bevy/crates/bevy_pbr/src/render/mesh.rs
Patrick Walton 1141e731ff
Implement alpha to coverage (A2C) support. (#12970)
[Alpha to coverage] (A2C) replaces alpha blending with a
hardware-specific multisample coverage mask when multisample
antialiasing is in use. It's a simple form of [order-independent
transparency] that relies on MSAA. ["Anti-aliased Alpha Test: The
Esoteric Alpha To Coverage"] is a good summary of the motivation for and
best practices relating to A2C.

This commit implements alpha to coverage support as a new variant for
`AlphaMode`. You can supply `AlphaMode::AlphaToCoverage` as the
`alpha_mode` field in `StandardMaterial` to use it. When in use, the
standard material shader automatically applies the texture filtering
method from ["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"].
Objects with alpha-to-coverage materials are binned in the opaque pass,
as they're fully order-independent.

The `transparency_3d` example has been updated to feature an object with
alpha to coverage. Happily, the example was already using MSAA.

This is part of #2223, as far as I can tell.

[Alpha to coverage]: https://en.wikipedia.org/wiki/Alpha_to_coverage

[order-independent transparency]:
https://en.wikipedia.org/wiki/Order-independent_transparency

["Anti-aliased Alpha Test: The Esoteric Alpha To Coverage"]:
https://bgolus.medium.com/anti-aliased-alpha-test-the-esoteric-alpha-to-coverage-8b177335ae4f

---

## Changelog

### Added

* The `AlphaMode` enum now supports `AlphaToCoverage`, to provide
limited order-independent transparency when multisample antialiasing is
in use.
2024-04-15 20:37:52 +00:00

1823 lines
71 KiB
Rust

use std::mem;
use bevy_asset::{load_internal_asset, AssetId};
use bevy_core_pipeline::{
core_3d::{AlphaMask3d, Opaque3d, Transmissive3d, Transparent3d, CORE_3D_DEPTH_FORMAT},
deferred::{AlphaMask3dDeferred, Opaque3dDeferred},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::entity::EntityHashMap;
use bevy_ecs::{
prelude::*,
query::ROQueryItem,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Affine3, Rect, UVec2, Vec3, Vec4};
use bevy_render::{
batching::{
gpu_preprocessing, no_gpu_preprocessing, GetBatchData, GetFullBatchData,
NoAutomaticBatching,
},
mesh::*,
render_asset::RenderAssets,
render_phase::{
BinnedRenderPhasePlugin, PhaseItem, RenderCommand, RenderCommandResult,
SortedRenderPhasePlugin, TrackedRenderPass,
},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::{BevyDefault, DefaultImageSampler, ImageSampler, TextureFormatPixelInfo},
view::{prepare_view_targets, ViewTarget, ViewUniformOffset, ViewVisibility},
Extract,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::{tracing::error, Entry, HashMap, Parallel};
#[cfg(debug_assertions)]
use bevy_utils::warn_once;
use bytemuck::{Pod, Zeroable};
use nonmax::NonMaxU32;
use static_assertions::const_assert_eq;
use crate::render::{
morph::{
extract_morphs, no_automatic_morph_batching, prepare_morphs, MorphIndices, MorphUniform,
},
skin::no_automatic_skin_batching,
};
use crate::*;
use self::irradiance_volume::IRRADIANCE_VOLUMES_ARE_USABLE;
use super::skin::SkinIndices;
/// Provides support for rendering 3D meshes.
#[derive(Default)]
pub struct MeshRenderPlugin {
/// Whether we're building [`MeshUniform`]s on GPU.
///
/// This requires compute shader support and so will be forcibly disabled if
/// the platform doesn't support those.
pub use_gpu_instance_buffer_builder: bool,
}
pub const FORWARD_IO_HANDLE: Handle<Shader> = Handle::weak_from_u128(2645551199423808407);
pub const MESH_VIEW_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(8140454348013264787);
pub const MESH_VIEW_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(9076678235888822571);
pub const MESH_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(2506024101911992377);
pub const MESH_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(16831548636314682308);
pub const MESH_FUNCTIONS_HANDLE: Handle<Shader> = Handle::weak_from_u128(6300874327833745635);
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
pub const SKINNING_HANDLE: Handle<Shader> = Handle::weak_from_u128(13215291596265391738);
pub const MORPH_HANDLE: Handle<Shader> = Handle::weak_from_u128(970982813587607345);
/// How many textures are allowed in the view bind group layout (`@group(0)`) before
/// broader compatibility with WebGL and WebGPU is at risk, due to the minimum guaranteed
/// values for `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) and `maxSampledTexturesPerShaderStage` (in WebGPU),
/// currently both at 16.
///
/// We use 10 here because it still leaves us, in a worst case scenario, with 6 textures for the other bind groups.
///
/// See: <https://gpuweb.github.io/gpuweb/#limits>
#[cfg(debug_assertions)]
pub const MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES: usize = 10;
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(app, FORWARD_IO_HANDLE, "forward_io.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
MESH_VIEW_TYPES_HANDLE,
"mesh_view_types.wgsl",
Shader::from_wgsl_with_defs,
vec![
ShaderDefVal::UInt(
"MAX_DIRECTIONAL_LIGHTS".into(),
MAX_DIRECTIONAL_LIGHTS as u32
),
ShaderDefVal::UInt(
"MAX_CASCADES_PER_LIGHT".into(),
MAX_CASCADES_PER_LIGHT as u32,
)
]
);
load_internal_asset!(
app,
MESH_VIEW_BINDINGS_HANDLE,
"mesh_view_bindings.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
MESH_FUNCTIONS_HANDLE,
"mesh_functions.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl);
load_internal_asset!(app, MORPH_HANDLE, "morph.wgsl", Shader::from_wgsl);
app.add_systems(
PostUpdate,
(no_automatic_skin_batching, no_automatic_morph_batching),
)
.add_plugins((
BinnedRenderPhasePlugin::<Opaque3d, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<AlphaMask3d, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<Shadow, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<Opaque3dDeferred, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<AlphaMask3dDeferred, MeshPipeline>::default(),
SortedRenderPhasePlugin::<Transmissive3d, MeshPipeline>::default(),
SortedRenderPhasePlugin::<Transparent3d, MeshPipeline>::default(),
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<MeshBindGroups>()
.init_resource::<SkinUniform>()
.init_resource::<SkinIndices>()
.init_resource::<MorphUniform>()
.init_resource::<MorphIndices>()
.add_systems(
ExtractSchedule,
(
extract_skins,
extract_morphs,
gpu_preprocessing::clear_batched_gpu_instance_buffers::<MeshPipeline>
.before(ExtractMeshesSet),
),
)
.add_systems(
Render,
(
prepare_skins.in_set(RenderSet::PrepareResources),
prepare_morphs.in_set(RenderSet::PrepareResources),
prepare_mesh_bind_group.in_set(RenderSet::PrepareBindGroups),
prepare_mesh_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
no_gpu_preprocessing::clear_batched_cpu_instance_buffers::<MeshPipeline>
.in_set(RenderSet::Cleanup)
.after(RenderSet::Render),
),
);
}
}
fn finish(&self, app: &mut App) {
let mut mesh_bindings_shader_defs = Vec::with_capacity(1);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
let render_device = render_app.world().resource::<RenderDevice>();
let use_gpu_instance_buffer_builder = self.use_gpu_instance_buffer_builder
&& gpu_preprocessing::can_preprocess_on_gpu(render_device);
let render_mesh_instances = RenderMeshInstances::new(use_gpu_instance_buffer_builder);
render_app.insert_resource(render_mesh_instances);
if use_gpu_instance_buffer_builder {
render_app
.init_resource::<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>(
)
.add_systems(
ExtractSchedule,
extract_meshes_for_gpu_building.in_set(ExtractMeshesSet),
)
.add_systems(
Render,
(
gpu_preprocessing::write_batched_instance_buffers::<MeshPipeline>
.in_set(RenderSet::PrepareResourcesFlush),
gpu_preprocessing::delete_old_work_item_buffers::<MeshPipeline>
.in_set(RenderSet::ManageViews)
.after(prepare_view_targets),
),
);
} else {
let render_device = render_app.world().resource::<RenderDevice>();
let cpu_batched_instance_buffer =
no_gpu_preprocessing::BatchedInstanceBuffer::<MeshUniform>::new(render_device);
render_app
.insert_resource(cpu_batched_instance_buffer)
.add_systems(
ExtractSchedule,
extract_meshes_for_cpu_building.in_set(ExtractMeshesSet),
)
.add_systems(
Render,
no_gpu_preprocessing::write_batched_instance_buffer::<MeshPipeline>
.in_set(RenderSet::PrepareResourcesFlush),
);
};
let render_device = render_app.world().resource::<RenderDevice>();
if let Some(per_object_buffer_batch_size) =
GpuArrayBuffer::<MeshUniform>::batch_size(render_device)
{
mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
render_app.init_resource::<MeshPipeline>();
}
// Load the mesh_bindings shader module here as it depends on runtime information about
// whether storage buffers are supported, or the maximum uniform buffer binding size.
load_internal_asset!(
app,
MESH_BINDINGS_HANDLE,
"mesh_bindings.wgsl",
Shader::from_wgsl_with_defs,
mesh_bindings_shader_defs
);
}
}
#[derive(Component)]
pub struct MeshTransforms {
pub transform: Affine3,
pub previous_transform: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone)]
pub struct MeshUniform {
// Affine 4x3 matrices transposed to 3x4
pub transform: [Vec4; 3],
pub previous_transform: [Vec4; 3],
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
pub inverse_transpose_model_a: [Vec4; 2],
pub inverse_transpose_model_b: f32,
pub flags: u32,
// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
//
// <--- MSB LSB --->
// +---- min v ----+ +---- min u ----+
// lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
// +---- max v ----+ +---- max u ----+
// lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
//
// (MSB: most significant bit; LSB: least significant bit.)
pub lightmap_uv_rect: UVec2,
}
/// Information that has to be transferred from CPU to GPU in order to produce
/// the full [`MeshUniform`].
///
/// This is essentially a subset of the fields in [`MeshUniform`] above.
#[derive(ShaderType, Pod, Zeroable, Clone, Copy)]
#[repr(C)]
pub struct MeshInputUniform {
/// Affine 4x3 matrix transposed to 3x4.
pub transform: [Vec4; 3],
/// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
///
/// ```text
/// <--- MSB LSB --->
/// +---- min v ----+ +---- min u ----+
/// lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
/// +---- max v ----+ +---- max u ----+
/// lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
///
/// (MSB: most significant bit; LSB: least significant bit.)
/// ```
pub lightmap_uv_rect: UVec2,
/// Various [`MeshFlags`].
pub flags: u32,
/// The index of this mesh's [`MeshInputUniform`] in the previous frame's
/// buffer, if applicable.
///
/// This is used for TAA. If not present, this will be `u32::MAX`.
pub previous_input_index: u32,
}
impl MeshUniform {
pub fn new(mesh_transforms: &MeshTransforms, maybe_lightmap_uv_rect: Option<Rect>) -> Self {
let (inverse_transpose_model_a, inverse_transpose_model_b) =
mesh_transforms.transform.inverse_transpose_3x3();
Self {
transform: mesh_transforms.transform.to_transpose(),
previous_transform: mesh_transforms.previous_transform.to_transpose(),
lightmap_uv_rect: lightmap::pack_lightmap_uv_rect(maybe_lightmap_uv_rect),
inverse_transpose_model_a,
inverse_transpose_model_b,
flags: mesh_transforms.flags,
}
}
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_types.wgsl!
bitflags::bitflags! {
#[repr(transparent)]
pub struct MeshFlags: u32 {
const SHADOW_RECEIVER = 1 << 0;
const TRANSMITTED_SHADOW_RECEIVER = 1 << 1;
// Indicates the sign of the determinant of the 3x3 model matrix. If the sign is positive,
// then the flag should be set, else it should not be set.
const SIGN_DETERMINANT_MODEL_3X3 = 1 << 31;
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
impl MeshFlags {
fn from_components(
transform: &GlobalTransform,
not_shadow_receiver: bool,
transmitted_receiver: bool,
) -> MeshFlags {
let mut mesh_flags = if not_shadow_receiver {
MeshFlags::empty()
} else {
MeshFlags::SHADOW_RECEIVER
};
if transmitted_receiver {
mesh_flags |= MeshFlags::TRANSMITTED_SHADOW_RECEIVER;
}
if transform.affine().matrix3.determinant().is_sign_positive() {
mesh_flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
}
mesh_flags
}
}
bitflags::bitflags! {
/// Various useful flags for [`RenderMeshInstance`]s.
#[derive(Clone, Copy)]
pub struct RenderMeshInstanceFlags: u8 {
/// The mesh casts shadows.
const SHADOW_CASTER = 1 << 0;
/// The mesh can participate in automatic batching.
const AUTOMATIC_BATCHING = 1 << 1;
/// The mesh had a transform last frame and so is eligible for TAA.
const HAVE_PREVIOUS_TRANSFORM = 1 << 2;
}
}
/// CPU data that the render world keeps for each entity, when *not* using GPU
/// mesh uniform building.
#[derive(Deref)]
pub struct RenderMeshInstanceCpu {
/// Data shared between both the CPU mesh uniform building and the GPU mesh
/// uniform building paths.
#[deref]
pub shared: RenderMeshInstanceShared,
/// The transform of the mesh.
///
/// This will be written into the [`MeshUniform`] at the appropriate time.
pub transforms: MeshTransforms,
}
/// CPU data that the render world needs to keep for each entity that contains a
/// mesh when using GPU mesh uniform building.
#[derive(Deref)]
pub struct RenderMeshInstanceGpu {
/// Data shared between both the CPU mesh uniform building and the GPU mesh
/// uniform building paths.
#[deref]
pub shared: RenderMeshInstanceShared,
/// The translation of the mesh.
///
/// This is the only part of the transform that we have to keep on CPU (for
/// distance sorting).
pub translation: Vec3,
/// The index of the [`MeshInputUniform`] in the buffer.
pub current_uniform_index: NonMaxU32,
}
/// CPU data that the render world needs to keep about each entity that contains
/// a mesh.
pub struct RenderMeshInstanceShared {
/// The [`AssetId`] of the mesh.
pub mesh_asset_id: AssetId<Mesh>,
/// A slot for the material bind group ID.
///
/// This is filled in during [`crate::material::queue_material_meshes`].
pub material_bind_group_id: AtomicMaterialBindGroupId,
/// Various flags.
pub flags: RenderMeshInstanceFlags,
}
/// Information that is gathered during the parallel portion of mesh extraction
/// when GPU mesh uniform building is enabled.
///
/// From this, the [`MeshInputUniform`] and [`RenderMeshInstanceGpu`] are
/// prepared.
pub struct RenderMeshInstanceGpuBuilder {
/// Data that will be placed on the [`RenderMeshInstanceGpu`].
pub shared: RenderMeshInstanceShared,
/// The current transform.
pub transform: Affine3,
/// Four 16-bit unsigned normalized UV values packed into a [`UVec2`]:
///
/// ```text
/// <--- MSB LSB --->
/// +---- min v ----+ +---- min u ----+
/// lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
/// +---- max v ----+ +---- max u ----+
/// lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
///
/// (MSB: most significant bit; LSB: least significant bit.)
/// ```
pub lightmap_uv_rect: UVec2,
/// Various flags.
pub mesh_flags: MeshFlags,
}
impl RenderMeshInstanceShared {
fn from_components(
previous_transform: Option<&PreviousGlobalTransform>,
handle: &Handle<Mesh>,
not_shadow_caster: bool,
no_automatic_batching: bool,
) -> Self {
let mut mesh_instance_flags = RenderMeshInstanceFlags::empty();
mesh_instance_flags.set(RenderMeshInstanceFlags::SHADOW_CASTER, !not_shadow_caster);
mesh_instance_flags.set(
RenderMeshInstanceFlags::AUTOMATIC_BATCHING,
!no_automatic_batching,
);
mesh_instance_flags.set(
RenderMeshInstanceFlags::HAVE_PREVIOUS_TRANSFORM,
previous_transform.is_some(),
);
RenderMeshInstanceShared {
mesh_asset_id: handle.id(),
flags: mesh_instance_flags,
material_bind_group_id: AtomicMaterialBindGroupId::default(),
}
}
/// Returns true if this entity is eligible to participate in automatic
/// batching.
pub fn should_batch(&self) -> bool {
self.flags
.contains(RenderMeshInstanceFlags::AUTOMATIC_BATCHING)
&& self.material_bind_group_id.get().is_some()
}
}
/// Information that the render world keeps about each entity that contains a
/// mesh.
///
/// The set of information needed is different depending on whether CPU or GPU
/// [`MeshUniform`] building is in use.
#[derive(Resource)]
pub enum RenderMeshInstances {
/// Information needed when using CPU mesh instance data building.
CpuBuilding(RenderMeshInstancesCpu),
/// Information needed when using GPU mesh instance data building.
GpuBuilding(RenderMeshInstancesGpu),
}
/// Information that the render world keeps about each entity that contains a
/// mesh, when using CPU mesh instance data building.
#[derive(Default, Deref, DerefMut)]
pub struct RenderMeshInstancesCpu(EntityHashMap<RenderMeshInstanceCpu>);
/// Information that the render world keeps about each entity that contains a
/// mesh, when using GPU mesh instance data building.
#[derive(Default, Deref, DerefMut)]
pub struct RenderMeshInstancesGpu(EntityHashMap<RenderMeshInstanceGpu>);
impl RenderMeshInstances {
/// Creates a new [`RenderMeshInstances`] instance.
fn new(use_gpu_instance_buffer_builder: bool) -> RenderMeshInstances {
if use_gpu_instance_buffer_builder {
RenderMeshInstances::GpuBuilding(RenderMeshInstancesGpu::default())
} else {
RenderMeshInstances::CpuBuilding(RenderMeshInstancesCpu::default())
}
}
/// Returns the ID of the mesh asset attached to the given entity, if any.
pub(crate) fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
match *self {
RenderMeshInstances::CpuBuilding(ref instances) => instances.mesh_asset_id(entity),
RenderMeshInstances::GpuBuilding(ref instances) => instances.mesh_asset_id(entity),
}
}
/// Constructs [`RenderMeshQueueData`] for the given entity, if it has a
/// mesh attached.
pub fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
match *self {
RenderMeshInstances::CpuBuilding(ref instances) => {
instances.render_mesh_queue_data(entity)
}
RenderMeshInstances::GpuBuilding(ref instances) => {
instances.render_mesh_queue_data(entity)
}
}
}
}
pub(crate) trait RenderMeshInstancesTable {
/// Returns the ID of the mesh asset attached to the given entity, if any.
fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>>;
/// Constructs [`RenderMeshQueueData`] for the given entity, if it has a
/// mesh attached.
fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData>;
}
impl RenderMeshInstancesTable for RenderMeshInstancesCpu {
fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
self.get(&entity).map(|instance| instance.mesh_asset_id)
}
fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
self.get(&entity).map(|instance| RenderMeshQueueData {
shared: &instance.shared,
translation: instance.transforms.transform.translation,
})
}
}
impl RenderMeshInstancesTable for RenderMeshInstancesGpu {
/// Returns the ID of the mesh asset attached to the given entity, if any.
fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
self.get(&entity).map(|instance| instance.mesh_asset_id)
}
/// Constructs [`RenderMeshQueueData`] for the given entity, if it has a
/// mesh attached.
fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
self.get(&entity).map(|instance| RenderMeshQueueData {
shared: &instance.shared,
translation: instance.translation,
})
}
}
/// Data that [`crate::material::queue_material_meshes`] and similar systems
/// need in order to place entities that contain meshes in the right batch.
#[derive(Deref)]
pub struct RenderMeshQueueData<'a> {
/// General information about the mesh instance.
#[deref]
pub shared: &'a RenderMeshInstanceShared,
/// The translation of the mesh instance.
pub translation: Vec3,
}
/// A [`SystemSet`] that encompasses both [`extract_meshes_for_cpu_building`]
/// and [`extract_meshes_for_gpu_building`].
#[derive(SystemSet, Clone, PartialEq, Eq, Debug, Hash)]
pub struct ExtractMeshesSet;
/// Extracts meshes from the main world into the render world, populating the
/// [`RenderMeshInstances`].
///
/// This is the variant of the system that runs when we're *not* using GPU
/// [`MeshUniform`] building.
pub fn extract_meshes_for_cpu_building(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
mut render_mesh_instance_queues: Local<Parallel<Vec<(Entity, RenderMeshInstanceCpu)>>>,
meshes_query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
Option<&PreviousGlobalTransform>,
&Handle<Mesh>,
Has<NotShadowReceiver>,
Has<TransmittedShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
)>,
>,
) {
meshes_query.par_iter().for_each(
|(
entity,
view_visibility,
transform,
previous_transform,
handle,
not_shadow_receiver,
transmitted_receiver,
not_shadow_caster,
no_automatic_batching,
)| {
if !view_visibility.get() {
return;
}
let mesh_flags =
MeshFlags::from_components(transform, not_shadow_receiver, transmitted_receiver);
let shared = RenderMeshInstanceShared::from_components(
previous_transform,
handle,
not_shadow_caster,
no_automatic_batching,
);
render_mesh_instance_queues.scope(|queue| {
let transform = transform.affine();
queue.push((
entity,
RenderMeshInstanceCpu {
transforms: MeshTransforms {
transform: (&transform).into(),
previous_transform: (&previous_transform
.map(|t| t.0)
.unwrap_or(transform))
.into(),
flags: mesh_flags.bits(),
},
shared,
},
));
});
},
);
// Collect the render mesh instances.
let RenderMeshInstances::CpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
else {
panic!(
"`extract_meshes_for_cpu_building` should only be called if we're using CPU \
`MeshUniform` building"
);
};
render_mesh_instances.clear();
for queue in render_mesh_instance_queues.iter_mut() {
render_mesh_instances.extend(queue.drain(..));
}
}
/// Extracts meshes from the main world into the render world and queues
/// [`MeshInputUniform`]s to be uploaded to the GPU.
///
/// This is the variant of the system that runs when we're using GPU
/// [`MeshUniform`] building.
pub fn extract_meshes_for_gpu_building(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
mut batched_instance_buffers: ResMut<
gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>,
>,
mut render_mesh_instance_queues: Local<Parallel<Vec<(Entity, RenderMeshInstanceGpuBuilder)>>>,
mut prev_render_mesh_instances: Local<RenderMeshInstancesGpu>,
meshes_query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
Option<&PreviousGlobalTransform>,
Option<&Lightmap>,
&Handle<Mesh>,
Has<NotShadowReceiver>,
Has<TransmittedShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
)>,
>,
) {
meshes_query.par_iter().for_each(
|(
entity,
view_visibility,
transform,
previous_transform,
lightmap,
handle,
not_shadow_receiver,
transmitted_receiver,
not_shadow_caster,
no_automatic_batching,
)| {
if !view_visibility.get() {
return;
}
let mesh_flags =
MeshFlags::from_components(transform, not_shadow_receiver, transmitted_receiver);
let shared = RenderMeshInstanceShared::from_components(
previous_transform,
handle,
not_shadow_caster,
no_automatic_batching,
);
let lightmap_uv_rect =
lightmap::pack_lightmap_uv_rect(lightmap.map(|lightmap| lightmap.uv_rect));
render_mesh_instance_queues.scope(|queue| {
queue.push((
entity,
RenderMeshInstanceGpuBuilder {
shared,
transform: (&transform.affine()).into(),
lightmap_uv_rect,
mesh_flags,
},
));
});
},
);
collect_meshes_for_gpu_building(
&mut render_mesh_instances,
&mut batched_instance_buffers,
&mut render_mesh_instance_queues,
&mut prev_render_mesh_instances,
);
}
/// Creates the [`RenderMeshInstanceGpu`]s and [`MeshInputUniform`]s when GPU
/// mesh uniforms are built.
fn collect_meshes_for_gpu_building(
render_mesh_instances: &mut RenderMeshInstances,
batched_instance_buffers: &mut gpu_preprocessing::BatchedInstanceBuffers<
MeshUniform,
MeshInputUniform,
>,
render_mesh_instance_queues: &mut Parallel<Vec<(Entity, RenderMeshInstanceGpuBuilder)>>,
prev_render_mesh_instances: &mut RenderMeshInstancesGpu,
) {
// Collect render mesh instances. Build up the uniform buffer.
let RenderMeshInstances::GpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
else {
panic!(
"`collect_render_mesh_instances_for_gpu_building` should only be called if we're \
using GPU `MeshUniform` building"
);
};
let gpu_preprocessing::BatchedInstanceBuffers {
ref mut current_input_buffer,
ref mut previous_input_buffer,
..
} = batched_instance_buffers;
// Swap buffers.
mem::swap(current_input_buffer, previous_input_buffer);
mem::swap(render_mesh_instances, prev_render_mesh_instances);
// Build the [`RenderMeshInstance`]s and [`MeshInputUniform`]s.
render_mesh_instances.clear();
for queue in render_mesh_instance_queues.iter_mut() {
for (entity, builder) in queue.drain(..) {
let previous_input_index = if builder
.shared
.flags
.contains(RenderMeshInstanceFlags::HAVE_PREVIOUS_TRANSFORM)
{
prev_render_mesh_instances
.get(&entity)
.map(|render_mesh_instance| render_mesh_instance.current_uniform_index)
} else {
None
};
// Push the mesh input uniform.
let current_uniform_index = current_input_buffer.push(MeshInputUniform {
transform: builder.transform.to_transpose(),
lightmap_uv_rect: builder.lightmap_uv_rect,
flags: builder.mesh_flags.bits(),
previous_input_index: match previous_input_index {
Some(previous_input_index) => previous_input_index.into(),
None => u32::MAX,
},
}) as u32;
// Record the [`RenderMeshInstance`].
render_mesh_instances.insert(
entity,
RenderMeshInstanceGpu {
translation: builder.transform.translation,
shared: builder.shared,
current_uniform_index: NonMaxU32::try_from(current_uniform_index)
.unwrap_or_default(),
},
);
}
}
}
#[derive(Resource, Clone)]
pub struct MeshPipeline {
view_layouts: [MeshPipelineViewLayout; MeshPipelineViewLayoutKey::COUNT],
// This dummy white texture is to be used in place of optional StandardMaterial textures
pub dummy_white_gpu_image: GpuImage,
pub clustered_forward_buffer_binding_type: BufferBindingType,
pub mesh_layouts: MeshLayouts,
/// `MeshUniform`s are stored in arrays in buffers. If storage buffers are available, they
/// are used and this will be `None`, otherwise uniform buffers will be used with batches
/// of this many `MeshUniform`s, stored at dynamic offsets within the uniform buffer.
/// Use code like this in custom shaders:
/// ```wgsl
/// ##ifdef PER_OBJECT_BUFFER_BATCH_SIZE
/// @group(1) @binding(0) var<uniform> mesh: array<Mesh, #{PER_OBJECT_BUFFER_BATCH_SIZE}u>;
/// ##else
/// @group(1) @binding(0) var<storage> mesh: array<Mesh>;
/// ##endif // PER_OBJECT_BUFFER_BATCH_SIZE
/// ```
pub per_object_buffer_batch_size: Option<u32>,
/// Whether binding arrays (a.k.a. bindless textures) are usable on the
/// current render device.
///
/// This affects whether reflection probes can be used.
pub binding_arrays_are_usable: bool,
}
impl FromWorld for MeshPipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
let clustered_forward_buffer_binding_type = render_device
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
let view_layouts =
generate_view_layouts(&render_device, clustered_forward_buffer_binding_type);
// A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
texture.as_image_copy(),
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.size(),
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
MeshPipeline {
view_layouts,
clustered_forward_buffer_binding_type,
dummy_white_gpu_image,
mesh_layouts: MeshLayouts::new(&render_device),
per_object_buffer_batch_size: GpuArrayBuffer::<MeshUniform>::batch_size(&render_device),
binding_arrays_are_usable: binding_arrays_are_usable(&render_device),
}
}
}
impl MeshPipeline {
pub fn get_image_texture<'a>(
&'a self,
gpu_images: &'a RenderAssets<GpuImage>,
handle_option: &Option<Handle<Image>>,
) -> Option<(&'a TextureView, &'a Sampler)> {
if let Some(handle) = handle_option {
let gpu_image = gpu_images.get(handle)?;
Some((&gpu_image.texture_view, &gpu_image.sampler))
} else {
Some((
&self.dummy_white_gpu_image.texture_view,
&self.dummy_white_gpu_image.sampler,
))
}
}
pub fn get_view_layout(&self, layout_key: MeshPipelineViewLayoutKey) -> &BindGroupLayout {
let index = layout_key.bits() as usize;
let layout = &self.view_layouts[index];
#[cfg(debug_assertions)]
if layout.texture_count > MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES {
// Issue our own warning here because Naga's error message is a bit cryptic in this situation
warn_once!("Too many textures in mesh pipeline view layout, this might cause us to hit `wgpu::Limits::max_sampled_textures_per_shader_stage` in some environments.");
}
&layout.bind_group_layout
}
}
impl GetBatchData for MeshPipeline {
type Param = (SRes<RenderMeshInstances>, SRes<RenderLightmaps>);
// The material bind group ID, the mesh ID, and the lightmap ID,
// respectively.
type CompareData = (MaterialBindGroupId, AssetId<Mesh>, Option<AssetId<Image>>);
type BufferData = MeshUniform;
fn get_batch_data(
(mesh_instances, lightmaps): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_batch_data` should never be called in GPU mesh uniform \
building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
Some((
MeshUniform::new(
&mesh_instance.transforms,
maybe_lightmap.map(|lightmap| lightmap.uv_rect),
),
mesh_instance.should_batch().then_some((
mesh_instance.material_bind_group_id.get(),
mesh_instance.mesh_asset_id,
maybe_lightmap.map(|lightmap| lightmap.image),
)),
))
}
}
impl GetFullBatchData for MeshPipeline {
type BufferInputData = MeshInputUniform;
fn get_index_and_compare_data(
(mesh_instances, lightmaps): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<(NonMaxU32, Option<Self::CompareData>)> {
// This should only be called during GPU building.
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_index_and_compare_data` should never be called in CPU mesh uniform building \
mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
Some((
mesh_instance.current_uniform_index,
mesh_instance.should_batch().then_some((
mesh_instance.material_bind_group_id.get(),
mesh_instance.mesh_asset_id,
maybe_lightmap.map(|lightmap| lightmap.image),
)),
))
}
fn get_binned_batch_data(
(mesh_instances, lightmaps): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<Self::BufferData> {
let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_binned_batch_data` should never be called in GPU mesh uniform building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
Some(MeshUniform::new(
&mesh_instance.transforms,
maybe_lightmap.map(|lightmap| lightmap.uv_rect),
))
}
fn get_binned_index(
(mesh_instances, _): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<NonMaxU32> {
// This should only be called during GPU building.
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_binned_index` should never be called in CPU mesh uniform \
building mode"
);
return None;
};
mesh_instances
.get(&entity)
.map(|entity| entity.current_uniform_index)
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
/// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct MeshPipelineKey: u32 {
// Nothing
const NONE = 0;
// Inherited bits
const MORPH_TARGETS = BaseMeshPipelineKey::MORPH_TARGETS.bits();
// Flag bits
const HDR = 1 << 0;
const TONEMAP_IN_SHADER = 1 << 1;
const DEBAND_DITHER = 1 << 2;
const DEPTH_PREPASS = 1 << 3;
const NORMAL_PREPASS = 1 << 4;
const DEFERRED_PREPASS = 1 << 5;
const MOTION_VECTOR_PREPASS = 1 << 6;
const MAY_DISCARD = 1 << 7; // Guards shader codepaths that may discard, allowing early depth tests in most cases
// See: https://www.khronos.org/opengl/wiki/Early_Fragment_Test
const ENVIRONMENT_MAP = 1 << 8;
const SCREEN_SPACE_AMBIENT_OCCLUSION = 1 << 9;
const DEPTH_CLAMP_ORTHO = 1 << 10;
const TEMPORAL_JITTER = 1 << 11;
const READS_VIEW_TRANSMISSION_TEXTURE = 1 << 12;
const LIGHTMAPPED = 1 << 13;
const IRRADIANCE_VOLUME = 1 << 14;
const LAST_FLAG = Self::IRRADIANCE_VOLUME.bits();
// Bitfields
const BLEND_RESERVED_BITS = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS; // ← Bitmask reserving bits for the blend state
const BLEND_OPAQUE = 0 << Self::BLEND_SHIFT_BITS; // ← Values are just sequential within the mask, and can range from 0 to 3
const BLEND_PREMULTIPLIED_ALPHA = 1 << Self::BLEND_SHIFT_BITS; //
const BLEND_MULTIPLY = 2 << Self::BLEND_SHIFT_BITS; // ← We still have room for one more value without adding more bits
const BLEND_ALPHA = 3 << Self::BLEND_SHIFT_BITS;
const BLEND_ALPHA_TO_COVERAGE = 4 << Self::BLEND_SHIFT_BITS;
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_RESERVED_BITS = Self::SHADOW_FILTER_METHOD_MASK_BITS << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_HARDWARE_2X2 = 0 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_GAUSSIAN = 1 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_TEMPORAL = 2 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const VIEW_PROJECTION_RESERVED_BITS = Self::VIEW_PROJECTION_MASK_BITS << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_NONSTANDARD = 0 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_PERSPECTIVE = 1 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_ORTHOGRAPHIC = 2 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_RESERVED = 3 << Self::VIEW_PROJECTION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS = Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW = 0 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM = 1 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH = 2 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA = 3 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const ALL_RESERVED_BITS =
Self::BLEND_RESERVED_BITS.bits() |
Self::MSAA_RESERVED_BITS.bits() |
Self::TONEMAP_METHOD_RESERVED_BITS.bits() |
Self::SHADOW_FILTER_METHOD_RESERVED_BITS.bits() |
Self::VIEW_PROJECTION_RESERVED_BITS.bits() |
Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS.bits();
}
}
impl MeshPipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = Self::LAST_FLAG.bits().trailing_zeros() + 1;
const BLEND_MASK_BITS: u32 = 0b111;
const BLEND_SHIFT_BITS: u32 = Self::MSAA_MASK_BITS.count_ones() + Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::BLEND_MASK_BITS.count_ones() + Self::BLEND_SHIFT_BITS;
const SHADOW_FILTER_METHOD_MASK_BITS: u32 = 0b11;
const SHADOW_FILTER_METHOD_SHIFT_BITS: u32 =
Self::TONEMAP_METHOD_MASK_BITS.count_ones() + Self::TONEMAP_METHOD_SHIFT_BITS;
const VIEW_PROJECTION_MASK_BITS: u32 = 0b11;
const VIEW_PROJECTION_SHIFT_BITS: u32 =
Self::SHADOW_FILTER_METHOD_MASK_BITS.count_ones() + Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS: u32 = 0b11;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS: u32 =
Self::VIEW_PROJECTION_MASK_BITS.count_ones() + Self::VIEW_PROJECTION_SHIFT_BITS;
pub fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
pub fn from_hdr(hdr: bool) -> Self {
if hdr {
MeshPipelineKey::HDR
} else {
MeshPipelineKey::NONE
}
}
pub fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
let primitive_topology_bits = ((primitive_topology as u32)
& BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS)
<< BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
Self::from_bits_retain(primitive_topology_bits)
}
pub fn primitive_topology(&self) -> PrimitiveTopology {
let primitive_topology_bits = (self.bits()
>> BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS;
match primitive_topology_bits {
x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList,
x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList,
x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip,
x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList,
x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip,
_ => PrimitiveTopology::default(),
}
}
}
// Ensure that we didn't overflow the number of bits available in `MeshPipelineKey`.
const_assert_eq!(
(((MeshPipelineKey::LAST_FLAG.bits() << 1) - 1) | MeshPipelineKey::ALL_RESERVED_BITS.bits())
& BaseMeshPipelineKey::all().bits(),
0
);
fn is_skinned(layout: &MeshVertexBufferLayoutRef) -> bool {
layout.0.contains(Mesh::ATTRIBUTE_JOINT_INDEX)
&& layout.0.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
}
pub fn setup_morph_and_skinning_defs(
mesh_layouts: &MeshLayouts,
layout: &MeshVertexBufferLayoutRef,
offset: u32,
key: &MeshPipelineKey,
shader_defs: &mut Vec<ShaderDefVal>,
vertex_attributes: &mut Vec<VertexAttributeDescriptor>,
) -> BindGroupLayout {
let mut add_skin_data = || {
shader_defs.push("SKINNED".into());
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(offset));
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(offset + 1));
};
let is_morphed = key.intersects(MeshPipelineKey::MORPH_TARGETS);
let is_lightmapped = key.intersects(MeshPipelineKey::LIGHTMAPPED);
match (is_skinned(layout), is_morphed, is_lightmapped) {
(true, false, _) => {
add_skin_data();
mesh_layouts.skinned.clone()
}
(true, true, _) => {
add_skin_data();
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_skinned.clone()
}
(false, true, _) => {
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed.clone()
}
(false, false, true) => mesh_layouts.lightmapped.clone(),
(false, false, false) => mesh_layouts.model_only.clone(),
}
}
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut shader_defs = Vec::new();
let mut vertex_attributes = Vec::new();
// Let the shader code know that it's running in a mesh pipeline.
shader_defs.push("MESH_PIPELINE".into());
shader_defs.push("VERTEX_OUTPUT_INSTANCE_INDEX".into());
if layout.0.contains(Mesh::ATTRIBUTE_POSITION) {
shader_defs.push("VERTEX_POSITIONS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
}
if layout.0.contains(Mesh::ATTRIBUTE_NORMAL) {
shader_defs.push("VERTEX_NORMALS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_0) {
shader_defs.push("VERTEX_UVS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_1) {
shader_defs.push("VERTEX_UVS_B".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_1.at_shader_location(3));
}
if layout.0.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push("VERTEX_TANGENTS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(4));
}
if layout.0.contains(Mesh::ATTRIBUTE_COLOR) {
shader_defs.push("VERTEX_COLORS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(5));
}
if cfg!(feature = "pbr_transmission_textures") {
shader_defs.push("PBR_TRANSMISSION_TEXTURES_SUPPORTED".into());
}
let mut bind_group_layout = vec![self.get_view_layout(key.into()).clone()];
if key.msaa_samples() > 1 {
shader_defs.push("MULTISAMPLED".into());
};
bind_group_layout.push(setup_morph_and_skinning_defs(
&self.mesh_layouts,
layout,
6,
&key,
&mut shader_defs,
&mut vertex_attributes,
));
if key.contains(MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION) {
shader_defs.push("SCREEN_SPACE_AMBIENT_OCCLUSION".into());
}
let vertex_buffer_layout = layout.0.get_layout(&vertex_attributes)?;
let (label, blend, depth_write_enabled);
let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
let (mut is_opaque, mut alpha_to_coverage_enabled) = (false, false);
if pass == MeshPipelineKey::BLEND_ALPHA {
label = "alpha_blend_mesh_pipeline".into();
blend = Some(BlendState::ALPHA_BLENDING);
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
label = "premultiplied_alpha_mesh_pipeline".into();
blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_MULTIPLY {
label = "multiply_mesh_pipeline".into();
blend = Some(BlendState {
color: BlendComponent {
src_factor: BlendFactor::Dst,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha: BlendComponent::OVER,
});
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_MULTIPLY".into());
// For the multiply pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE {
label = "alpha_to_coverage_mesh_pipeline".into();
// BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
blend = None;
// For the opaque and alpha mask passes, fragments that are closer will replace
// the current fragment value in the output and the depth is written to the
// depth buffer
depth_write_enabled = true;
is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
alpha_to_coverage_enabled = true;
shader_defs.push("ALPHA_TO_COVERAGE".into());
} else {
label = "opaque_mesh_pipeline".into();
// BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
blend = None;
// For the opaque and alpha mask passes, fragments that are closer will replace
// the current fragment value in the output and the depth is written to the
// depth buffer
depth_write_enabled = true;
is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) {
shader_defs.push("NORMAL_PREPASS".into());
}
if key.contains(MeshPipelineKey::DEPTH_PREPASS) {
shader_defs.push("DEPTH_PREPASS".into());
}
if key.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
shader_defs.push("MOTION_VECTOR_PREPASS".into());
}
if key.contains(MeshPipelineKey::DEFERRED_PREPASS) {
shader_defs.push("DEFERRED_PREPASS".into());
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) && key.msaa_samples() == 1 && is_opaque {
shader_defs.push("LOAD_PREPASS_NORMALS".into());
}
let view_projection = key.intersection(MeshPipelineKey::VIEW_PROJECTION_RESERVED_BITS);
if view_projection == MeshPipelineKey::VIEW_PROJECTION_NONSTANDARD {
shader_defs.push("VIEW_PROJECTION_NONSTANDARD".into());
} else if view_projection == MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE {
shader_defs.push("VIEW_PROJECTION_PERSPECTIVE".into());
} else if view_projection == MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC {
shader_defs.push("VIEW_PROJECTION_ORTHOGRAPHIC".into());
}
#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
shader_defs.push("WEBGL2".into());
if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED ".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(MeshPipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
if key.contains(MeshPipelineKey::MAY_DISCARD) {
shader_defs.push("MAY_DISCARD".into());
}
if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
shader_defs.push("ENVIRONMENT_MAP".into());
}
if key.contains(MeshPipelineKey::IRRADIANCE_VOLUME) && IRRADIANCE_VOLUMES_ARE_USABLE {
shader_defs.push("IRRADIANCE_VOLUME".into());
}
if key.contains(MeshPipelineKey::LIGHTMAPPED) {
shader_defs.push("LIGHTMAP".into());
}
if key.contains(MeshPipelineKey::TEMPORAL_JITTER) {
shader_defs.push("TEMPORAL_JITTER".into());
}
let shadow_filter_method =
key.intersection(MeshPipelineKey::SHADOW_FILTER_METHOD_RESERVED_BITS);
if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2 {
shader_defs.push("SHADOW_FILTER_METHOD_HARDWARE_2X2".into());
} else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN {
shader_defs.push("SHADOW_FILTER_METHOD_GAUSSIAN".into());
} else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL {
shader_defs.push("SHADOW_FILTER_METHOD_TEMPORAL".into());
}
let blur_quality =
key.intersection(MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS);
shader_defs.push(ShaderDefVal::Int(
"SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS".into(),
match blur_quality {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW => 4,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM => 8,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH => 16,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA => 32,
_ => unreachable!(), // Not possible, since the mask is 2 bits, and we've covered all 4 cases
},
));
if self.binding_arrays_are_usable {
shader_defs.push("MULTIPLE_LIGHT_PROBES_IN_ARRAY".into());
}
if IRRADIANCE_VOLUMES_ARE_USABLE {
shader_defs.push("IRRADIANCE_VOLUMES_ARE_USABLE".into());
}
let format = if key.contains(MeshPipelineKey::HDR) {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
};
// This is defined here so that custom shaders that use something other than
// the mesh binding from bevy_pbr::mesh_bindings can easily make use of this
// in their own shaders.
if let Some(per_object_buffer_batch_size) = self.per_object_buffer_batch_size {
shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
let mut push_constant_ranges = Vec::with_capacity(1);
if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
push_constant_ranges.push(PushConstantRange {
stages: ShaderStages::VERTEX,
range: 0..4,
});
}
Ok(RenderPipelineDescriptor {
vertex: VertexState {
shader: MESH_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: MESH_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend,
write_mask: ColorWrites::ALL,
})],
}),
layout: bind_group_layout,
push_constant_ranges,
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: Some(Face::Back),
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: key.primitive_topology(),
strip_index_format: None,
},
depth_stencil: Some(DepthStencilState {
format: CORE_3D_DEPTH_FORMAT,
depth_write_enabled,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled,
},
label: Some(label),
})
}
}
/// Bind groups for meshes currently loaded.
#[derive(Resource, Default)]
pub struct MeshBindGroups {
model_only: Option<BindGroup>,
skinned: Option<BindGroup>,
morph_targets: HashMap<AssetId<Mesh>, BindGroup>,
lightmaps: HashMap<AssetId<Image>, BindGroup>,
}
impl MeshBindGroups {
pub fn reset(&mut self) {
self.model_only = None;
self.skinned = None;
self.morph_targets.clear();
self.lightmaps.clear();
}
/// Get the `BindGroup` for `GpuMesh` with given `handle_id` and lightmap
/// key `lightmap`.
pub fn get(
&self,
asset_id: AssetId<Mesh>,
lightmap: Option<AssetId<Image>>,
is_skinned: bool,
morph: bool,
) -> Option<&BindGroup> {
match (is_skinned, morph, lightmap) {
(_, true, _) => self.morph_targets.get(&asset_id),
(true, false, _) => self.skinned.as_ref(),
(false, false, Some(lightmap)) => self.lightmaps.get(&lightmap),
(false, false, None) => self.model_only.as_ref(),
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_mesh_bind_group(
meshes: Res<RenderAssets<GpuMesh>>,
images: Res<RenderAssets<GpuImage>>,
mut groups: ResMut<MeshBindGroups>,
mesh_pipeline: Res<MeshPipeline>,
render_device: Res<RenderDevice>,
cpu_batched_instance_buffer: Option<
Res<no_gpu_preprocessing::BatchedInstanceBuffer<MeshUniform>>,
>,
gpu_batched_instance_buffers: Option<
Res<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>,
>,
skins_uniform: Res<SkinUniform>,
weights_uniform: Res<MorphUniform>,
render_lightmaps: Res<RenderLightmaps>,
) {
groups.reset();
let layouts = &mesh_pipeline.mesh_layouts;
let model = if let Some(cpu_batched_instance_buffer) = cpu_batched_instance_buffer {
cpu_batched_instance_buffer
.into_inner()
.instance_data_binding()
} else if let Some(gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
gpu_batched_instance_buffers
.into_inner()
.instance_data_binding()
} else {
return;
};
let Some(model) = model else { return };
groups.model_only = Some(layouts.model_only(&render_device, &model));
let skin = skins_uniform.buffer.buffer();
if let Some(skin) = skin {
groups.skinned = Some(layouts.skinned(&render_device, &model, skin));
}
if let Some(weights) = weights_uniform.buffer.buffer() {
for (id, gpu_mesh) in meshes.iter() {
if let Some(targets) = gpu_mesh.morph_targets.as_ref() {
let group = if let Some(skin) = skin.filter(|_| is_skinned(&gpu_mesh.layout)) {
layouts.morphed_skinned(&render_device, &model, skin, weights, targets)
} else {
layouts.morphed(&render_device, &model, weights, targets)
};
groups.morph_targets.insert(id, group);
}
}
}
// Create lightmap bindgroups.
for &image_id in &render_lightmaps.all_lightmap_images {
if let (Entry::Vacant(entry), Some(image)) =
(groups.lightmaps.entry(image_id), images.get(image_id))
{
entry.insert(layouts.lightmapped(&render_device, &model, image));
}
}
}
pub struct SetMeshViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
type Param = ();
type ViewQuery = (
Read<ViewUniformOffset>,
Read<ViewLightsUniformOffset>,
Read<ViewFogUniformOffset>,
Read<ViewLightProbesUniformOffset>,
Read<MeshViewBindGroup>,
);
type ItemQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(view_uniform, view_lights, view_fog, view_light_probes, mesh_view_bind_group): ROQueryItem<
'w,
Self::ViewQuery,
>,
_entity: Option<()>,
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(
I,
&mesh_view_bind_group.value,
&[
view_uniform.offset,
view_lights.offset,
view_fog.offset,
**view_light_probes,
],
);
RenderCommandResult::Success
}
}
pub struct SetMeshBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
type Param = (
SRes<MeshBindGroups>,
SRes<RenderMeshInstances>,
SRes<SkinIndices>,
SRes<MorphIndices>,
SRes<RenderLightmaps>,
);
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
(bind_groups, mesh_instances, skin_indices, morph_indices, lightmaps): SystemParamItem<
'w,
'_,
Self::Param,
>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let bind_groups = bind_groups.into_inner();
let mesh_instances = mesh_instances.into_inner();
let skin_indices = skin_indices.into_inner();
let morph_indices = morph_indices.into_inner();
let entity = &item.entity();
let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(*entity) else {
return RenderCommandResult::Success;
};
let skin_index = skin_indices.get(entity);
let morph_index = morph_indices.get(entity);
let is_skinned = skin_index.is_some();
let is_morphed = morph_index.is_some();
let lightmap = lightmaps
.render_lightmaps
.get(entity)
.map(|render_lightmap| render_lightmap.image);
let Some(bind_group) = bind_groups.get(mesh_asset_id, lightmap, is_skinned, is_morphed)
else {
error!(
"The MeshBindGroups resource wasn't set in the render phase. \
It should be set by the prepare_mesh_bind_group system.\n\
This is a bevy bug! Please open an issue."
);
return RenderCommandResult::Failure;
};
let mut dynamic_offsets: [u32; 3] = Default::default();
let mut offset_count = 0;
if let Some(dynamic_offset) = item.dynamic_offset() {
dynamic_offsets[offset_count] = dynamic_offset.get();
offset_count += 1;
}
if let Some(skin_index) = skin_index {
dynamic_offsets[offset_count] = skin_index.index;
offset_count += 1;
}
if let Some(morph_index) = morph_index {
dynamic_offsets[offset_count] = morph_index.index;
offset_count += 1;
}
pass.set_bind_group(I, bind_group, &dynamic_offsets[0..offset_count]);
RenderCommandResult::Success
}
}
pub struct DrawMesh;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
type Param = (
SRes<RenderAssets<GpuMesh>>,
SRes<RenderMeshInstances>,
SRes<PipelineCache>,
Option<SRes<PreprocessPipeline>>,
);
type ViewQuery = Has<PreprocessBindGroup>;
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
has_preprocess_bind_group: ROQueryItem<Self::ViewQuery>,
_item_query: Option<()>,
(meshes, mesh_instances, pipeline_cache, preprocess_pipeline): SystemParamItem<
'w,
'_,
Self::Param,
>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
// If we're using GPU preprocessing, then we're dependent on that
// compute shader having been run, which of course can only happen if
// it's compiled. Otherwise, our mesh instance data won't be present.
if let Some(preprocess_pipeline) = preprocess_pipeline {
if !has_preprocess_bind_group
|| !preprocess_pipeline
.pipeline_id
.is_some_and(|preprocess_pipeline_id| {
pipeline_cache
.get_compute_pipeline(preprocess_pipeline_id)
.is_some()
})
{
return RenderCommandResult::Failure;
}
}
let meshes = meshes.into_inner();
let mesh_instances = mesh_instances.into_inner();
let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(item.entity()) else {
return RenderCommandResult::Failure;
};
let Some(gpu_mesh) = meshes.get(mesh_asset_id) else {
return RenderCommandResult::Failure;
};
pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
let batch_range = item.batch_range();
#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
pass.set_push_constants(
ShaderStages::VERTEX,
0,
&(batch_range.start as i32).to_le_bytes(),
);
match &gpu_mesh.buffer_info {
GpuBufferInfo::Indexed {
buffer,
index_format,
count,
} => {
pass.set_index_buffer(buffer.slice(..), 0, *index_format);
pass.draw_indexed(0..*count, 0, batch_range.clone());
}
GpuBufferInfo::NonIndexed => {
pass.draw(0..gpu_mesh.vertex_count, batch_range.clone());
}
}
RenderCommandResult::Success
}
}
#[cfg(test)]
mod tests {
use super::MeshPipelineKey;
#[test]
fn mesh_key_msaa_samples() {
for i in [1, 2, 4, 8, 16, 32, 64, 128] {
assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
}
}
}