# Objective - Fixes #16873 ## Solution - Added `GizmoLineStyle::Dashed {gap_scale, line_scale}` - The `gap_scale` and `line_scale` describe the lengths of the gaps and visible line-segments in terms of line-widths. For example, if `gap_scale == 1.0` and `line_scale == 3.0` the gaps are square and the the visible segments are three line-widths long. - The new `GizmoLineStyle` can be used both in 3D and 2D and with both perspective and orthographic cameras. - Updated the `2d_gizmos` and `3d_gizmos` examples to include the new line-style. - Display a warning, when using negative `gap_scale` or `line_scale`. - Notably, `Hash` and `Eq` are manually implemented for `GizmoLineStyle` since both are not implemented for `f32` which prevents deriving these traits for `GizmoLineStyle`. ## Testing - The results can be verified visually --- ## Showcase The following images depict dashed lines with `gap_scale == 3.0` and `line_scale == 5.0` in perspective 3D and orthographic 2D.   --------- Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
190 lines
6.4 KiB
WebGPU Shading Language
190 lines
6.4 KiB
WebGPU Shading Language
// TODO use common view binding
|
|
#import bevy_render::{view::View, maths::affine3_to_square}
|
|
|
|
@group(0) @binding(0) var<uniform> view: View;
|
|
|
|
|
|
struct LineGizmoUniform {
|
|
world_from_local: mat3x4<f32>,
|
|
line_width: f32,
|
|
depth_bias: f32,
|
|
_joints_resolution: u32,
|
|
gap_scale: f32,
|
|
line_scale: f32,
|
|
#ifdef SIXTEEN_BYTE_ALIGNMENT
|
|
// WebGL2 structs must be 16 byte aligned.
|
|
_padding: vec3<f32>,
|
|
#endif
|
|
}
|
|
|
|
@group(1) @binding(0) var<uniform> line_gizmo: LineGizmoUniform;
|
|
|
|
struct VertexInput {
|
|
@location(0) position_a: vec3<f32>,
|
|
@location(1) position_b: vec3<f32>,
|
|
@location(2) color_a: vec4<f32>,
|
|
@location(3) color_b: vec4<f32>,
|
|
@builtin(vertex_index) index: u32,
|
|
};
|
|
|
|
struct VertexOutput {
|
|
@builtin(position) clip_position: vec4<f32>,
|
|
@location(0) color: vec4<f32>,
|
|
@location(1) uv: f32,
|
|
@location(2) line_fraction: f32,
|
|
};
|
|
|
|
const EPSILON: f32 = 4.88e-04;
|
|
|
|
@vertex
|
|
fn vertex(vertex: VertexInput) -> VertexOutput {
|
|
var positions = array<vec2<f32>, 6>(
|
|
vec2(-0.5, 0.),
|
|
vec2(-0.5, 1.),
|
|
vec2(0.5, 1.),
|
|
vec2(-0.5, 0.),
|
|
vec2(0.5, 1.),
|
|
vec2(0.5, 0.)
|
|
);
|
|
let position = positions[vertex.index];
|
|
|
|
let world_from_local = affine3_to_square(line_gizmo.world_from_local);
|
|
|
|
// algorithm based on https://wwwtyro.net/2019/11/18/instanced-lines.html
|
|
var clip_a = view.clip_from_world * world_from_local * vec4(vertex.position_a, 1.);
|
|
var clip_b = view.clip_from_world * world_from_local * vec4(vertex.position_b, 1.);
|
|
|
|
// Manual near plane clipping to avoid errors when doing the perspective divide inside this shader.
|
|
clip_a = clip_near_plane(clip_a, clip_b);
|
|
clip_b = clip_near_plane(clip_b, clip_a);
|
|
let clip = mix(clip_a, clip_b, position.y);
|
|
|
|
let resolution = view.viewport.zw;
|
|
let screen_a = resolution * (0.5 * clip_a.xy / clip_a.w + 0.5);
|
|
let screen_b = resolution * (0.5 * clip_b.xy / clip_b.w + 0.5);
|
|
|
|
let y_basis = normalize(screen_b - screen_a);
|
|
let x_basis = vec2(-y_basis.y, y_basis.x);
|
|
|
|
var color = mix(vertex.color_a, vertex.color_b, position.y);
|
|
|
|
var line_width = line_gizmo.line_width;
|
|
var alpha = 1.;
|
|
|
|
var uv: f32;
|
|
#ifdef PERSPECTIVE
|
|
line_width /= clip.w;
|
|
|
|
// get height of near clipping plane in world space
|
|
let pos0 = view.view_from_clip * vec4(0, -1, 0, 1); // Bottom of the screen
|
|
let pos1 = view.view_from_clip * vec4(0, 1, 0, 1); // Top of the screen
|
|
let near_clipping_plane_height = length(pos0.xyz - pos1.xyz);
|
|
|
|
// We can't use vertex.position_X because we may have changed the clip positions with clip_near_plane
|
|
let position_a = view.world_from_clip * clip_a;
|
|
let position_b = view.world_from_clip * clip_b;
|
|
let world_distance = length(position_a.xyz - position_b.xyz);
|
|
|
|
// Offset to compensate for moved clip positions. If removed dots on lines will slide when position a is ofscreen.
|
|
let clipped_offset = length(position_a.xyz - vertex.position_a);
|
|
|
|
uv = (clipped_offset + position.y * world_distance) * resolution.y / near_clipping_plane_height / line_gizmo.line_width;
|
|
#else
|
|
// Get the distance of b to the camera along camera axes
|
|
let camera_b = view.view_from_clip * clip_b;
|
|
|
|
// This differentiates between orthographic and perspective cameras.
|
|
// For orthographic cameras no depth adaptment (depth_adaptment = 1) is needed.
|
|
var depth_adaptment: f32;
|
|
if (clip_b.w == 1.0) {
|
|
depth_adaptment = 1.0;
|
|
}
|
|
else {
|
|
depth_adaptment = -camera_b.z;
|
|
}
|
|
uv = position.y * depth_adaptment * length(screen_b - screen_a) / line_gizmo.line_width;
|
|
#endif
|
|
|
|
// Line thinness fade from https://acegikmo.com/shapes/docs/#anti-aliasing
|
|
if line_width > 0.0 && line_width < 1. {
|
|
color.a *= line_width;
|
|
line_width = 1.;
|
|
}
|
|
|
|
let x_offset = line_width * position.x * x_basis;
|
|
let screen = mix(screen_a, screen_b, position.y) + x_offset;
|
|
|
|
var depth: f32;
|
|
if line_gizmo.depth_bias >= 0. {
|
|
depth = clip.z * (1. - line_gizmo.depth_bias);
|
|
} else {
|
|
// depth * (clip.w / depth)^-depth_bias. So that when -depth_bias is 1.0, this is equal to clip.w
|
|
// and when equal to 0.0, it is exactly equal to depth.
|
|
// the epsilon is here to prevent the depth from exceeding clip.w when -depth_bias = 1.0
|
|
// clip.w represents the near plane in homogeneous clip space in bevy, having a depth
|
|
// of this value means nothing can be in front of this
|
|
// The reason this uses an exponential function is that it makes it much easier for the
|
|
// user to chose a value that is convenient for them
|
|
depth = clip.z * exp2(-line_gizmo.depth_bias * log2(clip.w / clip.z - EPSILON));
|
|
}
|
|
|
|
var clip_position = vec4(clip.w * ((2. * screen) / resolution - 1.), depth, clip.w);
|
|
|
|
let line_fraction = 2.0 * line_gizmo.line_scale / (line_gizmo.gap_scale + line_gizmo.line_scale);
|
|
uv /= (line_gizmo.gap_scale + line_gizmo.line_scale) / 2.0;
|
|
return VertexOutput(clip_position, color, uv, line_fraction);
|
|
}
|
|
|
|
fn clip_near_plane(a: vec4<f32>, b: vec4<f32>) -> vec4<f32> {
|
|
// Move a if a is behind the near plane and b is in front.
|
|
if a.z > a.w && b.z <= b.w {
|
|
// Interpolate a towards b until it's at the near plane.
|
|
let distance_a = a.z - a.w;
|
|
let distance_b = b.z - b.w;
|
|
// Add an epsilon to the interpolator to ensure that the point is
|
|
// not just behind the clip plane due to floating-point imprecision.
|
|
let t = distance_a / (distance_a - distance_b) + EPSILON;
|
|
return mix(a, b, t);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
struct FragmentInput {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) color: vec4<f32>,
|
|
@location(1) uv: f32,
|
|
@location(2) line_fraction: f32,
|
|
};
|
|
|
|
struct FragmentOutput {
|
|
@location(0) color: vec4<f32>,
|
|
};
|
|
|
|
@fragment
|
|
fn fragment_solid(in: FragmentInput) -> FragmentOutput {
|
|
return FragmentOutput(in.color);
|
|
}
|
|
@fragment
|
|
fn fragment_dotted(in: FragmentInput) -> FragmentOutput {
|
|
var alpha: f32;
|
|
#ifdef PERSPECTIVE
|
|
alpha = 1 - floor(in.uv % 2.0);
|
|
#else
|
|
alpha = 1 - floor((in.uv * in.position.w) % 2.0);
|
|
#endif
|
|
|
|
return FragmentOutput(vec4(in.color.xyz, in.color.w * alpha));
|
|
}
|
|
|
|
@fragment
|
|
fn fragment_dashed(in: FragmentInput) -> FragmentOutput {
|
|
#ifdef PERSPECTIVE
|
|
let uv = in.uv;
|
|
#else
|
|
let uv = in.uv * in.position.w;
|
|
#endif
|
|
let alpha = 1.0 - floor(min((uv % 2.0) / in.line_fraction, 1.0));
|
|
|
|
return FragmentOutput(vec4(in.color.xyz, in.color.w * alpha));
|
|
}
|