bevy/crates/bevy_math/src/rects/rect.rs
Olle Lukowski 1ec5cdf3f2
Optimize the values for EMPTY rect. (#13470)
I am unsure if this needs changing, so let me know if I need to change
anything else.

# Objective

Fixes #13461.

## Solution

I applied the changes as suggested in the issue, and updated the doc
comments accordingly

## Testing

I don't think this needs too much testing, but there are no `cargo test`
failures.
2024-05-22 13:34:23 +00:00

480 lines
15 KiB
Rust

use crate::{IRect, URect, Vec2};
/// A rectangle defined by two opposite corners.
///
/// The rectangle is axis aligned, and defined by its minimum and maximum coordinates,
/// stored in `Rect::min` and `Rect::max`, respectively. The minimum/maximum invariant
/// must be upheld by the user when directly assigning the fields, otherwise some methods
/// produce invalid results. It is generally recommended to use one of the constructor
/// methods instead, which will ensure this invariant is met, unless you already have
/// the minimum and maximum corners.
#[repr(C)]
#[derive(Default, Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Rect {
/// The minimum corner point of the rect.
pub min: Vec2,
/// The maximum corner point of the rect.
pub max: Vec2,
}
impl Rect {
/// An empty `Rect`, represented by maximum and minimum corner points
/// at `Vec2::NEG_INFINITY` and `Vec2::INFINITY`, respectively.
/// This is so the `Rect` has a infinitely negative size.
/// This is useful, because when taking a union B of a non-empty `Rect` A and
/// this empty `Rect`, B will simply equal A.
pub const EMPTY: Self = Self {
max: Vec2::NEG_INFINITY,
min: Vec2::INFINITY,
};
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 4., 10., 6.); // w=10 h=2
/// let r = Rect::new(2., 3., 5., -1.); // w=3 h=4
/// ```
#[inline]
pub fn new(x0: f32, y0: f32, x1: f32, y1: f32) -> Self {
Self::from_corners(Vec2::new(x0, y0), Vec2::new(x1, y1))
}
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// // Unit rect from [0,0] to [1,1]
/// let r = Rect::from_corners(Vec2::ZERO, Vec2::ONE); // w=1 h=1
/// // Same; the points do not need to be ordered
/// let r = Rect::from_corners(Vec2::ONE, Vec2::ZERO); // w=1 h=1
/// ```
#[inline]
pub fn from_corners(p0: Vec2, p1: Vec2) -> Self {
Self {
min: p0.min(p1),
max: p0.max(p1),
}
}
/// Create a new rectangle from its center and size.
///
/// # Panics
///
/// This method panics if any of the components of the size is negative.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // w=1 h=1
/// assert!(r.min.abs_diff_eq(Vec2::splat(-0.5), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::splat(0.5), 1e-5));
/// ```
#[inline]
pub fn from_center_size(origin: Vec2, size: Vec2) -> Self {
assert!(size.cmpge(Vec2::ZERO).all(), "Rect size must be positive");
let half_size = size / 2.;
Self::from_center_half_size(origin, half_size)
}
/// Create a new rectangle from its center and half-size.
///
/// # Panics
///
/// This method panics if any of the components of the half-size is negative.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::from_center_half_size(Vec2::ZERO, Vec2::ONE); // w=2 h=2
/// assert!(r.min.abs_diff_eq(Vec2::splat(-1.), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::splat(1.), 1e-5));
/// ```
#[inline]
pub fn from_center_half_size(origin: Vec2, half_size: Vec2) -> Self {
assert!(
half_size.cmpge(Vec2::ZERO).all(),
"Rect half_size must be positive"
);
Self {
min: origin - half_size,
max: origin + half_size,
}
}
/// Check if the rectangle is empty.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::from_corners(Vec2::ZERO, Vec2::new(0., 1.)); // w=0 h=1
/// assert!(r.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.min.cmpge(self.max).any()
}
/// Rectangle width (max.x - min.x).
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!((r.width() - 5.).abs() <= 1e-5);
/// ```
#[inline]
pub fn width(&self) -> f32 {
self.max.x - self.min.x
}
/// Rectangle height (max.y - min.y).
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!((r.height() - 1.).abs() <= 1e-5);
/// ```
#[inline]
pub fn height(&self) -> f32 {
self.max.y - self.min.y
}
/// Rectangle size.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.size().abs_diff_eq(Vec2::new(5., 1.), 1e-5));
/// ```
#[inline]
pub fn size(&self) -> Vec2 {
self.max - self.min
}
/// Rectangle half-size.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.half_size().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
/// ```
#[inline]
pub fn half_size(&self) -> Vec2 {
self.size() * 0.5
}
/// The center point of the rectangle.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.center().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
/// ```
#[inline]
pub fn center(&self) -> Vec2 {
(self.min + self.max) * 0.5
}
/// Check if a point lies within this rectangle, inclusive of its edges.
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.contains(r.center()));
/// assert!(r.contains(r.min));
/// assert!(r.contains(r.max));
/// ```
#[inline]
pub fn contains(&self, point: Vec2) -> bool {
(point.cmpge(self.min) & point.cmple(self.max)).all()
}
/// Build a new rectangle formed of the union of this rectangle and another rectangle.
///
/// The union is the smallest rectangle enclosing both rectangles.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
/// let r = r1.union(r2);
/// assert!(r.min.abs_diff_eq(Vec2::new(0., -1.), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::new(5., 3.), 1e-5));
/// ```
#[inline]
pub fn union(&self, other: Self) -> Self {
Self {
min: self.min.min(other.min),
max: self.max.max(other.max),
}
}
/// Build a new rectangle formed of the union of this rectangle and a point.
///
/// The union is the smallest rectangle enclosing both the rectangle and the point. If the
/// point is already inside the rectangle, this method returns a copy of the rectangle.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let u = r.union_point(Vec2::new(3., 6.));
/// assert!(u.min.abs_diff_eq(Vec2::ZERO, 1e-5));
/// assert!(u.max.abs_diff_eq(Vec2::new(5., 6.), 1e-5));
/// ```
#[inline]
pub fn union_point(&self, other: Vec2) -> Self {
Self {
min: self.min.min(other),
max: self.max.max(other),
}
}
/// Build a new rectangle formed of the intersection of this rectangle and another rectangle.
///
/// The intersection is the largest rectangle enclosed in both rectangles. If the intersection
/// is empty, this method returns an empty rectangle ([`Rect::is_empty()`] returns `true`), but
/// the actual values of [`Rect::min`] and [`Rect::max`] are implementation-dependent.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
/// let r = r1.intersect(r2);
/// assert!(r.min.abs_diff_eq(Vec2::new(1., 0.), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::new(3., 1.), 1e-5));
/// ```
#[inline]
pub fn intersect(&self, other: Self) -> Self {
let mut r = Self {
min: self.min.max(other.min),
max: self.max.min(other.max),
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Create a new rectangle by expanding it evenly on all sides.
///
/// A positive expansion value produces a larger rectangle,
/// while a negative expansion value produces a smaller rectangle.
/// If this would result in zero or negative width or height, [`Rect::EMPTY`] is returned instead.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let r2 = r.inflate(3.); // w=11 h=7
/// assert!(r2.min.abs_diff_eq(Vec2::splat(-3.), 1e-5));
/// assert!(r2.max.abs_diff_eq(Vec2::new(8., 4.), 1e-5));
///
/// let r = Rect::new(0., -1., 6., 7.); // w=6 h=8
/// let r2 = r.inflate(-2.); // w=11 h=7
/// assert!(r2.min.abs_diff_eq(Vec2::new(2., 1.), 1e-5));
/// assert!(r2.max.abs_diff_eq(Vec2::new(4., 5.), 1e-5));
/// ```
#[inline]
pub fn inflate(&self, expansion: f32) -> Self {
let mut r = Self {
min: self.min - expansion,
max: self.max + expansion,
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Build a new rectangle from this one with its coordinates expressed
/// relative to `other` in a normalized ([0..1] x [0..1]) coordinate system.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(2., 3., 4., 6.);
/// let s = Rect::new(0., 0., 10., 10.);
/// let n = r.normalize(s);
///
/// assert_eq!(n.min.x, 0.2);
/// assert_eq!(n.min.y, 0.3);
/// assert_eq!(n.max.x, 0.4);
/// assert_eq!(n.max.y, 0.6);
/// ```
pub fn normalize(&self, other: Self) -> Self {
let outer_size = other.size();
Self {
min: (self.min - other.min) / outer_size,
max: (self.max - other.min) / outer_size,
}
}
/// Returns self as [`IRect`] (i32)
#[inline]
pub fn as_irect(&self) -> IRect {
IRect::from_corners(self.min.as_ivec2(), self.max.as_ivec2())
}
/// Returns self as [`URect`] (u32)
#[inline]
pub fn as_urect(&self) -> URect {
URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn well_formed() {
let r = Rect::from_center_size(Vec2::new(3., -5.), Vec2::new(8., 11.));
assert!(r.min.abs_diff_eq(Vec2::new(-1., -10.5), 1e-5));
assert!(r.max.abs_diff_eq(Vec2::new(7., 0.5), 1e-5));
assert!(r.center().abs_diff_eq(Vec2::new(3., -5.), 1e-5));
assert!((r.width() - 8.).abs() <= 1e-5);
assert!((r.height() - 11.).abs() <= 1e-5);
assert!(r.size().abs_diff_eq(Vec2::new(8., 11.), 1e-5));
assert!(r.half_size().abs_diff_eq(Vec2::new(4., 5.5), 1e-5));
assert!(r.contains(Vec2::new(3., -5.)));
assert!(r.contains(Vec2::new(-1., -10.5)));
assert!(r.contains(Vec2::new(-1., 0.5)));
assert!(r.contains(Vec2::new(7., -10.5)));
assert!(r.contains(Vec2::new(7., 0.5)));
assert!(!r.contains(Vec2::new(50., -5.)));
}
#[test]
fn rect_union() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
// overlapping
let r2 = Rect {
min: Vec2::new(-0.8, 0.3),
max: Vec2::new(0.1, 0.7),
};
let u = r.union(r2);
assert!(u.min.abs_diff_eq(Vec2::new(-0.8, -0.5), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.7), 1e-5));
// disjoint
let r2 = Rect {
min: Vec2::new(-1.8, -0.5),
max: Vec2::new(-1.5, 0.3),
};
let u = r.union(r2);
assert!(u.min.abs_diff_eq(Vec2::new(-1.8, -0.5), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.5), 1e-5));
// included
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5));
let u = r.union(r2);
assert!(u.min.abs_diff_eq(r.min, 1e-5));
assert!(u.max.abs_diff_eq(r.max, 1e-5));
// including
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5));
let u = r.union(r2);
assert!(u.min.abs_diff_eq(r2.min, 1e-5));
assert!(u.max.abs_diff_eq(r2.max, 1e-5));
}
#[test]
fn rect_union_pt() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
// inside
let v = Vec2::new(0.3, -0.2);
let u = r.union_point(v);
assert!(u.min.abs_diff_eq(r.min, 1e-5));
assert!(u.max.abs_diff_eq(r.max, 1e-5));
// outside
let v = Vec2::new(10., -3.);
let u = r.union_point(v);
assert!(u.min.abs_diff_eq(Vec2::new(-0.5, -3.), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(10., 0.5), 1e-5));
}
#[test]
fn rect_intersect() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
// overlapping
let r2 = Rect {
min: Vec2::new(-0.8, 0.3),
max: Vec2::new(0.1, 0.7),
};
let u = r.intersect(r2);
assert!(u.min.abs_diff_eq(Vec2::new(-0.5, 0.3), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(0.1, 0.5), 1e-5));
// disjoint
let r2 = Rect {
min: Vec2::new(-1.8, -0.5),
max: Vec2::new(-1.5, 0.3),
};
let u = r.intersect(r2);
assert!(u.is_empty());
assert!(u.width() <= 1e-5);
// included
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5));
let u = r.intersect(r2);
assert!(u.min.abs_diff_eq(r2.min, 1e-5));
assert!(u.max.abs_diff_eq(r2.max, 1e-5));
// including
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5));
let u = r.intersect(r2);
assert!(u.min.abs_diff_eq(r.min, 1e-5));
assert!(u.max.abs_diff_eq(r.max, 1e-5));
}
#[test]
fn rect_inflate() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
let r2 = r.inflate(0.3);
assert!(r2.min.abs_diff_eq(Vec2::new(-0.8, -0.8), 1e-5));
assert!(r2.max.abs_diff_eq(Vec2::new(0.8, 0.8), 1e-5));
}
}