|
||
/// The image that the clustered decal projects.
|
||
///
|
||
/// This must be a 2D image. If it has an alpha channel, it'll be alpha
|
||
/// blended with the underlying surface and/or other decals. All decal
|
||
/// images in the scene must use the same sampler.
|
||
pub image: Handle<Image>,
|
||
|
||
/// An application-specific tag you can use for any purpose you want.
|
||
///
|
||
/// See the `clustered_decals` example for an example of use.
|
||
pub tag: u32,
|
||
}
|
||
|
||
enum ExtractedClusterableObjectElement {
|
||
ClusterHeader(ClusterableObjectCounts),
|
||
ClusterableObjectEntity(Entity),
|
||
}
|
||
|
||
#[derive(Component)]
|
||
pub struct ExtractedClusterableObjects {
|
||
data: Vec<ExtractedClusterableObjectElement>,
|
||
}
|
||
|
||
#[derive(ShaderType)]
|
||
struct GpuClusterOffsetsAndCountsUniform {
|
||
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
|
||
}
|
||
|
||
#[derive(ShaderType, Default)]
|
||
struct GpuClusterableObjectIndexListsStorage {
|
||
#[size(runtime)]
|
||
data: Vec<u32>,
|
||
}
|
||
|
||
#[derive(ShaderType, Default)]
|
||
struct GpuClusterOffsetsAndCountsStorage {
|
||
/// The starting offset, followed by the number of point lights, spot
|
||
/// lights, reflection probes, and irradiance volumes in each cluster, in
|
||
/// that order. The remaining fields are filled with zeroes.
|
||
#[size(runtime)]
|
||
data: Vec<[UVec4; 2]>,
|
||
}
|
||
|
||
enum ViewClusterBuffers {
|
||
Uniform {
|
||
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
|
||
clusterable_object_index_lists: UniformBuffer<GpuClusterableObjectIndexListsUniform>,
|
||
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
|
||
cluster_offsets_and_counts: UniformBuffer<GpuClusterOffsetsAndCountsUniform>,
|
||
},
|
||
Storage {
|
||
clusterable_object_index_lists: StorageBuffer<GpuClusterableObjectIndexListsStorage>,
|
||
cluster_offsets_and_counts: StorageBuffer<GpuClusterOffsetsAndCountsStorage>,
|
||
},
|
||
}
|
||
|
||
#[derive(Component)]
|
||
pub struct ViewClusterBindings {
|
||
n_indices: usize,
|
||
n_offsets: usize,
|
||
buffers: ViewClusterBuffers,
|
||
}
|
||
|
||
impl Default for ClusterZConfig {
|
||
fn default() -> Self {
|
||
Self {
|
||
first_slice_depth: 5.0,
|
||
far_z_mode: ClusterFarZMode::MaxClusterableObjectRange,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Default for ClusterConfig {
|
||
fn default() -> Self {
|
||
// 24 depth slices, square clusters with at most 4096 total clusters
|
||
// use max light distance as clusters max `Z`-depth, first slice extends to 5.0
|
||
Self::FixedZ {
|
||
total: 4096,
|
||
z_slices: 24,
|
||
z_config: ClusterZConfig::default(),
|
||
dynamic_resizing: true,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl ClusterConfig {
|
||
fn dimensions_for_screen_size(&self, screen_size: UVec2) -> UVec3 {
|
||
match &self {
|
||
ClusterConfig::None => UVec3::ZERO,
|
||
ClusterConfig::Single => UVec3::ONE,
|
||
ClusterConfig::XYZ { dimensions, .. } => *dimensions,
|
||
ClusterConfig::FixedZ {
|
||
total, z_slices, ..
|
||
} => {
|
||
let aspect_ratio: f32 = AspectRatio::try_from_pixels(screen_size.x, screen_size.y)
|
||
.expect("Failed to calculate aspect ratio for Cluster: screen dimensions must be positive, non-zero values")
|
||
.ratio();
|
||
let mut z_slices = *z_slices;
|
||
if *total < z_slices {
|
||
warn!("ClusterConfig has more z-slices than total clusters!");
|
||
z_slices = *total;
|
||
}
|
||
let per_layer = *total as f32 / z_slices as f32;
|
||
|
||
let y = f32::sqrt(per_layer / aspect_ratio);
|
||
|
||
let mut x = (y * aspect_ratio) as u32;
|
||
let mut y = y as u32;
|
||
|
||
// check extremes
|
||
if x == 0 {
|
||
x = 1;
|
||
y = per_layer as u32;
|
||
}
|
||
if y == 0 {
|
||
x = per_layer as u32;
|
||
y = 1;
|
||
}
|
||
|
||
UVec3::new(x, y, z_slices)
|
||
}
|
||
}
|
||
}
|
||
|
||
fn first_slice_depth(&self) -> f32 {
|
||
match self {
|
||
ClusterConfig::None | ClusterConfig::Single => 0.0,
|
||
ClusterConfig::XYZ { z_config, .. } | ClusterConfig::FixedZ { z_config, .. } => {
|
||
z_config.first_slice_depth
|
||
}
|
||
}
|
||
}
|
||
|
||
fn far_z_mode(&self) -> ClusterFarZMode {
|
||
match self {
|
||
ClusterConfig::None => ClusterFarZMode::Constant(0.0),
|
||
ClusterConfig::Single => ClusterFarZMode::MaxClusterableObjectRange,
|
||
ClusterConfig::XYZ { z_config, .. } | ClusterConfig::FixedZ { z_config, .. } => {
|
||
z_config.far_z_mode
|
||
}
|
||
}
|
||
}
|
||
|
||
fn dynamic_resizing(&self) -> bool {
|
||
match self {
|
||
ClusterConfig::None | ClusterConfig::Single => false,
|
||
ClusterConfig::XYZ {
|
||
dynamic_resizing, ..
|
||
}
|
||
| ClusterConfig::FixedZ {
|
||
dynamic_resizing, ..
|
||
} => *dynamic_resizing,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Clusters {
|
||
fn update(&mut self, screen_size: UVec2, requested_dimensions: UVec3) {
|
||
debug_assert!(
|
||
requested_dimensions.x > 0 && requested_dimensions.y > 0 && requested_dimensions.z > 0
|
||
);
|
||
|
||
let tile_size = (screen_size.as_vec2() / requested_dimensions.xy().as_vec2())
|
||
.ceil()
|
||
.as_uvec2()
|
||
.max(UVec2::ONE);
|
||
self.tile_size = tile_size;
|
||
self.dimensions = (screen_size.as_vec2() / tile_size.as_vec2())
|
||
.ceil()
|
||
.as_uvec2()
|
||
.extend(requested_dimensions.z)
|
||
.max(UVec3::ONE);
|
||
|
||
// NOTE: Maximum 4096 clusters due to uniform buffer size constraints
|
||
debug_assert!(self.dimensions.x * self.dimensions.y * self.dimensions.z <= 4096);
|
||
}
|
||
fn clear(&mut self) {
|
||
self.tile_size = UVec2::ONE;
|
||
self.dimensions = UVec3::ZERO;
|
||
self.near = 0.0;
|
||
self.far = 0.0;
|
||
self.clusterable_objects.clear();
|
||
}
|
||
}
|
||
|
||
pub fn add_clusters(
|
||
mut commands: Commands,
|
||
cameras: Query<(Entity, Option<&ClusterConfig>, &Camera), (Without<Clusters>, With<Camera3d>)>,
|
||
) {
|
||
for (entity, config, camera) in &cameras {
|
||
if !camera.is_active {
|
||
continue;
|
||
}
|
||
|
||
let config = config.copied().unwrap_or_default();
|
||
// actual settings here don't matter - they will be overwritten in
|
||
// `assign_objects_to_clusters``
|
||
commands
|
||
.entity(entity)
|
||
.insert((Clusters::default(), config));
|
||
}
|
||
}
|
||
|
||
impl VisibleClusterableObjects {
|
||
#[inline]
|
||
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Entity> {
|
||
self.entities.iter()
|
||
}
|
||
|
||
#[inline]
|
||
pub fn len(&self) -> usize {
|
||
self.entities.len()
|
||
}
|
||
|
||
#[inline]
|
||
pub fn is_empty(&self) -> bool {
|
||
self.entities.is_empty()
|
||
}
|
||
}
|
||
|
||
impl GlobalVisibleClusterableObjects {
|
||
#[inline]
|
||
pub fn iter(&self) -> impl Iterator<Item = &Entity> {
|
||
self.entities.iter()
|
||
}
|
||
|
||
#[inline]
|
||
pub fn contains(&self, entity: Entity) -> bool {
|
||
self.entities.contains(&entity)
|
||
}
|
||
}
|
||
|
||
impl FromWorld for GlobalClusterableObjectMeta {
|
||
fn from_world(world: &mut World) -> Self {
|
||
Self::new(
|
||
world
|
||
.resource::<RenderDevice>()
|
||
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
|
||
)
|
||
}
|
||
}
|
||
|
||
impl GlobalClusterableObjectMeta {
|
||
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
|
||
Self {
|
||
gpu_clusterable_objects: GpuClusterableObjects::new(buffer_binding_type),
|
||
entity_to_index: EntityHashMap::default(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl GpuClusterableObjects {
|
||
fn new(buffer_binding_type: BufferBindingType) -> Self {
|
||
match buffer_binding_type {
|
||
BufferBindingType::Storage { .. } => Self::storage(),
|
||
BufferBindingType::Uniform => Self::uniform(),
|
||
}
|
||
}
|
||
|
||
fn uniform() -> Self {
|
||
Self::Uniform(UniformBuffer::default())
|
||
}
|
||
|
||
fn storage() -> Self {
|
||
Self::Storage(StorageBuffer::default())
|
||
}
|
||
|
||
pub(crate) fn set(&mut self, mut clusterable_objects: Vec<GpuClusterableObject>) {
|
||
match self {
|
||
GpuClusterableObjects::Uniform(buffer) => {
|
||
let len = clusterable_objects
|
||
.len()
|
||
.min(MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS);
|
||
let src = &clusterable_objects[..len];
|
||
let dst = &mut buffer.get_mut().data[..len];
|
||
dst.copy_from_slice(src);
|
||
}
|
||
GpuClusterableObjects::Storage(buffer) => {
|
||
buffer.get_mut().data.clear();
|
||
buffer.get_mut().data.append(&mut clusterable_objects);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub(crate) fn write_buffer(
|
||
&mut self,
|
||
render_device: &RenderDevice,
|
||
render_queue: &RenderQueue,
|
||
) {
|
||
match self {
|
||
GpuClusterableObjects::Uniform(buffer) => {
|
||
buffer.write_buffer(render_device, render_queue);
|
||
}
|
||
GpuClusterableObjects::Storage(buffer) => {
|
||
buffer.write_buffer(render_device, render_queue);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn binding(&self) -> Option<BindingResource> {
|
||
match self {
|
||
GpuClusterableObjects::Uniform(buffer) => buffer.binding(),
|
||
GpuClusterableObjects::Storage(buffer) => buffer.binding(),
|
||
}
|
||
}
|
||
|
||
pub fn min_size(buffer_binding_type: BufferBindingType) -> NonZero<u64> {
|
||
match buffer_binding_type {
|
||
BufferBindingType::Storage { .. } => GpuClusterableObjectsStorage::min_size(),
|
||
BufferBindingType::Uniform => GpuClusterableObjectsUniform::min_size(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Default for GpuClusterableObjectsUniform {
|
||
fn default() -> Self {
|
||
Self {
|
||
data: Box::new(
|
||
[GpuClusterableObject::default(); MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS],
|
||
),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Extracts clusters from the main world from the render world.
|
||
pub fn extract_clusters(
|
||
mut commands: Commands,
|
||
views: Extract<Query<(RenderEntity, &Clusters, &Camera)>>,
|
||
mapper: Extract<Query<RenderEntity>>,
|
||
) {
|
||
for (entity, clusters, camera) in &views {
|
||
let mut entity_commands = commands
|
||
.get_entity(entity)
|
||
.expect("Clusters entity wasn't synced.");
|
||
if !camera.is_active {
|
||
entity_commands.remove::<(ExtractedClusterableObjects, ExtractedClusterConfig)>();
|
||
continue;
|
||
}
|
||
|
||
let entity_count: usize = clusters
|
||
.clusterable_objects
|
||
.iter()
|
||
.map(|l| l.entities.len())
|
||
.sum();
|
||
let mut data = Vec::with_capacity(clusters.clusterable_objects.len() + entity_count);
|
||
for cluster_objects in &clusters.clusterable_objects {
|
||
data.push(ExtractedClusterableObjectElement::ClusterHeader(
|
||
cluster_objects.counts,
|
||
));
|
||
for clusterable_entity in &cluster_objects.entities {
|
||
if let Ok(entity) = mapper.get(*clusterable_entity) {
|
||
data.push(ExtractedClusterableObjectElement::ClusterableObjectEntity(
|
||
entity,
|
||
));
|
||
}
|
||
}
|
||
}
|
||
|
||
entity_commands.insert((
|
||
ExtractedClusterableObjects { data },
|
||
ExtractedClusterConfig {
|
||
near: clusters.near,
|
||
far: clusters.far,
|
||
dimensions: clusters.dimensions,
|
||
},
|
||
));
|
||
}
|
||
}
|
||
|
||
pub fn prepare_clusters(
|
||
mut commands: Commands,
|
||
render_device: Res<RenderDevice>,
|
||
render_queue: Res<RenderQueue>,
|
||
mesh_pipeline: Res<MeshPipeline>,
|
||
global_clusterable_object_meta: Res<GlobalClusterableObjectMeta>,
|
||
views: Query<(Entity, &ExtractedClusterableObjects)>,
|
||
) {
|
||
let render_device = render_device.into_inner();
|
||
let supports_storage_buffers = matches!(
|
||
mesh_pipeline.clustered_forward_buffer_binding_type,
|
||
BufferBindingType::Storage { .. }
|
||
);
|
||
for (entity, extracted_clusters) in &views {
|
||
let mut view_clusters_bindings =
|
||
ViewClusterBindings::new(mesh_pipeline.clustered_forward_buffer_binding_type);
|
||
view_clusters_bindings.clear();
|
||
|
||
for record in &extracted_clusters.data {
|
||
match record {
|
||
ExtractedClusterableObjectElement::ClusterHeader(counts) => {
|
||
let offset = view_clusters_bindings.n_indices();
|
||
view_clusters_bindings.push_offset_and_counts(offset, counts);
|
||
}
|
||
ExtractedClusterableObjectElement::ClusterableObjectEntity(entity) => {
|
||
if let Some(clusterable_object_index) =
|
||
global_clusterable_object_meta.entity_to_index.get(entity)
|
||
{
|
||
if view_clusters_bindings.n_indices() >= ViewClusterBindings::MAX_INDICES
|
||
&& !supports_storage_buffers
|
||
{
|
||
warn!(
|
||
"Clusterable object index lists are full! The clusterable \
|
||
objects in the view are present in too many clusters."
|
||
);
|
||
break;
|
||
}
|
||
view_clusters_bindings.push_index(*clusterable_object_index);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
view_clusters_bindings.write_buffers(render_device, &render_queue);
|
||
|
||
commands.entity(entity).insert(view_clusters_bindings);
|
||
}
|
||
}
|
||
|
||
impl ViewClusterBindings {
|
||
pub const MAX_OFFSETS: usize = 16384 / 4;
|
||
const MAX_UNIFORM_ITEMS: usize = Self::MAX_OFFSETS / 4;
|
||
pub const MAX_INDICES: usize = 16384;
|
||
|
||
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
|
||
Self {
|
||
n_indices: 0,
|
||
n_offsets: 0,
|
||
buffers: ViewClusterBuffers::new(buffer_binding_type),
|
||
}
|
||
}
|
||
|
||
pub fn clear(&mut self) {
|
||
match &mut self.buffers {
|
||
ViewClusterBuffers::Uniform {
|
||
clusterable_object_index_lists,
|
||
cluster_offsets_and_counts,
|
||
} => {
|
||
*clusterable_object_index_lists.get_mut().data =
|
||
[UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
|
||
*cluster_offsets_and_counts.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
|
||
}
|
||
ViewClusterBuffers::Storage {
|
||
clusterable_object_index_lists,
|
||
cluster_offsets_and_counts,
|
||
..
|
||
} => {
|
||
clusterable_object_index_lists.get_mut().data.clear();
|
||
cluster_offsets_and_counts.get_mut().data.clear();
|
||
}
|
||
}
|
||
}
|
||
|
||
fn push_offset_and_counts(&mut self, offset: usize, counts: &ClusterableObjectCounts) {
|
||
match &mut self.buffers {
|
||
ViewClusterBuffers::Uniform {
|
||
cluster_offsets_and_counts,
|
||
..
|
||
} => {
|
||
let array_index = self.n_offsets >> 2; // >> 2 is equivalent to / 4
|
||
if array_index >= Self::MAX_UNIFORM_ITEMS {
|
||
warn!("cluster offset and count out of bounds!");
|
||
return;
|
||
}
|
||
let component = self.n_offsets & ((1 << 2) - 1);
|
||
let packed =
|
||
pack_offset_and_counts(offset, counts.point_lights, counts.spot_lights);
|
||
|
||
cluster_offsets_and_counts.get_mut().data[array_index][component] = packed;
|
||
}
|
||
ViewClusterBuffers::Storage {
|
||
cluster_offsets_and_counts,
|
||
..
|
||
} => {
|
||
cluster_offsets_and_counts.get_mut().data.push([
|
||
uvec4(
|
||
offset as u32,
|
||
counts.point_lights,
|
||
counts.spot_lights,
|
||
counts.reflection_probes,
|
||
),
|
||
uvec4(counts.irradiance_volumes, counts.decals, 0, 0),
|
||
]);
|
||
}
|
||
}
|
||
|
||
self.n_offsets += 1;
|
||
}
|
||
|
||
pub fn n_indices(&self) -> usize {
|
||
self.n_indices
|
||
}
|
||
|
||
pub fn push_index(&mut self, index: usize) {
|
||
match &mut self.buffers {
|
||
ViewClusterBuffers::Uniform {
|
||
clusterable_object_index_lists,
|
||
..
|
||
} => {
|
||
let array_index = self.n_indices >> 4; // >> 4 is equivalent to / 16
|
||
let component = (self.n_indices >> 2) & ((1 << 2) - 1);
|
||
let sub_index = self.n_indices & ((1 << 2) - 1);
|
||
let index = index as u32;
|
||
|
||
clusterable_object_index_lists.get_mut().data[array_index][component] |=
|
||
index << (8 * sub_index);
|
||
}
|
||
ViewClusterBuffers::Storage {
|
||
clusterable_object_index_lists,
|
||
..
|
||
} => {
|
||
clusterable_object_index_lists
|
||
.get_mut()
|
||
.data
|
||
.push(index as u32);
|
||
}
|
||
}
|
||
|
||
self.n_indices += 1;
|
||
}
|
||
|
||
pub fn write_buffers(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
|
||
match &mut self.buffers {
|
||
ViewClusterBuffers::Uniform {
|
||
clusterable_object_index_lists,
|
||
cluster_offsets_and_counts,
|
||
} => {
|
||
clusterable_object_index_lists.write_buffer(render_device, render_queue);
|
||
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
|
||
}
|
||
ViewClusterBuffers::Storage {
|
||
clusterable_object_index_lists,
|
||
cluster_offsets_and_counts,
|
||
} => {
|
||
clusterable_object_index_lists.write_buffer(render_device, render_queue);
|
||
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn clusterable_object_index_lists_binding(&self) -> Option<BindingResource> {
|
||
match &self.buffers {
|
||
ViewClusterBuffers::Uniform {
|
||
clusterable_object_index_lists,
|
||
..
|
||
} => clusterable_object_index_lists.binding(),
|
||
ViewClusterBuffers::Storage {
|
||
clusterable_object_index_lists,
|
||
..
|
||
} => clusterable_object_index_lists.binding(),
|
||
}
|
||
}
|
||
|
||
pub fn offsets_and_counts_binding(&self) -> Option<BindingResource> {
|
||
match &self.buffers {
|
||
ViewClusterBuffers::Uniform {
|
||
cluster_offsets_and_counts,
|
||
..
|
||
} => cluster_offsets_and_counts.binding(),
|
||
ViewClusterBuffers::Storage {
|
||
cluster_offsets_and_counts,
|
||
..
|
||
} => cluster_offsets_and_counts.binding(),
|
||
}
|
||
}
|
||
|
||
pub fn min_size_clusterable_object_index_lists(
|
||
buffer_binding_type: BufferBindingType,
|
||
) -> NonZero<u64> {
|
||
match buffer_binding_type {
|
||
BufferBindingType::Storage { .. } => GpuClusterableObjectIndexListsStorage::min_size(),
|
||
BufferBindingType::Uniform => GpuClusterableObjectIndexListsUniform::min_size(),
|
||
}
|
||
}
|
||
|
||
pub fn min_size_cluster_offsets_and_counts(
|
||
buffer_binding_type: BufferBindingType,
|
||
) -> NonZero<u64> {
|
||
match buffer_binding_type {
|
||
BufferBindingType::Storage { .. } => GpuClusterOffsetsAndCountsStorage::min_size(),
|
||
BufferBindingType::Uniform => GpuClusterOffsetsAndCountsUniform::min_size(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl ViewClusterBuffers {
|
||
fn new(buffer_binding_type: BufferBindingType) -> Self {
|
||
match buffer_binding_type {
|
||
BufferBindingType::Storage { .. } => Self::storage(),
|
||
BufferBindingType::Uniform => Self::uniform(),
|
||
}
|
||
}
|
||
|
||
fn uniform() -> Self {
|
||
ViewClusterBuffers::Uniform {
|
||
clusterable_object_index_lists: UniformBuffer::default(),
|
||
cluster_offsets_and_counts: UniformBuffer::default(),
|
||
}
|
||
}
|
||
|
||
fn storage() -> Self {
|
||
ViewClusterBuffers::Storage {
|
||
clusterable_object_index_lists: StorageBuffer::default(),
|
||
cluster_offsets_and_counts: StorageBuffer::default(),
|
||
}
|
||
}
|
||
}
|
||
|
||
// Compresses the offset and counts of point and spot lights so that they fit in
|
||
// a UBO.
|
||
//
|
||
// This function is only used if storage buffers are unavailable on this
|
||
// platform: typically, on WebGL 2.
|
||
//
|
||
// NOTE: With uniform buffer max binding size as 16384 bytes
|
||
// that means we can fit 204 clusterable objects in one uniform
|
||
// buffer, which means the count can be at most 204 so it
|
||
// needs 9 bits.
|
||
// The array of indices can also use u8 and that means the
|
||
// offset in to the array of indices needs to be able to address
|
||
// 16384 values. log2(16384) = 14 bits.
|
||
// We use 32 bits to store the offset and counts so
|
||
// we pack the offset into the upper 14 bits of a u32,
|
||
// the point light count into bits 9-17, and the spot light count into bits 0-8.
|
||
// [ 31 .. 18 | 17 .. 9 | 8 .. 0 ]
|
||
// [ offset | point light count | spot light count ]
|
||
//
|
||
// NOTE: This assumes CPU and GPU endianness are the same which is true
|
||
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
|
||
//
|
||
// NOTE: On platforms that use this function, we don't cluster light probes, so
|
||
// the number of light probes is irrelevant.
|
||
fn pack_offset_and_counts(offset: usize, point_count: u32, spot_count: u32) -> u32 {
|
||
((offset as u32 & CLUSTER_OFFSET_MASK) << (CLUSTER_COUNT_SIZE * 2))
|
||
| ((point_count & CLUSTER_COUNT_MASK) << CLUSTER_COUNT_SIZE)
|
||
| (spot_count & CLUSTER_COUNT_MASK)
|
||
}
|
||
|
||
#[derive(ShaderType)]
|
||
struct GpuClusterableObjectIndexListsUniform {
|
||
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
|
||
}
|
||
|
||
// NOTE: Assert at compile time that GpuClusterableObjectIndexListsUniform
|
||
// fits within the maximum uniform buffer binding size
|
||
const _: () = assert!(GpuClusterableObjectIndexListsUniform::SHADER_SIZE.get() <= 16384);
|
||
|
||
impl Default for GpuClusterableObjectIndexListsUniform {
|
||
fn default() -> Self {
|
||
Self {
|
||
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Default for GpuClusterOffsetsAndCountsUniform {
|
||
fn default() -> Self {
|
||
Self {
|
||
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
|
||
}
|
||
}
|
||
}
|