bevy/examples/shader/shader_prepass.rs
Alice Cecile 206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00

245 lines
7.9 KiB
Rust

//! Bevy has an optional prepass that is controlled per-material. A prepass is a rendering pass that runs before the main pass.
//! It will optionally generate various view textures. Currently it supports depth and normal textures.
//! The textures are not generated for any material using alpha blending.
//!
//! # WARNING
//! The prepass currently doesn't work on `WebGL`.
use bevy::{
core_pipeline::prepass::{DepthPrepass, NormalPrepass},
pbr::{NotShadowCaster, PbrPlugin},
prelude::*,
reflect::TypeUuid,
render::render_resource::{AsBindGroup, ShaderRef},
};
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(PbrPlugin {
// The prepass is enabled by default on the StandardMaterial,
// but you can disable it if you need to.
// prepass_enabled: false,
..default()
}))
.add_plugin(MaterialPlugin::<CustomMaterial>::default())
.add_plugin(MaterialPlugin::<PrepassOutputMaterial> {
// This material only needs to read the prepass textures,
// but the meshes using it should not contribute to the prepass render, so we can disable it.
prepass_enabled: false,
..default()
})
.add_startup_system(setup)
.add_system(rotate.in_set(CoreSet::Update))
.add_system(update)
.run();
}
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<CustomMaterial>>,
mut std_materials: ResMut<Assets<StandardMaterial>>,
mut depth_materials: ResMut<Assets<PrepassOutputMaterial>>,
asset_server: Res<AssetServer>,
) {
// camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(-2.0, 3., 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
// To enable the prepass you need to add the components associated with the ones you need
// This will write the depth buffer to a texture that you can use in the main pass
DepthPrepass,
// This will generate a texture containing world normals (with normal maps applied)
NormalPrepass,
));
// plane
commands.spawn(PbrBundle {
mesh: meshes.add(shape::Plane { size: 5.0 }.into()),
material: std_materials.add(Color::rgb(0.3, 0.5, 0.3).into()),
..default()
});
// A quad that shows the outputs of the prepass
// To make it easy, we just draw a big quad right in front of the camera. For a real application, this isn't ideal.
commands.spawn((
MaterialMeshBundle {
mesh: meshes.add(shape::Quad::new(Vec2::new(20.0, 20.0)).into()),
material: depth_materials.add(PrepassOutputMaterial {
show_depth: 0.0,
show_normal: 0.0,
}),
transform: Transform::from_xyz(-0.75, 1.25, 3.0)
.looking_at(Vec3::new(2.0, -2.5, -5.0), Vec3::Y),
..default()
},
NotShadowCaster,
));
// Opaque cube using the StandardMaterial
commands.spawn((
PbrBundle {
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: std_materials.add(Color::rgb(0.8, 0.7, 0.6).into()),
transform: Transform::from_xyz(-1.0, 0.5, 0.0),
..default()
},
Rotates,
));
// Cube with alpha mask
commands.spawn(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: std_materials.add(StandardMaterial {
alpha_mode: AlphaMode::Mask(1.0),
base_color_texture: Some(asset_server.load("branding/icon.png")),
..default()
}),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
..default()
});
// Cube with alpha blending.
// Transparent materials are ignored by the prepass
commands.spawn(MaterialMeshBundle {
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(CustomMaterial {
color: Color::WHITE,
color_texture: Some(asset_server.load("branding/icon.png")),
alpha_mode: AlphaMode::Blend,
}),
transform: Transform::from_xyz(1.0, 0.5, 0.0),
..default()
});
// light
commands.spawn(PointLightBundle {
point_light: PointLight {
intensity: 1500.0,
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
let style = TextStyle {
font: asset_server.load("fonts/FiraMono-Medium.ttf"),
font_size: 18.0,
color: Color::WHITE,
};
commands.spawn(
TextBundle::from_sections(vec![
TextSection::new("Prepass Output: transparent\n", style.clone()),
TextSection::new("\n\n", style.clone()),
TextSection::new("Controls\n", style.clone()),
TextSection::new("---------------\n", style.clone()),
TextSection::new("Space - Change output\n", style),
])
.with_style(Style {
position_type: PositionType::Absolute,
position: UiRect {
top: Val::Px(10.0),
left: Val::Px(10.0),
..default()
},
..default()
}),
);
}
// This is the struct that will be passed to your shader
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Option<Handle<Image>>,
alpha_mode: AlphaMode,
}
/// Not shown in this example, but if you need to specialize your material, the specialize
/// function will also be used by the prepass
impl Material for CustomMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/custom_material.wgsl".into()
}
fn alpha_mode(&self) -> AlphaMode {
self.alpha_mode
}
// You can override the default shaders used in the prepass if your material does
// anything not supported by the default prepass
// fn prepass_fragment_shader() -> ShaderRef {
// "shaders/custom_material.wgsl".into()
// }
}
#[derive(Component)]
struct Rotates;
fn rotate(mut q: Query<&mut Transform, With<Rotates>>, time: Res<Time>) {
for mut t in q.iter_mut() {
let rot = (time.elapsed_seconds().sin() * 0.5 + 0.5) * std::f32::consts::PI * 2.0;
t.rotation = Quat::from_rotation_z(rot);
}
}
// This shader simply loads the prepass texture and outputs it directly
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "0af99895-b96e-4451-bc12-c6b1c1c52750"]
pub struct PrepassOutputMaterial {
#[uniform(0)]
show_depth: f32,
#[uniform(1)]
show_normal: f32,
}
impl Material for PrepassOutputMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/show_prepass.wgsl".into()
}
// This needs to be transparent in order to show the scene behind the mesh
fn alpha_mode(&self) -> AlphaMode {
AlphaMode::Blend
}
}
fn update(
keycode: Res<Input<KeyCode>>,
material_handle: Query<&Handle<PrepassOutputMaterial>>,
mut materials: ResMut<Assets<PrepassOutputMaterial>>,
mut text: Query<&mut Text>,
) {
if keycode.just_pressed(KeyCode::Space) {
let handle = material_handle.single();
let mut mat = materials.get_mut(handle).unwrap();
let out_text;
if mat.show_depth == 1.0 {
out_text = "normal";
mat.show_depth = 0.0;
mat.show_normal = 1.0;
} else if mat.show_normal == 1.0 {
out_text = "transparent";
mat.show_depth = 0.0;
mat.show_normal = 0.0;
} else {
out_text = "depth";
mat.show_depth = 1.0;
mat.show_normal = 0.0;
}
let mut text = text.single_mut();
text.sections[0].value = format!("Prepass Output: {out_text}\n");
}
}