 dcc03724a5
			
		
	
	
		dcc03724a5
		
	
	
	
	
		
			
			# Objective NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267. "Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365). ## Solution This adds "base sets" as a variant of `SystemSet`: A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive: ```rust #[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)] #[system_set(base)] enum MyBaseSet { A, B, } ``` **Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build. **Base sets cannot belong to other sets**: this is where the word "base" comes from Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set. ```rust app.add_system(foo.in_base_set(MyBaseSet::A)) // X must be a normal set ... base sets cannot be added to base sets .configure_set(X.in_base_set(MyBaseSet::A)) ``` Base sets can still be configured like normal sets: ```rust app.add_system(MyBaseSet::B.after(MyBaseSet::Ap)) ``` The primary use case for base sets is enabling a "default base set": ```rust schedule.set_default_base_set(CoreSet::Update) // this will belong to CoreSet::Update by default .add_system(foo) // this will override the default base set with PostUpdate .add_system(bar.in_base_set(CoreSet::PostUpdate)) ``` This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides. --- ## Changelog - Added "base sets" and ported CoreSet to use them. ## Migration Guide TODO
		
			
				
	
	
		
			193 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Simple benchmark to test per-entity draw overhead.
 | |
| //!
 | |
| //! To measure performance realistically, be sure to run this in release mode.
 | |
| //! `cargo run --example many_cubes --release`
 | |
| //!
 | |
| //! By default, this arranges the meshes in a cubical pattern, where the number of visible meshes
 | |
| //! varies with the viewing angle. You can choose to run the demo with a spherical pattern that
 | |
| //! distributes the meshes evenly.
 | |
| //!
 | |
| //! To start the demo using the spherical layout run
 | |
| //! `cargo run --example many_cubes --release sphere`
 | |
| 
 | |
| use std::f64::consts::PI;
 | |
| 
 | |
| use bevy::{
 | |
|     diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
 | |
|     math::{DVec2, DVec3},
 | |
|     prelude::*,
 | |
|     window::{PresentMode, WindowPlugin},
 | |
| };
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins(DefaultPlugins.set(WindowPlugin {
 | |
|             primary_window: Some(Window {
 | |
|                 present_mode: PresentMode::AutoNoVsync,
 | |
|                 ..default()
 | |
|             }),
 | |
|             ..default()
 | |
|         }))
 | |
|         .add_plugin(FrameTimeDiagnosticsPlugin::default())
 | |
|         .add_plugin(LogDiagnosticsPlugin::default())
 | |
|         .add_startup_system(setup)
 | |
|         .add_system(move_camera)
 | |
|         .add_system(print_mesh_count)
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| fn setup(
 | |
|     mut commands: Commands,
 | |
|     mut meshes: ResMut<Assets<Mesh>>,
 | |
|     mut materials: ResMut<Assets<StandardMaterial>>,
 | |
| ) {
 | |
|     warn!(include_str!("warning_string.txt"));
 | |
| 
 | |
|     const WIDTH: usize = 200;
 | |
|     const HEIGHT: usize = 200;
 | |
|     let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
 | |
|     let material = materials.add(StandardMaterial {
 | |
|         base_color: Color::PINK,
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     match std::env::args().nth(1).as_deref() {
 | |
|         Some("sphere") => {
 | |
|             // NOTE: This pattern is good for testing performance of culling as it provides roughly
 | |
|             // the same number of visible meshes regardless of the viewing angle.
 | |
|             const N_POINTS: usize = WIDTH * HEIGHT * 4;
 | |
|             // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
 | |
|             let radius = WIDTH as f64 * 2.5;
 | |
|             let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
 | |
|             for i in 0..N_POINTS {
 | |
|                 let spherical_polar_theta_phi =
 | |
|                     fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
 | |
|                 let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
 | |
|                 commands.spawn(PbrBundle {
 | |
|                     mesh: mesh.clone_weak(),
 | |
|                     material: material.clone_weak(),
 | |
|                     transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
 | |
|                     ..default()
 | |
|                 });
 | |
|             }
 | |
| 
 | |
|             // camera
 | |
|             commands.spawn(Camera3dBundle::default());
 | |
|         }
 | |
|         _ => {
 | |
|             // NOTE: This pattern is good for demonstrating that frustum culling is working correctly
 | |
|             // as the number of visible meshes rises and falls depending on the viewing angle.
 | |
|             for x in 0..WIDTH {
 | |
|                 for y in 0..HEIGHT {
 | |
|                     // introduce spaces to break any kind of moiré pattern
 | |
|                     if x % 10 == 0 || y % 10 == 0 {
 | |
|                         continue;
 | |
|                     }
 | |
|                     // cube
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz(
 | |
|                             (x as f32) * 2.5,
 | |
|                             HEIGHT as f32 * 2.5,
 | |
|                             (y as f32) * 2.5,
 | |
|                         ),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
 | |
|                         ..default()
 | |
|                     });
 | |
|                 }
 | |
|             }
 | |
|             // camera
 | |
|             commands.spawn(Camera3dBundle {
 | |
|                 transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
 | |
|                 ..default()
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // add one cube, the only one with strong handles
 | |
|     // also serves as a reference point during rotation
 | |
|     commands.spawn(PbrBundle {
 | |
|         mesh,
 | |
|         material,
 | |
|         transform: Transform {
 | |
|             translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
 | |
|             scale: Vec3::splat(5.0),
 | |
|             ..default()
 | |
|         },
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     commands.spawn(DirectionalLightBundle { ..default() });
 | |
| }
 | |
| 
 | |
| // NOTE: This epsilon value is apparently optimal for optimizing for the average
 | |
| // nearest-neighbor distance. See:
 | |
| // http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
 | |
| // for details.
 | |
| const EPSILON: f64 = 0.36;
 | |
| 
 | |
| fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
 | |
|     DVec2::new(
 | |
|         PI * 2. * (i as f64 / golden_ratio),
 | |
|         (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
 | |
|     )
 | |
| }
 | |
| 
 | |
| fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
 | |
|     let (sin_theta, cos_theta) = p.x.sin_cos();
 | |
|     let (sin_phi, cos_phi) = p.y.sin_cos();
 | |
|     DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
 | |
| }
 | |
| 
 | |
| // System for rotating the camera
 | |
| fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
 | |
|     let mut camera_transform = camera_query.single_mut();
 | |
|     let delta = time.delta_seconds() * 0.15;
 | |
|     camera_transform.rotate_z(delta);
 | |
|     camera_transform.rotate_x(delta);
 | |
| }
 | |
| 
 | |
| // System for printing the number of meshes on every tick of the timer
 | |
| fn print_mesh_count(
 | |
|     time: Res<Time>,
 | |
|     mut timer: Local<PrintingTimer>,
 | |
|     sprites: Query<(&Handle<Mesh>, &ComputedVisibility)>,
 | |
| ) {
 | |
|     timer.tick(time.delta());
 | |
| 
 | |
|     if timer.just_finished() {
 | |
|         info!(
 | |
|             "Meshes: {} - Visible Meshes {}",
 | |
|             sprites.iter().len(),
 | |
|             sprites.iter().filter(|(_, cv)| cv.is_visible()).count(),
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[derive(Deref, DerefMut)]
 | |
| struct PrintingTimer(Timer);
 | |
| 
 | |
| impl Default for PrintingTimer {
 | |
|     fn default() -> Self {
 | |
|         Self(Timer::from_seconds(1.0, TimerMode::Repeating))
 | |
|     }
 | |
| }
 |