
I am unsure if this needs changing, so let me know if I need to change anything else. # Objective Fixes #13461. ## Solution I applied the changes as suggested in the issue, and updated the doc comments accordingly ## Testing I don't think this needs too much testing, but there are no `cargo test` failures.
480 lines
15 KiB
Rust
480 lines
15 KiB
Rust
use crate::{IRect, URect, Vec2};
|
|
|
|
/// A rectangle defined by two opposite corners.
|
|
///
|
|
/// The rectangle is axis aligned, and defined by its minimum and maximum coordinates,
|
|
/// stored in `Rect::min` and `Rect::max`, respectively. The minimum/maximum invariant
|
|
/// must be upheld by the user when directly assigning the fields, otherwise some methods
|
|
/// produce invalid results. It is generally recommended to use one of the constructor
|
|
/// methods instead, which will ensure this invariant is met, unless you already have
|
|
/// the minimum and maximum corners.
|
|
#[repr(C)]
|
|
#[derive(Default, Clone, Copy, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct Rect {
|
|
/// The minimum corner point of the rect.
|
|
pub min: Vec2,
|
|
/// The maximum corner point of the rect.
|
|
pub max: Vec2,
|
|
}
|
|
|
|
impl Rect {
|
|
/// An empty `Rect`, represented by maximum and minimum corner points
|
|
/// at `Vec2::NEG_INFINITY` and `Vec2::INFINITY`, respectively.
|
|
/// This is so the `Rect` has a infinitely negative size.
|
|
/// This is useful, because when taking a union B of a non-empty `Rect` A and
|
|
/// this empty `Rect`, B will simply equal A.
|
|
pub const EMPTY: Self = Self {
|
|
max: Vec2::NEG_INFINITY,
|
|
min: Vec2::INFINITY,
|
|
};
|
|
/// Create a new rectangle from two corner points.
|
|
///
|
|
/// The two points do not need to be the minimum and/or maximum corners.
|
|
/// They only need to be two opposite corners.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rect;
|
|
/// let r = Rect::new(0., 4., 10., 6.); // w=10 h=2
|
|
/// let r = Rect::new(2., 3., 5., -1.); // w=3 h=4
|
|
/// ```
|
|
#[inline]
|
|
pub fn new(x0: f32, y0: f32, x1: f32, y1: f32) -> Self {
|
|
Self::from_corners(Vec2::new(x0, y0), Vec2::new(x1, y1))
|
|
}
|
|
|
|
/// Create a new rectangle from two corner points.
|
|
///
|
|
/// The two points do not need to be the minimum and/or maximum corners.
|
|
/// They only need to be two opposite corners.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// // Unit rect from [0,0] to [1,1]
|
|
/// let r = Rect::from_corners(Vec2::ZERO, Vec2::ONE); // w=1 h=1
|
|
/// // Same; the points do not need to be ordered
|
|
/// let r = Rect::from_corners(Vec2::ONE, Vec2::ZERO); // w=1 h=1
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_corners(p0: Vec2, p1: Vec2) -> Self {
|
|
Self {
|
|
min: p0.min(p1),
|
|
max: p0.max(p1),
|
|
}
|
|
}
|
|
|
|
/// Create a new rectangle from its center and size.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This method panics if any of the components of the size is negative.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // w=1 h=1
|
|
/// assert!(r.min.abs_diff_eq(Vec2::splat(-0.5), 1e-5));
|
|
/// assert!(r.max.abs_diff_eq(Vec2::splat(0.5), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_center_size(origin: Vec2, size: Vec2) -> Self {
|
|
assert!(size.cmpge(Vec2::ZERO).all(), "Rect size must be positive");
|
|
let half_size = size / 2.;
|
|
Self::from_center_half_size(origin, half_size)
|
|
}
|
|
|
|
/// Create a new rectangle from its center and half-size.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This method panics if any of the components of the half-size is negative.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::from_center_half_size(Vec2::ZERO, Vec2::ONE); // w=2 h=2
|
|
/// assert!(r.min.abs_diff_eq(Vec2::splat(-1.), 1e-5));
|
|
/// assert!(r.max.abs_diff_eq(Vec2::splat(1.), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_center_half_size(origin: Vec2, half_size: Vec2) -> Self {
|
|
assert!(
|
|
half_size.cmpge(Vec2::ZERO).all(),
|
|
"Rect half_size must be positive"
|
|
);
|
|
Self {
|
|
min: origin - half_size,
|
|
max: origin + half_size,
|
|
}
|
|
}
|
|
|
|
/// Check if the rectangle is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::from_corners(Vec2::ZERO, Vec2::new(0., 1.)); // w=0 h=1
|
|
/// assert!(r.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.min.cmpge(self.max).any()
|
|
}
|
|
|
|
/// Rectangle width (max.x - min.x).
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rect;
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// assert!((r.width() - 5.).abs() <= 1e-5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn width(&self) -> f32 {
|
|
self.max.x - self.min.x
|
|
}
|
|
|
|
/// Rectangle height (max.y - min.y).
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rect;
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// assert!((r.height() - 1.).abs() <= 1e-5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn height(&self) -> f32 {
|
|
self.max.y - self.min.y
|
|
}
|
|
|
|
/// Rectangle size.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// assert!(r.size().abs_diff_eq(Vec2::new(5., 1.), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn size(&self) -> Vec2 {
|
|
self.max - self.min
|
|
}
|
|
|
|
/// Rectangle half-size.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// assert!(r.half_size().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn half_size(&self) -> Vec2 {
|
|
self.size() * 0.5
|
|
}
|
|
|
|
/// The center point of the rectangle.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// assert!(r.center().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn center(&self) -> Vec2 {
|
|
(self.min + self.max) * 0.5
|
|
}
|
|
|
|
/// Check if a point lies within this rectangle, inclusive of its edges.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::Rect;
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// assert!(r.contains(r.center()));
|
|
/// assert!(r.contains(r.min));
|
|
/// assert!(r.contains(r.max));
|
|
/// ```
|
|
#[inline]
|
|
pub fn contains(&self, point: Vec2) -> bool {
|
|
(point.cmpge(self.min) & point.cmple(self.max)).all()
|
|
}
|
|
|
|
/// Build a new rectangle formed of the union of this rectangle and another rectangle.
|
|
///
|
|
/// The union is the smallest rectangle enclosing both rectangles.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
|
|
/// let r = r1.union(r2);
|
|
/// assert!(r.min.abs_diff_eq(Vec2::new(0., -1.), 1e-5));
|
|
/// assert!(r.max.abs_diff_eq(Vec2::new(5., 3.), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn union(&self, other: Self) -> Self {
|
|
Self {
|
|
min: self.min.min(other.min),
|
|
max: self.max.max(other.max),
|
|
}
|
|
}
|
|
|
|
/// Build a new rectangle formed of the union of this rectangle and a point.
|
|
///
|
|
/// The union is the smallest rectangle enclosing both the rectangle and the point. If the
|
|
/// point is already inside the rectangle, this method returns a copy of the rectangle.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// let u = r.union_point(Vec2::new(3., 6.));
|
|
/// assert!(u.min.abs_diff_eq(Vec2::ZERO, 1e-5));
|
|
/// assert!(u.max.abs_diff_eq(Vec2::new(5., 6.), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn union_point(&self, other: Vec2) -> Self {
|
|
Self {
|
|
min: self.min.min(other),
|
|
max: self.max.max(other),
|
|
}
|
|
}
|
|
|
|
/// Build a new rectangle formed of the intersection of this rectangle and another rectangle.
|
|
///
|
|
/// The intersection is the largest rectangle enclosed in both rectangles. If the intersection
|
|
/// is empty, this method returns an empty rectangle ([`Rect::is_empty()`] returns `true`), but
|
|
/// the actual values of [`Rect::min`] and [`Rect::max`] are implementation-dependent.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
|
|
/// let r = r1.intersect(r2);
|
|
/// assert!(r.min.abs_diff_eq(Vec2::new(1., 0.), 1e-5));
|
|
/// assert!(r.max.abs_diff_eq(Vec2::new(3., 1.), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn intersect(&self, other: Self) -> Self {
|
|
let mut r = Self {
|
|
min: self.min.max(other.min),
|
|
max: self.max.min(other.max),
|
|
};
|
|
// Collapse min over max to enforce invariants and ensure e.g. width() or
|
|
// height() never return a negative value.
|
|
r.min = r.min.min(r.max);
|
|
r
|
|
}
|
|
|
|
/// Create a new rectangle by expanding it evenly on all sides.
|
|
///
|
|
/// A positive expansion value produces a larger rectangle,
|
|
/// while a negative expansion value produces a smaller rectangle.
|
|
/// If this would result in zero or negative width or height, [`Rect::EMPTY`] is returned instead.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
|
|
/// let r2 = r.inflate(3.); // w=11 h=7
|
|
/// assert!(r2.min.abs_diff_eq(Vec2::splat(-3.), 1e-5));
|
|
/// assert!(r2.max.abs_diff_eq(Vec2::new(8., 4.), 1e-5));
|
|
///
|
|
/// let r = Rect::new(0., -1., 6., 7.); // w=6 h=8
|
|
/// let r2 = r.inflate(-2.); // w=11 h=7
|
|
/// assert!(r2.min.abs_diff_eq(Vec2::new(2., 1.), 1e-5));
|
|
/// assert!(r2.max.abs_diff_eq(Vec2::new(4., 5.), 1e-5));
|
|
/// ```
|
|
#[inline]
|
|
pub fn inflate(&self, expansion: f32) -> Self {
|
|
let mut r = Self {
|
|
min: self.min - expansion,
|
|
max: self.max + expansion,
|
|
};
|
|
// Collapse min over max to enforce invariants and ensure e.g. width() or
|
|
// height() never return a negative value.
|
|
r.min = r.min.min(r.max);
|
|
r
|
|
}
|
|
|
|
/// Build a new rectangle from this one with its coordinates expressed
|
|
/// relative to `other` in a normalized ([0..1] x [0..1]) coordinate system.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Rect, Vec2};
|
|
/// let r = Rect::new(2., 3., 4., 6.);
|
|
/// let s = Rect::new(0., 0., 10., 10.);
|
|
/// let n = r.normalize(s);
|
|
///
|
|
/// assert_eq!(n.min.x, 0.2);
|
|
/// assert_eq!(n.min.y, 0.3);
|
|
/// assert_eq!(n.max.x, 0.4);
|
|
/// assert_eq!(n.max.y, 0.6);
|
|
/// ```
|
|
pub fn normalize(&self, other: Self) -> Self {
|
|
let outer_size = other.size();
|
|
Self {
|
|
min: (self.min - other.min) / outer_size,
|
|
max: (self.max - other.min) / outer_size,
|
|
}
|
|
}
|
|
|
|
/// Returns self as [`IRect`] (i32)
|
|
#[inline]
|
|
pub fn as_irect(&self) -> IRect {
|
|
IRect::from_corners(self.min.as_ivec2(), self.max.as_ivec2())
|
|
}
|
|
|
|
/// Returns self as [`URect`] (u32)
|
|
#[inline]
|
|
pub fn as_urect(&self) -> URect {
|
|
URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn well_formed() {
|
|
let r = Rect::from_center_size(Vec2::new(3., -5.), Vec2::new(8., 11.));
|
|
|
|
assert!(r.min.abs_diff_eq(Vec2::new(-1., -10.5), 1e-5));
|
|
assert!(r.max.abs_diff_eq(Vec2::new(7., 0.5), 1e-5));
|
|
|
|
assert!(r.center().abs_diff_eq(Vec2::new(3., -5.), 1e-5));
|
|
|
|
assert!((r.width() - 8.).abs() <= 1e-5);
|
|
assert!((r.height() - 11.).abs() <= 1e-5);
|
|
assert!(r.size().abs_diff_eq(Vec2::new(8., 11.), 1e-5));
|
|
assert!(r.half_size().abs_diff_eq(Vec2::new(4., 5.5), 1e-5));
|
|
|
|
assert!(r.contains(Vec2::new(3., -5.)));
|
|
assert!(r.contains(Vec2::new(-1., -10.5)));
|
|
assert!(r.contains(Vec2::new(-1., 0.5)));
|
|
assert!(r.contains(Vec2::new(7., -10.5)));
|
|
assert!(r.contains(Vec2::new(7., 0.5)));
|
|
assert!(!r.contains(Vec2::new(50., -5.)));
|
|
}
|
|
|
|
#[test]
|
|
fn rect_union() {
|
|
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
|
|
|
|
// overlapping
|
|
let r2 = Rect {
|
|
min: Vec2::new(-0.8, 0.3),
|
|
max: Vec2::new(0.1, 0.7),
|
|
};
|
|
let u = r.union(r2);
|
|
assert!(u.min.abs_diff_eq(Vec2::new(-0.8, -0.5), 1e-5));
|
|
assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.7), 1e-5));
|
|
|
|
// disjoint
|
|
let r2 = Rect {
|
|
min: Vec2::new(-1.8, -0.5),
|
|
max: Vec2::new(-1.5, 0.3),
|
|
};
|
|
let u = r.union(r2);
|
|
assert!(u.min.abs_diff_eq(Vec2::new(-1.8, -0.5), 1e-5));
|
|
assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.5), 1e-5));
|
|
|
|
// included
|
|
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5));
|
|
let u = r.union(r2);
|
|
assert!(u.min.abs_diff_eq(r.min, 1e-5));
|
|
assert!(u.max.abs_diff_eq(r.max, 1e-5));
|
|
|
|
// including
|
|
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5));
|
|
let u = r.union(r2);
|
|
assert!(u.min.abs_diff_eq(r2.min, 1e-5));
|
|
assert!(u.max.abs_diff_eq(r2.max, 1e-5));
|
|
}
|
|
|
|
#[test]
|
|
fn rect_union_pt() {
|
|
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
|
|
|
|
// inside
|
|
let v = Vec2::new(0.3, -0.2);
|
|
let u = r.union_point(v);
|
|
assert!(u.min.abs_diff_eq(r.min, 1e-5));
|
|
assert!(u.max.abs_diff_eq(r.max, 1e-5));
|
|
|
|
// outside
|
|
let v = Vec2::new(10., -3.);
|
|
let u = r.union_point(v);
|
|
assert!(u.min.abs_diff_eq(Vec2::new(-0.5, -3.), 1e-5));
|
|
assert!(u.max.abs_diff_eq(Vec2::new(10., 0.5), 1e-5));
|
|
}
|
|
|
|
#[test]
|
|
fn rect_intersect() {
|
|
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
|
|
|
|
// overlapping
|
|
let r2 = Rect {
|
|
min: Vec2::new(-0.8, 0.3),
|
|
max: Vec2::new(0.1, 0.7),
|
|
};
|
|
let u = r.intersect(r2);
|
|
assert!(u.min.abs_diff_eq(Vec2::new(-0.5, 0.3), 1e-5));
|
|
assert!(u.max.abs_diff_eq(Vec2::new(0.1, 0.5), 1e-5));
|
|
|
|
// disjoint
|
|
let r2 = Rect {
|
|
min: Vec2::new(-1.8, -0.5),
|
|
max: Vec2::new(-1.5, 0.3),
|
|
};
|
|
let u = r.intersect(r2);
|
|
assert!(u.is_empty());
|
|
assert!(u.width() <= 1e-5);
|
|
|
|
// included
|
|
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5));
|
|
let u = r.intersect(r2);
|
|
assert!(u.min.abs_diff_eq(r2.min, 1e-5));
|
|
assert!(u.max.abs_diff_eq(r2.max, 1e-5));
|
|
|
|
// including
|
|
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5));
|
|
let u = r.intersect(r2);
|
|
assert!(u.min.abs_diff_eq(r.min, 1e-5));
|
|
assert!(u.max.abs_diff_eq(r.max, 1e-5));
|
|
}
|
|
|
|
#[test]
|
|
fn rect_inflate() {
|
|
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
|
|
|
|
let r2 = r.inflate(0.3);
|
|
assert!(r2.min.abs_diff_eq(Vec2::new(-0.8, -0.8), 1e-5));
|
|
assert!(r2.max.abs_diff_eq(Vec2::new(0.8, 0.8), 1e-5));
|
|
}
|
|
}
|