bevy/crates/bevy_pbr/src/light/mod.rs
Greeble 1c3a63ad47 Fix newline in PointLightShadowMap comment (#18791)
A clippy failure slipped into #18768, although I'm not sure why CI
didn't catch it.

```sh
> cargo clippy --version
clippy 0.1.85 (4eb161250e 2025-03-15)

> cargo run -p ci
...
error: empty line after doc comment
   --> crates\bevy_pbr\src\light\mod.rs:105:5
    |
105 | /     /// The width and height of each of the 6 faces of the cubemap.
106 | |
    | |_^
    |
    = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#empty_line_after_doc_comments
    = note: `-D clippy::empty-line-after-doc-comments` implied by `-D warnings`
    = help: to override `-D warnings` add `#[allow(clippy::empty_line_after_doc_comments)]`
    = help: if the empty line is unintentional remove it
help: if the documentation should include the empty line include it in the comment
    |
106 |     ///
    |
```
2025-04-10 22:29:10 +02:00

1111 lines
44 KiB
Rust

use core::ops::DerefMut;
use bevy_ecs::{
entity::{EntityHashMap, EntityHashSet},
prelude::*,
};
use bevy_math::{ops, Mat4, Vec3A, Vec4};
use bevy_reflect::prelude::*;
use bevy_render::{
camera::{Camera, CameraProjection, Projection},
extract_component::ExtractComponent,
extract_resource::ExtractResource,
mesh::Mesh3d,
primitives::{Aabb, CascadesFrusta, CubemapFrusta, Frustum, Sphere},
view::{
InheritedVisibility, NoFrustumCulling, PreviousVisibleEntities, RenderLayers,
ViewVisibility, VisibilityClass, VisibilityRange, VisibleEntityRanges,
},
};
use bevy_transform::components::{GlobalTransform, Transform};
use bevy_utils::Parallel;
use crate::*;
mod ambient_light;
pub use ambient_light::AmbientLight;
mod point_light;
pub use point_light::PointLight;
mod spot_light;
pub use spot_light::SpotLight;
mod directional_light;
pub use directional_light::DirectionalLight;
/// Constants for operating with the light units: lumens, and lux.
pub mod light_consts {
/// Approximations for converting the wattage of lamps to lumens.
///
/// The **lumen** (symbol: **lm**) is the unit of [luminous flux], a measure
/// of the total quantity of [visible light] emitted by a source per unit of
/// time, in the [International System of Units] (SI).
///
/// For more information, see [wikipedia](https://en.wikipedia.org/wiki/Lumen_(unit))
///
/// [luminous flux]: https://en.wikipedia.org/wiki/Luminous_flux
/// [visible light]: https://en.wikipedia.org/wiki/Visible_light
/// [International System of Units]: https://en.wikipedia.org/wiki/International_System_of_Units
pub mod lumens {
pub const LUMENS_PER_LED_WATTS: f32 = 90.0;
pub const LUMENS_PER_INCANDESCENT_WATTS: f32 = 13.8;
pub const LUMENS_PER_HALOGEN_WATTS: f32 = 19.8;
}
/// Predefined for lux values in several locations.
///
/// The **lux** (symbol: **lx**) is the unit of [illuminance], or [luminous flux] per unit area,
/// in the [International System of Units] (SI). It is equal to one lumen per square meter.
///
/// For more information, see [wikipedia](https://en.wikipedia.org/wiki/Lux)
///
/// [illuminance]: https://en.wikipedia.org/wiki/Illuminance
/// [luminous flux]: https://en.wikipedia.org/wiki/Luminous_flux
/// [International System of Units]: https://en.wikipedia.org/wiki/International_System_of_Units
pub mod lux {
/// The amount of light (lux) in a moonless, overcast night sky. (starlight)
pub const MOONLESS_NIGHT: f32 = 0.0001;
/// The amount of light (lux) during a full moon on a clear night.
pub const FULL_MOON_NIGHT: f32 = 0.05;
/// The amount of light (lux) during the dark limit of civil twilight under a clear sky.
pub const CIVIL_TWILIGHT: f32 = 3.4;
/// The amount of light (lux) in family living room lights.
pub const LIVING_ROOM: f32 = 50.;
/// The amount of light (lux) in an office building's hallway/toilet lighting.
pub const HALLWAY: f32 = 80.;
/// The amount of light (lux) in very dark overcast day
pub const DARK_OVERCAST_DAY: f32 = 100.;
/// The amount of light (lux) in an office.
pub const OFFICE: f32 = 320.;
/// The amount of light (lux) during sunrise or sunset on a clear day.
pub const CLEAR_SUNRISE: f32 = 400.;
/// The amount of light (lux) on an overcast day; typical TV studio lighting
pub const OVERCAST_DAY: f32 = 1000.;
/// The amount of light (lux) from ambient daylight (not direct sunlight).
pub const AMBIENT_DAYLIGHT: f32 = 10_000.;
/// The amount of light (lux) in full daylight (not direct sun).
pub const FULL_DAYLIGHT: f32 = 20_000.;
/// The amount of light (lux) in direct sunlight.
pub const DIRECT_SUNLIGHT: f32 = 100_000.;
/// The amount of light (lux) of raw sunlight, not filtered by the atmosphere.
pub const RAW_SUNLIGHT: f32 = 130_000.;
}
}
/// Controls the resolution of [`PointLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::PointLightShadowMap;
/// App::new()
/// .insert_resource(PointLightShadowMap { size: 2048 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct PointLightShadowMap {
/// The width and height of each of the 6 faces of the cubemap.
///
/// Defaults to `1024`.
pub size: usize,
}
impl Default for PointLightShadowMap {
fn default() -> Self {
Self { size: 1024 }
}
}
/// A convenient alias for `Or<(With<PointLight>, With<SpotLight>,
/// With<DirectionalLight>)>`, for use with [`bevy_render::view::VisibleEntities`].
pub type WithLight = Or<(With<PointLight>, With<SpotLight>, With<DirectionalLight>)>;
/// Controls the resolution of [`DirectionalLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::DirectionalLightShadowMap;
/// App::new()
/// .insert_resource(DirectionalLightShadowMap { size: 4096 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct DirectionalLightShadowMap {
// The width and height of each cascade.
///
/// Defaults to `2048`.
pub size: usize,
}
impl Default for DirectionalLightShadowMap {
fn default() -> Self {
Self { size: 2048 }
}
}
/// Controls how cascaded shadow mapping works.
/// Prefer using [`CascadeShadowConfigBuilder`] to construct an instance.
///
/// ```
/// # use bevy_pbr::CascadeShadowConfig;
/// # use bevy_pbr::CascadeShadowConfigBuilder;
/// # use bevy_utils::default;
/// #
/// let config: CascadeShadowConfig = CascadeShadowConfigBuilder {
/// maximum_distance: 100.0,
/// ..default()
/// }.into();
/// ```
#[derive(Component, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadeShadowConfig {
/// The (positive) distance to the far boundary of each cascade.
pub bounds: Vec<f32>,
/// The proportion of overlap each cascade has with the previous cascade.
pub overlap_proportion: f32,
/// The (positive) distance to the near boundary of the first cascade.
pub minimum_distance: f32,
}
impl Default for CascadeShadowConfig {
fn default() -> Self {
CascadeShadowConfigBuilder::default().into()
}
}
fn calculate_cascade_bounds(
num_cascades: usize,
nearest_bound: f32,
shadow_maximum_distance: f32,
) -> Vec<f32> {
if num_cascades == 1 {
return vec![shadow_maximum_distance];
}
let base = ops::powf(
shadow_maximum_distance / nearest_bound,
1.0 / (num_cascades - 1) as f32,
);
(0..num_cascades)
.map(|i| nearest_bound * ops::powf(base, i as f32))
.collect()
}
/// Builder for [`CascadeShadowConfig`].
pub struct CascadeShadowConfigBuilder {
/// The number of shadow cascades.
/// More cascades increases shadow quality by mitigating perspective aliasing - a phenomenon where areas
/// nearer the camera are covered by fewer shadow map texels than areas further from the camera, causing
/// blocky looking shadows.
///
/// This does come at the cost increased rendering overhead, however this overhead is still less
/// than if you were to use fewer cascades and much larger shadow map textures to achieve the
/// same quality level.
///
/// In case rendered geometry covers a relatively narrow and static depth relative to camera, it may
/// make more sense to use fewer cascades and a higher resolution shadow map texture as perspective aliasing
/// is not as much an issue. Be sure to adjust `minimum_distance` and `maximum_distance` appropriately.
pub num_cascades: usize,
/// The minimum shadow distance, which can help improve the texel resolution of the first cascade.
/// Areas nearer to the camera than this will likely receive no shadows.
///
/// NOTE: Due to implementation details, this usually does not impact shadow quality as much as
/// `first_cascade_far_bound` and `maximum_distance`. At many view frustum field-of-views, the
/// texel resolution of the first cascade is dominated by the width / height of the view frustum plane
/// at `first_cascade_far_bound` rather than the depth of the frustum from `minimum_distance` to
/// `first_cascade_far_bound`.
pub minimum_distance: f32,
/// The maximum shadow distance.
/// Areas further from the camera than this will likely receive no shadows.
pub maximum_distance: f32,
/// Sets the far bound of the first cascade, relative to the view origin.
/// In-between cascades will be exponentially spaced relative to the maximum shadow distance.
/// NOTE: This is ignored if there is only one cascade, the maximum distance takes precedence.
pub first_cascade_far_bound: f32,
/// Sets the overlap proportion between cascades.
/// The overlap is used to make the transition from one cascade's shadow map to the next
/// less abrupt by blending between both shadow maps.
pub overlap_proportion: f32,
}
impl CascadeShadowConfigBuilder {
/// Returns the cascade config as specified by this builder.
pub fn build(&self) -> CascadeShadowConfig {
assert!(
self.num_cascades > 0,
"num_cascades must be positive, but was {}",
self.num_cascades
);
assert!(
self.minimum_distance >= 0.0,
"maximum_distance must be non-negative, but was {}",
self.minimum_distance
);
assert!(
self.num_cascades == 1 || self.minimum_distance < self.first_cascade_far_bound,
"minimum_distance must be less than first_cascade_far_bound, but was {}",
self.minimum_distance
);
assert!(
self.maximum_distance > self.minimum_distance,
"maximum_distance must be greater than minimum_distance, but was {}",
self.maximum_distance
);
assert!(
(0.0..1.0).contains(&self.overlap_proportion),
"overlap_proportion must be in [0.0, 1.0) but was {}",
self.overlap_proportion
);
CascadeShadowConfig {
bounds: calculate_cascade_bounds(
self.num_cascades,
self.first_cascade_far_bound,
self.maximum_distance,
),
overlap_proportion: self.overlap_proportion,
minimum_distance: self.minimum_distance,
}
}
}
impl Default for CascadeShadowConfigBuilder {
fn default() -> Self {
// The defaults are chosen to be similar to be Unity, Unreal, and Godot.
// Unity: first cascade far bound = 10.05, maximum distance = 150.0
// Unreal Engine 5: maximum distance = 200.0
// Godot: first cascade far bound = 10.0, maximum distance = 100.0
Self {
// Currently only support one cascade in WebGL 2.
num_cascades: if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
1
} else {
4
},
minimum_distance: 0.1,
maximum_distance: 150.0,
first_cascade_far_bound: 10.0,
overlap_proportion: 0.2,
}
}
}
impl From<CascadeShadowConfigBuilder> for CascadeShadowConfig {
fn from(builder: CascadeShadowConfigBuilder) -> Self {
builder.build()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct Cascades {
/// Map from a view to the configuration of each of its [`Cascade`]s.
pub(crate) cascades: EntityHashMap<Vec<Cascade>>,
}
#[derive(Clone, Debug, Default, Reflect)]
#[reflect(Clone, Default)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub(crate) world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub(crate) clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub(crate) clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub(crate) texel_size: f32,
}
pub fn clear_directional_light_cascades(mut lights: Query<(&DirectionalLight, &mut Cascades)>) {
for (directional_light, mut cascades) in lights.iter_mut() {
if !directional_light.shadows_enabled {
continue;
}
cascades.cascades.clear();
}
}
pub fn build_directional_light_cascades(
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
views: Query<(Entity, &GlobalTransform, &Projection, &Camera)>,
mut lights: Query<(
&GlobalTransform,
&DirectionalLight,
&CascadeShadowConfig,
&mut Cascades,
)>,
) {
let views = views
.iter()
.filter_map(|(entity, transform, projection, camera)| {
if camera.is_active {
Some((entity, projection, transform.compute_matrix()))
} else {
None
}
})
.collect::<Vec<_>>();
for (transform, directional_light, cascades_config, mut cascades) in &mut lights {
if !directional_light.shadows_enabled {
continue;
}
// It is very important to the numerical and thus visual stability of shadows that
// light_to_world has orthogonal upper-left 3x3 and zero translation.
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
// users to not change any other aspects of the transform - there's no guarantee
// `transform.compute_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
let view_cascades = cascades_config
.bounds
.iter()
.enumerate()
.map(|(idx, far_bound)| {
// Negate bounds as -z is camera forward direction.
let z_near = if idx > 0 {
(1.0 - cascades_config.overlap_proportion)
* -cascades_config.bounds[idx - 1]
} else {
-cascades_config.minimum_distance
};
let z_far = -far_bound;
let corners = projection.get_frustum_corners(z_near, z_far);
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
world_from_light,
camera_to_light_view,
)
})
.collect();
cascades.cascades.insert(view_entity, view_cascades);
}
}
}
/// Returns a [`Cascade`] for the frustum defined by `frustum_corners`.
///
/// The corner vertices should be specified in the following order:
/// first the bottom right, top right, top left, bottom left for the near plane, then similar for the far plane.
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
// will be the maximum possible projection size. Use the ceiling to get an integer which is
// very important for floating point stability later. It is also important that these are
// calculated using the original camera space corner positions for floating point precision
// as even though the lengths using corner_light_view above should be the same, precision can
// introduce small but significant differences.
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
.length()
.max((frustum_corners[4] - frustum_corners[6]).length())
.ceil();
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
// exactly represented in a floating point value.
let cascade_texel_size = cascade_diameter / cascade_texture_size;
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
// multiples of the texel size to be exactly representable in a floating point value.
let near_plane_center = Vec3A::new(
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
// NOTE: max.z is the near plane for right-handed y-up
max.z,
);
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
(-near_plane_center).extend(1.0),
);
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}
/// Add this component to make a [`Mesh3d`] not cast shadows.
#[derive(Debug, Component, Reflect, Default)]
#[reflect(Component, Default, Debug)]
pub struct NotShadowCaster;
/// Add this component to make a [`Mesh3d`] not receive shadows.
///
/// **Note:** If you're using diffuse transmission, setting [`NotShadowReceiver`] will
/// cause both “regular” shadows as well as diffusely transmitted shadows to be disabled,
/// even when [`TransmittedShadowReceiver`] is being used.
#[derive(Debug, Component, Reflect, Default)]
#[reflect(Component, Default, Debug)]
pub struct NotShadowReceiver;
/// Add this component to make a [`Mesh3d`] using a PBR material with [`diffuse_transmission`](crate::pbr_material::StandardMaterial::diffuse_transmission)`> 0.0`
/// receive shadows on its diffuse transmission lobe. (i.e. its “backside”)
///
/// Not enabled by default, as it requires carefully setting up [`thickness`](crate::pbr_material::StandardMaterial::thickness)
/// (and potentially even baking a thickness texture!) to match the geometry of the mesh, in order to avoid self-shadow artifacts.
///
/// **Note:** Using [`NotShadowReceiver`] overrides this component.
#[derive(Debug, Component, Reflect, Default)]
#[reflect(Component, Default, Debug)]
pub struct TransmittedShadowReceiver;
/// Add this component to a [`Camera3d`](bevy_core_pipeline::core_3d::Camera3d)
/// to control how to anti-alias shadow edges.
///
/// The different modes use different approaches to
/// [Percentage Closer Filtering](https://developer.nvidia.com/gpugems/gpugems/part-ii-lighting-and-shadows/chapter-11-shadow-map-antialiasing).
#[derive(Debug, Component, ExtractComponent, Reflect, Clone, Copy, PartialEq, Eq, Default)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
pub enum ShadowFilteringMethod {
/// Hardware 2x2.
///
/// Fast but poor quality.
Hardware2x2,
/// Approximates a fixed Gaussian blur, good when TAA isn't in use.
///
/// Good quality, good performance.
///
/// For directional and spot lights, this uses a [method by Ignacio Castaño
/// for *The Witness*] using 9 samples and smart filtering to achieve the same
/// as a regular 5x5 filter kernel.
///
/// [method by Ignacio Castaño for *The Witness*]: https://web.archive.org/web/20230210095515/http://the-witness.net/news/2013/09/shadow-mapping-summary-part-1/
#[default]
Gaussian,
/// A randomized filter that varies over time, good when TAA is in use.
///
/// Good quality when used with
/// [`TemporalAntiAliasing`](bevy_core_pipeline::experimental::taa::TemporalAntiAliasing)
/// and good performance.
///
/// For directional and spot lights, this uses a [method by Jorge Jimenez for
/// *Call of Duty: Advanced Warfare*] using 8 samples in spiral pattern,
/// randomly-rotated by interleaved gradient noise with spatial variation.
///
/// [method by Jorge Jimenez for *Call of Duty: Advanced Warfare*]: https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare/
Temporal,
}
/// The [`VisibilityClass`] used for all lights (point, directional, and spot).
pub struct LightVisibilityClass;
/// System sets used to run light-related systems.
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum SimulationLightSystems {
AddClusters,
AssignLightsToClusters,
/// System order ambiguities between systems in this set are ignored:
/// each [`build_directional_light_cascades`] system is independent of the others,
/// and should operate on distinct sets of entities.
UpdateDirectionalLightCascades,
UpdateLightFrusta,
/// System order ambiguities between systems in this set are ignored:
/// the order of systems within this set is irrelevant, as the various visibility-checking systems
/// assumes that their operations are irreversible during the frame.
CheckLightVisibility,
}
pub fn update_directional_light_frusta(
mut views: Query<
(
&Cascades,
&DirectionalLight,
&ViewVisibility,
&mut CascadesFrusta,
),
(
// Prevents this query from conflicting with camera queries.
Without<Camera>,
),
>,
) {
for (cascades, directional_light, visibility, mut frusta) in &mut views {
// The frustum is used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frustum is
// not needed.
if !directional_light.shadows_enabled || !visibility.get() {
continue;
}
frusta.frusta = cascades
.cascades
.iter()
.map(|(view, cascades)| {
(
*view,
cascades
.iter()
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
.collect();
}
}
// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
changed_lights: Query<
Entity,
(
With<PointLight>,
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
),
>,
) {
let view_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
.collect::<Vec<_>>();
for (entity, transform, point_light, mut cubemap_frusta) in &mut views {
// If this light hasn't changed, and neither has the set of global_lights,
// then we can skip this calculation.
if !global_lights.is_changed() && !changed_lights.contains(entity) {
continue;
}
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !point_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
let clip_from_view = Mat4::perspective_infinite_reverse_rh(
core::f32::consts::FRAC_PI_2,
1.0,
point_light.shadow_map_near_z,
);
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = Transform::from_translation(transform.translation());
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.compute_matrix().inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
);
}
}
}
pub fn update_spot_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &SpotLight, &mut Frustum),
Or<(Changed<GlobalTransform>, Changed<SpotLight>)>,
>,
) {
for (entity, transform, spot_light, mut frustum) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !spot_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view =
spot_light_clip_from_view(spot_light.outer_angle, spot_light.shadow_map_near_z);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,
);
}
}
fn shrink_entities(visible_entities: &mut Vec<Entity>) {
// Check that visible entities capacity() is no more than two times greater than len()
let capacity = visible_entities.capacity();
let reserved = capacity
.checked_div(visible_entities.len())
.map_or(0, |reserve| {
if reserve > 2 {
capacity / (reserve / 2)
} else {
capacity
}
});
visible_entities.shrink_to(reserved);
}
pub fn check_dir_light_mesh_visibility(
mut commands: Commands,
mut directional_lights: Query<
(
&DirectionalLight,
&CascadesFrusta,
&mut CascadesVisibleEntities,
Option<&RenderLayers>,
&ViewVisibility,
),
Without<SpotLight>,
>,
visible_entity_query: Query<
(
Entity,
&InheritedVisibility,
Option<&RenderLayers>,
Option<&Aabb>,
Option<&GlobalTransform>,
Has<VisibilityRange>,
Has<NoFrustumCulling>,
),
(
Without<NotShadowCaster>,
Without<DirectionalLight>,
With<Mesh3d>,
),
>,
visible_entity_ranges: Option<Res<VisibleEntityRanges>>,
mut defer_visible_entities_queue: Local<Parallel<Vec<Entity>>>,
mut view_visible_entities_queue: Local<Parallel<Vec<Vec<Entity>>>>,
) {
let visible_entity_ranges = visible_entity_ranges.as_deref();
for (directional_light, frusta, mut visible_entities, maybe_view_mask, light_view_visibility) in
&mut directional_lights
{
let mut views_to_remove = Vec::new();
for (view, cascade_view_entities) in &mut visible_entities.entities {
match frusta.frusta.get(view) {
Some(view_frusta) => {
cascade_view_entities.resize(view_frusta.len(), Default::default());
cascade_view_entities.iter_mut().for_each(|x| x.clear());
}
None => views_to_remove.push(*view),
};
}
for (view, frusta) in &frusta.frusta {
visible_entities
.entities
.entry(*view)
.or_insert_with(|| vec![VisibleMeshEntities::default(); frusta.len()]);
}
for v in views_to_remove {
visible_entities.entities.remove(&v);
}
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
if !directional_light.shadows_enabled || !light_view_visibility.get() {
continue;
}
let view_mask = maybe_view_mask.unwrap_or_default();
for (view, view_frusta) in &frusta.frusta {
visible_entity_query.par_iter().for_each_init(
|| {
let mut entities = view_visible_entities_queue.borrow_local_mut();
entities.resize(view_frusta.len(), Vec::default());
(defer_visible_entities_queue.borrow_local_mut(), entities)
},
|(defer_visible_entities_local_queue, view_visible_entities_local_queue),
(
entity,
inherited_visibility,
maybe_entity_mask,
maybe_aabb,
maybe_transform,
has_visibility_range,
has_no_frustum_culling,
)| {
if !inherited_visibility.get() {
return;
}
let entity_mask = maybe_entity_mask.unwrap_or_default();
if !view_mask.intersects(entity_mask) {
return;
}
// Check visibility ranges.
if has_visibility_range
&& visible_entity_ranges.is_some_and(|visible_entity_ranges| {
!visible_entity_ranges.entity_is_in_range_of_view(entity, *view)
})
{
return;
}
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
let mut visible = false;
for (frustum, frustum_visible_entities) in view_frusta
.iter()
.zip(view_visible_entities_local_queue.iter_mut())
{
// Disable near-plane culling, as a shadow caster could lie before the near plane.
if !has_no_frustum_culling
&& !frustum.intersects_obb(aabb, &transform.affine(), false, true)
{
continue;
}
visible = true;
frustum_visible_entities.push(entity);
}
if visible {
defer_visible_entities_local_queue.push(entity);
}
} else {
defer_visible_entities_local_queue.push(entity);
for frustum_visible_entities in view_visible_entities_local_queue.iter_mut()
{
frustum_visible_entities.push(entity);
}
}
},
);
// collect entities from parallel queue
for entities in view_visible_entities_queue.iter_mut() {
visible_entities
.entities
.get_mut(view)
.unwrap()
.iter_mut()
.zip(entities.iter_mut())
.for_each(|(dst, source)| {
dst.append(source);
});
}
}
for (_, cascade_view_entities) in &mut visible_entities.entities {
cascade_view_entities
.iter_mut()
.map(DerefMut::deref_mut)
.for_each(shrink_entities);
}
}
// Defer marking view visibility so this system can run in parallel with check_point_light_mesh_visibility
// TODO: use resource to avoid unnecessary memory alloc
let mut defer_queue = core::mem::take(defer_visible_entities_queue.deref_mut());
commands.queue(move |world: &mut World| {
world.resource_scope::<PreviousVisibleEntities, _>(
|world, mut previous_visible_entities| {
let mut query = world.query::<(Entity, &mut ViewVisibility)>();
for entities in defer_queue.iter_mut() {
let mut iter = query.iter_many_mut(world, entities.iter());
while let Some((entity, mut view_visibility)) = iter.fetch_next() {
if !**view_visibility {
view_visibility.set();
}
// Remove any entities that were discovered to be
// visible from the `PreviousVisibleEntities` resource.
previous_visible_entities.remove(&entity);
}
}
},
);
});
}
pub fn check_point_light_mesh_visibility(
visible_point_lights: Query<&VisibleClusterableObjects>,
mut point_lights: Query<(
&PointLight,
&GlobalTransform,
&CubemapFrusta,
&mut CubemapVisibleEntities,
Option<&RenderLayers>,
)>,
mut spot_lights: Query<(
&SpotLight,
&GlobalTransform,
&Frustum,
&mut VisibleMeshEntities,
Option<&RenderLayers>,
)>,
mut visible_entity_query: Query<
(
Entity,
&InheritedVisibility,
&mut ViewVisibility,
Option<&RenderLayers>,
Option<&Aabb>,
Option<&GlobalTransform>,
Has<VisibilityRange>,
Has<NoFrustumCulling>,
),
(
Without<NotShadowCaster>,
Without<DirectionalLight>,
With<Mesh3d>,
),
>,
visible_entity_ranges: Option<Res<VisibleEntityRanges>>,
mut previous_visible_entities: ResMut<PreviousVisibleEntities>,
mut cubemap_visible_entities_queue: Local<Parallel<[Vec<Entity>; 6]>>,
mut spot_visible_entities_queue: Local<Parallel<Vec<Entity>>>,
mut checked_lights: Local<EntityHashSet>,
) {
checked_lights.clear();
let visible_entity_ranges = visible_entity_ranges.as_deref();
for visible_lights in &visible_point_lights {
for light_entity in visible_lights.entities.iter().copied() {
if !checked_lights.insert(light_entity) {
continue;
}
// Point lights
if let Ok((
point_light,
transform,
cubemap_frusta,
mut cubemap_visible_entities,
maybe_view_mask,
)) = point_lights.get_mut(light_entity)
{
for visible_entities in cubemap_visible_entities.iter_mut() {
visible_entities.entities.clear();
}
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
if !point_light.shadows_enabled {
continue;
}
let view_mask = maybe_view_mask.unwrap_or_default();
let light_sphere = Sphere {
center: Vec3A::from(transform.translation()),
radius: point_light.range,
};
visible_entity_query.par_iter_mut().for_each_init(
|| cubemap_visible_entities_queue.borrow_local_mut(),
|cubemap_visible_entities_local_queue,
(
entity,
inherited_visibility,
mut view_visibility,
maybe_entity_mask,
maybe_aabb,
maybe_transform,
has_visibility_range,
has_no_frustum_culling,
)| {
if !inherited_visibility.get() {
return;
}
let entity_mask = maybe_entity_mask.unwrap_or_default();
if !view_mask.intersects(entity_mask) {
return;
}
if has_visibility_range
&& visible_entity_ranges.is_some_and(|visible_entity_ranges| {
!visible_entity_ranges.entity_is_in_range_of_any_view(entity)
})
{
return;
}
// If we have an aabb and transform, do frustum culling
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
let model_to_world = transform.affine();
// Do a cheap sphere vs obb test to prune out most meshes outside the sphere of the light
if !has_no_frustum_culling
&& !light_sphere.intersects_obb(aabb, &model_to_world)
{
return;
}
for (frustum, visible_entities) in cubemap_frusta
.iter()
.zip(cubemap_visible_entities_local_queue.iter_mut())
{
if has_no_frustum_culling
|| frustum.intersects_obb(aabb, &model_to_world, true, true)
{
if !**view_visibility {
view_visibility.set();
}
visible_entities.push(entity);
}
}
} else {
if !**view_visibility {
view_visibility.set();
}
for visible_entities in cubemap_visible_entities_local_queue.iter_mut()
{
visible_entities.push(entity);
}
}
},
);
for entities in cubemap_visible_entities_queue.iter_mut() {
for (dst, source) in
cubemap_visible_entities.iter_mut().zip(entities.iter_mut())
{
// Remove any entities that were discovered to be
// visible from the `PreviousVisibleEntities` resource.
for entity in source.iter() {
previous_visible_entities.remove(entity);
}
dst.entities.append(source);
}
}
for visible_entities in cubemap_visible_entities.iter_mut() {
shrink_entities(visible_entities);
}
}
// Spot lights
if let Ok((point_light, transform, frustum, mut visible_entities, maybe_view_mask)) =
spot_lights.get_mut(light_entity)
{
visible_entities.clear();
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
if !point_light.shadows_enabled {
continue;
}
let view_mask = maybe_view_mask.unwrap_or_default();
let light_sphere = Sphere {
center: Vec3A::from(transform.translation()),
radius: point_light.range,
};
visible_entity_query.par_iter_mut().for_each_init(
|| spot_visible_entities_queue.borrow_local_mut(),
|spot_visible_entities_local_queue,
(
entity,
inherited_visibility,
mut view_visibility,
maybe_entity_mask,
maybe_aabb,
maybe_transform,
has_visibility_range,
has_no_frustum_culling,
)| {
if !inherited_visibility.get() {
return;
}
let entity_mask = maybe_entity_mask.unwrap_or_default();
if !view_mask.intersects(entity_mask) {
return;
}
// Check visibility ranges.
if has_visibility_range
&& visible_entity_ranges.is_some_and(|visible_entity_ranges| {
!visible_entity_ranges.entity_is_in_range_of_any_view(entity)
})
{
return;
}
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
let model_to_world = transform.affine();
// Do a cheap sphere vs obb test to prune out most meshes outside the sphere of the light
if !has_no_frustum_culling
&& !light_sphere.intersects_obb(aabb, &model_to_world)
{
return;
}
if has_no_frustum_culling
|| frustum.intersects_obb(aabb, &model_to_world, true, true)
{
if !**view_visibility {
view_visibility.set();
}
spot_visible_entities_local_queue.push(entity);
}
} else {
if !**view_visibility {
view_visibility.set();
}
spot_visible_entities_local_queue.push(entity);
}
},
);
for entities in spot_visible_entities_queue.iter_mut() {
visible_entities.append(entities);
// Remove any entities that were discovered to be visible
// from the `PreviousVisibleEntities` resource.
for entity in entities {
previous_visible_entities.remove(entity);
}
}
shrink_entities(visible_entities.deref_mut());
}
}
}
}