 c2c19e5ae4
			
		
	
	
		c2c19e5ae4
		
			
		
	
	
	
	
		
			
			**Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
		
			
				
	
	
		
			235 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! This example shows how to align the orientations of objects in 3D space along two axes using the `Transform::align` API.
 | |
| 
 | |
| use bevy::{
 | |
|     color::palettes::basic::{GRAY, RED, WHITE},
 | |
|     input::mouse::{AccumulatedMouseMotion, MouseButtonInput},
 | |
|     math::StableInterpolate,
 | |
|     prelude::*,
 | |
| };
 | |
| use rand::{Rng, SeedableRng};
 | |
| use rand_chacha::ChaCha8Rng;
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins(DefaultPlugins)
 | |
|         .add_systems(Startup, setup)
 | |
|         .add_systems(Update, (draw_ship_axes, draw_random_axes))
 | |
|         .add_systems(Update, (handle_keypress, handle_mouse, rotate_ship).chain())
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| /// This struct stores metadata for a single rotational move of the ship
 | |
| #[derive(Component, Default)]
 | |
| struct Ship {
 | |
|     /// The target transform of the ship move, the endpoint of interpolation
 | |
|     target_transform: Transform,
 | |
| 
 | |
|     /// Whether the ship is currently in motion; allows motion to be paused
 | |
|     in_motion: bool,
 | |
| }
 | |
| 
 | |
| #[derive(Component)]
 | |
| struct RandomAxes(Dir3, Dir3);
 | |
| 
 | |
| #[derive(Component)]
 | |
| struct Instructions;
 | |
| 
 | |
| #[derive(Resource)]
 | |
| struct MousePressed(bool);
 | |
| 
 | |
| #[derive(Resource)]
 | |
| struct SeededRng(ChaCha8Rng);
 | |
| 
 | |
| // Setup
 | |
| 
 | |
| fn setup(
 | |
|     mut commands: Commands,
 | |
|     mut meshes: ResMut<Assets<Mesh>>,
 | |
|     mut materials: ResMut<Assets<StandardMaterial>>,
 | |
|     asset_server: Res<AssetServer>,
 | |
| ) {
 | |
|     // We're seeding the PRNG here to make this example deterministic for testing purposes.
 | |
|     // This isn't strictly required in practical use unless you need your app to be deterministic.
 | |
|     let mut seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
 | |
| 
 | |
|     // A camera looking at the origin
 | |
|     commands.spawn((
 | |
|         Camera3d::default(),
 | |
|         Transform::from_xyz(3., 2.5, 4.).looking_at(Vec3::ZERO, Vec3::Y),
 | |
|     ));
 | |
| 
 | |
|     // A plane that we can sit on top of
 | |
|     commands.spawn((
 | |
|         Mesh3d(meshes.add(Plane3d::default().mesh().size(100.0, 100.0))),
 | |
|         MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
 | |
|         Transform::from_xyz(0., -2., 0.),
 | |
|     ));
 | |
| 
 | |
|     // A light source
 | |
|     commands.spawn((
 | |
|         PointLight {
 | |
|             shadows_enabled: true,
 | |
|             ..default()
 | |
|         },
 | |
|         Transform::from_xyz(4.0, 7.0, -4.0),
 | |
|     ));
 | |
| 
 | |
|     // Initialize random axes
 | |
|     let first = seeded_rng.gen();
 | |
|     let second = seeded_rng.gen();
 | |
|     commands.spawn(RandomAxes(first, second));
 | |
| 
 | |
|     // Finally, our ship that is going to rotate
 | |
|     commands.spawn((
 | |
|         SceneRoot(
 | |
|             asset_server
 | |
|                 .load(GltfAssetLabel::Scene(0).from_asset("models/ship/craft_speederD.gltf")),
 | |
|         ),
 | |
|         Ship {
 | |
|             target_transform: random_axes_target_alignment(&RandomAxes(first, second)),
 | |
|             ..default()
 | |
|         },
 | |
|     ));
 | |
| 
 | |
|     // Instructions for the example
 | |
|     commands.spawn((
 | |
|         Text::new(
 | |
|             "The bright red axis is the primary alignment axis, and it will always be\n\
 | |
|             made to coincide with the primary target direction (white) exactly.\n\
 | |
|             The fainter red axis is the secondary alignment axis, and it is made to\n\
 | |
|             line up with the secondary target direction (gray) as closely as possible.\n\
 | |
|             Press 'R' to generate random target directions.\n\
 | |
|             Press 'T' to align the ship to those directions.\n\
 | |
|             Click and drag the mouse to rotate the camera.\n\
 | |
|             Press 'H' to hide/show these instructions.",
 | |
|         ),
 | |
|         Style {
 | |
|             position_type: PositionType::Absolute,
 | |
|             top: Val::Px(12.0),
 | |
|             left: Val::Px(12.0),
 | |
|             ..default()
 | |
|         },
 | |
|         Instructions,
 | |
|     ));
 | |
| 
 | |
|     commands.insert_resource(MousePressed(false));
 | |
|     commands.insert_resource(SeededRng(seeded_rng));
 | |
| }
 | |
| 
 | |
| // Update systems
 | |
| 
 | |
| // Draw the main and secondary axes on the rotating ship
 | |
| fn draw_ship_axes(mut gizmos: Gizmos, query: Query<&Transform, With<Ship>>) {
 | |
|     let ship_transform = query.single();
 | |
| 
 | |
|     // Local Z-axis arrow, negative direction
 | |
|     let z_ends = arrow_ends(ship_transform, Vec3::NEG_Z, 1.5);
 | |
|     gizmos.arrow(z_ends.0, z_ends.1, RED);
 | |
| 
 | |
|     // local X-axis arrow
 | |
|     let x_ends = arrow_ends(ship_transform, Vec3::X, 1.5);
 | |
|     gizmos.arrow(x_ends.0, x_ends.1, Color::srgb(0.65, 0., 0.));
 | |
| }
 | |
| 
 | |
| // Draw the randomly generated axes
 | |
| fn draw_random_axes(mut gizmos: Gizmos, query: Query<&RandomAxes>) {
 | |
|     let RandomAxes(v1, v2) = query.single();
 | |
|     gizmos.arrow(Vec3::ZERO, 1.5 * *v1, WHITE);
 | |
|     gizmos.arrow(Vec3::ZERO, 1.5 * *v2, GRAY);
 | |
| }
 | |
| 
 | |
| // Actually update the ship's transform according to its initial source and target
 | |
| fn rotate_ship(mut ship: Query<(&mut Ship, &mut Transform)>, time: Res<Time>) {
 | |
|     let (mut ship, mut ship_transform) = ship.single_mut();
 | |
| 
 | |
|     if !ship.in_motion {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     let target_rotation = ship.target_transform.rotation;
 | |
| 
 | |
|     ship_transform
 | |
|         .rotation
 | |
|         .smooth_nudge(&target_rotation, 3.0, time.delta_seconds());
 | |
| 
 | |
|     if ship_transform.rotation.angle_between(target_rotation) <= f32::EPSILON {
 | |
|         ship.in_motion = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Handle user inputs from the keyboard for dynamically altering the scenario
 | |
| fn handle_keypress(
 | |
|     mut ship: Query<&mut Ship>,
 | |
|     mut random_axes: Query<&mut RandomAxes>,
 | |
|     mut instructions: Query<&mut Visibility, With<Instructions>>,
 | |
|     keyboard: Res<ButtonInput<KeyCode>>,
 | |
|     mut seeded_rng: ResMut<SeededRng>,
 | |
| ) {
 | |
|     let mut ship = ship.single_mut();
 | |
|     let mut random_axes = random_axes.single_mut();
 | |
| 
 | |
|     if keyboard.just_pressed(KeyCode::KeyR) {
 | |
|         // Randomize the target axes
 | |
|         let first = seeded_rng.0.gen();
 | |
|         let second = seeded_rng.0.gen();
 | |
|         *random_axes = RandomAxes(first, second);
 | |
| 
 | |
|         // Stop the ship and set it up to transform from its present orientation to the new one
 | |
|         ship.in_motion = false;
 | |
|         ship.target_transform = random_axes_target_alignment(&random_axes);
 | |
|     }
 | |
| 
 | |
|     if keyboard.just_pressed(KeyCode::KeyT) {
 | |
|         ship.in_motion ^= true;
 | |
|     }
 | |
| 
 | |
|     if keyboard.just_pressed(KeyCode::KeyH) {
 | |
|         let mut instructions_viz = instructions.single_mut();
 | |
|         if *instructions_viz == Visibility::Hidden {
 | |
|             *instructions_viz = Visibility::Visible;
 | |
|         } else {
 | |
|             *instructions_viz = Visibility::Hidden;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Handle user mouse input for panning the camera around
 | |
| fn handle_mouse(
 | |
|     accumulated_mouse_motion: Res<AccumulatedMouseMotion>,
 | |
|     mut button_events: EventReader<MouseButtonInput>,
 | |
|     mut camera: Query<&mut Transform, With<Camera>>,
 | |
|     mut mouse_pressed: ResMut<MousePressed>,
 | |
| ) {
 | |
|     // Store left-pressed state in the MousePressed resource
 | |
|     for button_event in button_events.read() {
 | |
|         if button_event.button != MouseButton::Left {
 | |
|             continue;
 | |
|         }
 | |
|         *mouse_pressed = MousePressed(button_event.state.is_pressed());
 | |
|     }
 | |
| 
 | |
|     // If the mouse is not pressed, just ignore motion events
 | |
|     if !mouse_pressed.0 {
 | |
|         return;
 | |
|     }
 | |
|     if accumulated_mouse_motion.delta != Vec2::ZERO {
 | |
|         let displacement = accumulated_mouse_motion.delta.x;
 | |
|         let mut camera_transform = camera.single_mut();
 | |
|         camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-displacement / 75.));
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Helper functions (i.e. non-system functions)
 | |
| 
 | |
| fn arrow_ends(transform: &Transform, axis: Vec3, length: f32) -> (Vec3, Vec3) {
 | |
|     let local_vector = length * (transform.rotation * axis);
 | |
|     (transform.translation, transform.translation + local_vector)
 | |
| }
 | |
| 
 | |
| // This is where `Transform::align` is actually used!
 | |
| // Note that the choice of `Vec3::X` and `Vec3::Y` here matches the use of those in `draw_ship_axes`.
 | |
| fn random_axes_target_alignment(random_axes: &RandomAxes) -> Transform {
 | |
|     let RandomAxes(first, second) = random_axes;
 | |
|     Transform::IDENTITY.aligned_by(Vec3::NEG_Z, *first, Vec3::X, *second)
 | |
| }
 |