bevy/crates/bevy_math/src/rotation2d.rs
Gino Valente 9b32e09551
bevy_reflect: Add clone registrations project-wide (#18307)
# Objective

Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.

## Solution

This PR is broken into 4 commits:

1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
   
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.

Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.

That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.

Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).

## Testing

You can test locally with a `cargo check`:

```
cargo check --workspace --all-features
```
2025-03-17 18:32:35 +00:00

725 lines
23 KiB
Rust

use core::f32::consts::TAU;
use glam::FloatExt;
use crate::{
ops,
prelude::{Mat2, Vec2},
};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// A counterclockwise 2D rotation.
///
/// # Example
///
/// ```
/// # use approx::assert_relative_eq;
/// # use bevy_math::{Rot2, Vec2};
/// use std::f32::consts::PI;
///
/// // Create rotations from radians or degrees
/// let rotation1 = Rot2::radians(PI / 2.0);
/// let rotation2 = Rot2::degrees(45.0);
///
/// // Get the angle back as radians or degrees
/// assert_eq!(rotation1.as_degrees(), 90.0);
/// assert_eq!(rotation2.as_radians(), PI / 4.0);
///
/// // "Add" rotations together using `*`
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rotation1 * rotation2, Rot2::degrees(135.0));
///
/// // Rotate vectors
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rotation1 * Vec2::X, Vec2::Y);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default, Clone)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "rotation", alias = "rotation2d", alias = "rotation_2d")]
pub struct Rot2 {
/// The cosine of the rotation angle in radians.
///
/// This is the real part of the unit complex number representing the rotation.
pub cos: f32,
/// The sine of the rotation angle in radians.
///
/// This is the imaginary part of the unit complex number representing the rotation.
pub sin: f32,
}
impl Default for Rot2 {
fn default() -> Self {
Self::IDENTITY
}
}
impl Rot2 {
/// No rotation.
pub const IDENTITY: Self = Self { cos: 1.0, sin: 0.0 };
/// A rotation of π radians.
pub const PI: Self = Self {
cos: -1.0,
sin: 0.0,
};
/// A counterclockwise rotation of π/2 radians.
pub const FRAC_PI_2: Self = Self { cos: 0.0, sin: 1.0 };
/// A counterclockwise rotation of π/3 radians.
pub const FRAC_PI_3: Self = Self {
cos: 0.5,
sin: 0.866_025_4,
};
/// A counterclockwise rotation of π/4 radians.
pub const FRAC_PI_4: Self = Self {
cos: core::f32::consts::FRAC_1_SQRT_2,
sin: core::f32::consts::FRAC_1_SQRT_2,
};
/// A counterclockwise rotation of π/6 radians.
pub const FRAC_PI_6: Self = Self {
cos: 0.866_025_4,
sin: 0.5,
};
/// A counterclockwise rotation of π/8 radians.
pub const FRAC_PI_8: Self = Self {
cos: 0.923_879_5,
sin: 0.382_683_43,
};
/// Creates a [`Rot2`] from a counterclockwise angle in radians.
///
/// # Note
///
/// The input rotation will always be clamped to the range `(-π, π]` by design.
///
/// # Example
///
/// ```
/// # use bevy_math::Rot2;
/// # use approx::assert_relative_eq;
/// # use std::f32::consts::{FRAC_PI_2, PI};
///
/// let rot1 = Rot2::radians(3.0 * FRAC_PI_2);
/// let rot2 = Rot2::radians(-FRAC_PI_2);
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rot1, rot2);
///
/// let rot3 = Rot2::radians(PI);
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rot1 * rot1, rot3);
/// ```
#[inline]
pub fn radians(radians: f32) -> Self {
let (sin, cos) = ops::sin_cos(radians);
Self::from_sin_cos(sin, cos)
}
/// Creates a [`Rot2`] from a counterclockwise angle in degrees.
///
/// # Note
///
/// The input rotation will always be clamped to the range `(-180°, 180°]` by design.
///
/// # Example
///
/// ```
/// # use bevy_math::Rot2;
/// # use approx::assert_relative_eq;
///
/// let rot1 = Rot2::degrees(270.0);
/// let rot2 = Rot2::degrees(-90.0);
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rot1, rot2);
///
/// let rot3 = Rot2::degrees(180.0);
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rot1 * rot1, rot3);
/// ```
#[inline]
pub fn degrees(degrees: f32) -> Self {
Self::radians(degrees.to_radians())
}
/// Creates a [`Rot2`] from a counterclockwise fraction of a full turn of 360 degrees.
///
/// # Note
///
/// The input rotation will always be clamped to the range `(-50%, 50%]` by design.
///
/// # Example
///
/// ```
/// # use bevy_math::Rot2;
/// # use approx::assert_relative_eq;
///
/// let rot1 = Rot2::turn_fraction(0.75);
/// let rot2 = Rot2::turn_fraction(-0.25);
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rot1, rot2);
///
/// let rot3 = Rot2::turn_fraction(0.5);
/// #[cfg(feature = "approx")]
/// assert_relative_eq!(rot1 * rot1, rot3);
/// ```
#[inline]
pub fn turn_fraction(fraction: f32) -> Self {
Self::radians(TAU * fraction)
}
/// Creates a [`Rot2`] from the sine and cosine of an angle in radians.
///
/// The rotation is only valid if `sin * sin + cos * cos == 1.0`.
///
/// # Panics
///
/// Panics if `sin * sin + cos * cos != 1.0` when the `glam_assert` feature is enabled.
#[inline]
pub fn from_sin_cos(sin: f32, cos: f32) -> Self {
let rotation = Self { sin, cos };
debug_assert!(
rotation.is_normalized(),
"the given sine and cosine produce an invalid rotation"
);
rotation
}
/// Returns the rotation in radians in the `(-pi, pi]` range.
#[inline]
pub fn as_radians(self) -> f32 {
ops::atan2(self.sin, self.cos)
}
/// Returns the rotation in degrees in the `(-180, 180]` range.
#[inline]
pub fn as_degrees(self) -> f32 {
self.as_radians().to_degrees()
}
/// Returns the rotation as a fraction of a full 360 degree turn.
#[inline]
pub fn as_turn_fraction(self) -> f32 {
self.as_radians() / TAU
}
/// Returns the sine and cosine of the rotation angle in radians.
#[inline]
pub const fn sin_cos(self) -> (f32, f32) {
(self.sin, self.cos)
}
/// Computes the length or norm of the complex number used to represent the rotation.
///
/// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
/// can be a result of incorrect construction or floating point error caused by
/// successive operations.
#[inline]
#[doc(alias = "norm")]
pub fn length(self) -> f32 {
Vec2::new(self.sin, self.cos).length()
}
/// Computes the squared length or norm of the complex number used to represent the rotation.
///
/// This is generally faster than [`Rot2::length()`], as it avoids a square
/// root operation.
///
/// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
/// can be a result of incorrect construction or floating point error caused by
/// successive operations.
#[inline]
#[doc(alias = "norm2")]
pub fn length_squared(self) -> f32 {
Vec2::new(self.sin, self.cos).length_squared()
}
/// Computes `1.0 / self.length()`.
///
/// For valid results, `self` must _not_ have a length of zero.
#[inline]
pub fn length_recip(self) -> f32 {
Vec2::new(self.sin, self.cos).length_recip()
}
/// Returns `self` with a length of `1.0` if possible, and `None` otherwise.
///
/// `None` will be returned if the sine and cosine of `self` are both zero (or very close to zero),
/// or if either of them is NaN or infinite.
///
/// Note that [`Rot2`] should typically already be normalized by design.
/// Manual normalization is only needed when successive operations result in
/// accumulated floating point error, or if the rotation was constructed
/// with invalid values.
#[inline]
pub fn try_normalize(self) -> Option<Self> {
let recip = self.length_recip();
if recip.is_finite() && recip > 0.0 {
Some(Self::from_sin_cos(self.sin * recip, self.cos * recip))
} else {
None
}
}
/// Returns `self` with a length of `1.0`.
///
/// Note that [`Rot2`] should typically already be normalized by design.
/// Manual normalization is only needed when successive operations result in
/// accumulated floating point error, or if the rotation was constructed
/// with invalid values.
///
/// # Panics
///
/// Panics if `self` has a length of zero, NaN, or infinity when debug assertions are enabled.
#[inline]
pub fn normalize(self) -> Self {
let length_recip = self.length_recip();
Self::from_sin_cos(self.sin * length_recip, self.cos * length_recip)
}
/// Returns `self` after an approximate normalization, assuming the value is already nearly normalized.
/// Useful for preventing numerical error accumulation.
/// See [`Dir3::fast_renormalize`](crate::Dir3::fast_renormalize) for an example of when such error accumulation might occur.
#[inline]
pub fn fast_renormalize(self) -> Self {
let length_squared = self.length_squared();
// Based on a Taylor approximation of the inverse square root, see [`Dir3::fast_renormalize`](crate::Dir3::fast_renormalize) for more details.
let length_recip_approx = 0.5 * (3.0 - length_squared);
Rot2 {
sin: self.sin * length_recip_approx,
cos: self.cos * length_recip_approx,
}
}
/// Returns `true` if the rotation is neither infinite nor NaN.
#[inline]
pub fn is_finite(self) -> bool {
self.sin.is_finite() && self.cos.is_finite()
}
/// Returns `true` if the rotation is NaN.
#[inline]
pub fn is_nan(self) -> bool {
self.sin.is_nan() || self.cos.is_nan()
}
/// Returns whether `self` has a length of `1.0` or not.
///
/// Uses a precision threshold of approximately `1e-4`.
#[inline]
pub fn is_normalized(self) -> bool {
// The allowed length is 1 +/- 1e-4, so the largest allowed
// squared length is (1 + 1e-4)^2 = 1.00020001, which makes
// the threshold for the squared length approximately 2e-4.
ops::abs(self.length_squared() - 1.0) <= 2e-4
}
/// Returns `true` if the rotation is near [`Rot2::IDENTITY`].
#[inline]
pub fn is_near_identity(self) -> bool {
// Same as `Quat::is_near_identity`, but using sine and cosine
let threshold_angle_sin = 0.000_049_692_047; // let threshold_angle = 0.002_847_144_6;
self.cos > 0.0 && ops::abs(self.sin) < threshold_angle_sin
}
/// Returns the angle in radians needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(self, other: Self) -> f32 {
(other * self.inverse()).as_radians()
}
/// Returns the inverse of the rotation. This is also the conjugate
/// of the unit complex number representing the rotation.
#[inline]
#[must_use]
#[doc(alias = "conjugate")]
pub const fn inverse(self) -> Self {
Self {
cos: self.cos,
sin: -self.sin,
}
}
/// Performs a linear interpolation between `self` and `rhs` based on
/// the value `s`, and normalizes the rotation afterwards.
///
/// When `s == 0.0`, the result will be equal to `self`.
/// When `s == 1.0`, the result will be equal to `rhs`.
///
/// This is slightly more efficient than [`slerp`](Self::slerp), and produces a similar result
/// when the difference between the two rotations is small. At larger differences,
/// the result resembles a kind of ease-in-out effect.
///
/// If you would like the angular velocity to remain constant, consider using [`slerp`](Self::slerp) instead.
///
/// # Details
///
/// `nlerp` corresponds to computing an angle for a point at position `s` on a line drawn
/// between the endpoints of the arc formed by `self` and `rhs` on a unit circle,
/// and normalizing the result afterwards.
///
/// Note that if the angles are opposite like 0 and π, the line will pass through the origin,
/// and the resulting angle will always be either `self` or `rhs` depending on `s`.
/// If `s` happens to be `0.5` in this case, a valid rotation cannot be computed, and `self`
/// will be returned as a fallback.
///
/// # Example
///
/// ```
/// # use bevy_math::Rot2;
/// #
/// let rot1 = Rot2::IDENTITY;
/// let rot2 = Rot2::degrees(135.0);
///
/// let result1 = rot1.nlerp(rot2, 1.0 / 3.0);
/// assert_eq!(result1.as_degrees(), 28.675055);
///
/// let result2 = rot1.nlerp(rot2, 0.5);
/// assert_eq!(result2.as_degrees(), 67.5);
/// ```
#[inline]
pub fn nlerp(self, end: Self, s: f32) -> Self {
Self {
sin: self.sin.lerp(end.sin, s),
cos: self.cos.lerp(end.cos, s),
}
.try_normalize()
// Fall back to the start rotation.
// This can happen when `self` and `end` are opposite angles and `s == 0.5`,
// because the resulting rotation would be zero, which cannot be normalized.
.unwrap_or(self)
}
/// Performs a spherical linear interpolation between `self` and `end`
/// based on the value `s`.
///
/// This corresponds to interpolating between the two angles at a constant angular velocity.
///
/// When `s == 0.0`, the result will be equal to `self`.
/// When `s == 1.0`, the result will be equal to `rhs`.
///
/// If you would like the rotation to have a kind of ease-in-out effect, consider
/// using the slightly more efficient [`nlerp`](Self::nlerp) instead.
///
/// # Example
///
/// ```
/// # use bevy_math::Rot2;
/// #
/// let rot1 = Rot2::IDENTITY;
/// let rot2 = Rot2::degrees(135.0);
///
/// let result1 = rot1.slerp(rot2, 1.0 / 3.0);
/// assert_eq!(result1.as_degrees(), 45.0);
///
/// let result2 = rot1.slerp(rot2, 0.5);
/// assert_eq!(result2.as_degrees(), 67.5);
/// ```
#[inline]
pub fn slerp(self, end: Self, s: f32) -> Self {
self * Self::radians(self.angle_to(end) * s)
}
}
impl From<f32> for Rot2 {
/// Creates a [`Rot2`] from a counterclockwise angle in radians.
fn from(rotation: f32) -> Self {
Self::radians(rotation)
}
}
impl From<Rot2> for Mat2 {
/// Creates a [`Mat2`] rotation matrix from a [`Rot2`].
fn from(rot: Rot2) -> Self {
Mat2::from_cols_array(&[rot.cos, -rot.sin, rot.sin, rot.cos])
}
}
impl core::ops::Mul for Rot2 {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self {
cos: self.cos * rhs.cos - self.sin * rhs.sin,
sin: self.sin * rhs.cos + self.cos * rhs.sin,
}
}
}
impl core::ops::MulAssign for Rot2 {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl core::ops::Mul<Vec2> for Rot2 {
type Output = Vec2;
/// Rotates a [`Vec2`] by a [`Rot2`].
fn mul(self, rhs: Vec2) -> Self::Output {
Vec2::new(
rhs.x * self.cos - rhs.y * self.sin,
rhs.x * self.sin + rhs.y * self.cos,
)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::AbsDiffEq for Rot2 {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.cos.abs_diff_eq(&other.cos, epsilon) && self.sin.abs_diff_eq(&other.sin, epsilon)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::RelativeEq for Rot2 {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.cos.relative_eq(&other.cos, epsilon, max_relative)
&& self.sin.relative_eq(&other.sin, epsilon, max_relative)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::UlpsEq for Rot2 {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.cos.ulps_eq(&other.cos, epsilon, max_ulps)
&& self.sin.ulps_eq(&other.sin, epsilon, max_ulps)
}
}
#[cfg(test)]
mod tests {
use core::f32::consts::FRAC_PI_2;
use approx::assert_relative_eq;
use crate::{ops, Dir2, Rot2, Vec2};
#[test]
fn creation() {
let rotation1 = Rot2::radians(FRAC_PI_2);
let rotation2 = Rot2::degrees(90.0);
let rotation3 = Rot2::from_sin_cos(1.0, 0.0);
let rotation4 = Rot2::turn_fraction(0.25);
// All three rotations should be equal
assert_relative_eq!(rotation1.sin, rotation2.sin);
assert_relative_eq!(rotation1.cos, rotation2.cos);
assert_relative_eq!(rotation1.sin, rotation3.sin);
assert_relative_eq!(rotation1.cos, rotation3.cos);
assert_relative_eq!(rotation1.sin, rotation4.sin);
assert_relative_eq!(rotation1.cos, rotation4.cos);
// The rotation should be 90 degrees
assert_relative_eq!(rotation1.as_radians(), FRAC_PI_2);
assert_relative_eq!(rotation1.as_degrees(), 90.0);
assert_relative_eq!(rotation1.as_turn_fraction(), 0.25);
}
#[test]
fn rotate() {
let rotation = Rot2::degrees(90.0);
assert_relative_eq!(rotation * Vec2::X, Vec2::Y);
assert_relative_eq!(rotation * Dir2::Y, Dir2::NEG_X);
}
#[test]
fn rotation_range() {
// the rotation range is `(-180, 180]` and the constructors
// normalize the rotations to that range
assert_relative_eq!(Rot2::radians(3.0 * FRAC_PI_2), Rot2::radians(-FRAC_PI_2));
assert_relative_eq!(Rot2::degrees(270.0), Rot2::degrees(-90.0));
assert_relative_eq!(Rot2::turn_fraction(0.75), Rot2::turn_fraction(-0.25));
}
#[test]
fn add() {
let rotation1 = Rot2::degrees(90.0);
let rotation2 = Rot2::degrees(180.0);
// 90 deg + 180 deg becomes -90 deg after it wraps around to be within the `(-180, 180]` range
assert_eq!((rotation1 * rotation2).as_degrees(), -90.0);
}
#[test]
fn subtract() {
let rotation1 = Rot2::degrees(90.0);
let rotation2 = Rot2::degrees(45.0);
assert_relative_eq!((rotation1 * rotation2.inverse()).as_degrees(), 45.0);
// This should be equivalent to the above
assert_relative_eq!(rotation2.angle_to(rotation1), core::f32::consts::FRAC_PI_4);
}
#[test]
fn length() {
let rotation = Rot2 {
sin: 10.0,
cos: 5.0,
};
assert_eq!(rotation.length_squared(), 125.0);
assert_eq!(rotation.length(), 11.18034);
assert!(ops::abs(rotation.normalize().length() - 1.0) < 10e-7);
}
#[test]
fn is_near_identity() {
assert!(!Rot2::radians(0.1).is_near_identity());
assert!(!Rot2::radians(-0.1).is_near_identity());
assert!(Rot2::radians(0.00001).is_near_identity());
assert!(Rot2::radians(-0.00001).is_near_identity());
assert!(Rot2::radians(0.0).is_near_identity());
}
#[test]
fn normalize() {
let rotation = Rot2 {
sin: 10.0,
cos: 5.0,
};
let normalized_rotation = rotation.normalize();
assert_eq!(normalized_rotation.sin, 0.89442724);
assert_eq!(normalized_rotation.cos, 0.44721362);
assert!(!rotation.is_normalized());
assert!(normalized_rotation.is_normalized());
}
#[test]
fn fast_renormalize() {
let rotation = Rot2 { sin: 1.0, cos: 0.5 };
let normalized_rotation = rotation.normalize();
let mut unnormalized_rot = rotation;
let mut renormalized_rot = rotation;
let mut initially_normalized_rot = normalized_rotation;
let mut fully_normalized_rot = normalized_rotation;
// Compute a 64x (=2⁶) multiple of the rotation.
for _ in 0..6 {
unnormalized_rot = unnormalized_rot * unnormalized_rot;
renormalized_rot = renormalized_rot * renormalized_rot;
initially_normalized_rot = initially_normalized_rot * initially_normalized_rot;
fully_normalized_rot = fully_normalized_rot * fully_normalized_rot;
renormalized_rot = renormalized_rot.fast_renormalize();
fully_normalized_rot = fully_normalized_rot.normalize();
}
assert!(!unnormalized_rot.is_normalized());
assert!(renormalized_rot.is_normalized());
assert!(fully_normalized_rot.is_normalized());
assert_relative_eq!(fully_normalized_rot, renormalized_rot, epsilon = 0.000001);
assert_relative_eq!(
fully_normalized_rot,
unnormalized_rot.normalize(),
epsilon = 0.000001
);
assert_relative_eq!(
fully_normalized_rot,
initially_normalized_rot.normalize(),
epsilon = 0.000001
);
}
#[test]
fn try_normalize() {
// Valid
assert!(Rot2 {
sin: 10.0,
cos: 5.0,
}
.try_normalize()
.is_some());
// NaN
assert!(Rot2 {
sin: f32::NAN,
cos: 5.0,
}
.try_normalize()
.is_none());
// Zero
assert!(Rot2 { sin: 0.0, cos: 0.0 }.try_normalize().is_none());
// Non-finite
assert!(Rot2 {
sin: f32::INFINITY,
cos: 5.0,
}
.try_normalize()
.is_none());
}
#[test]
fn nlerp() {
let rot1 = Rot2::IDENTITY;
let rot2 = Rot2::degrees(135.0);
assert_eq!(rot1.nlerp(rot2, 1.0 / 3.0).as_degrees(), 28.675055);
assert!(rot1.nlerp(rot2, 0.0).is_near_identity());
assert_eq!(rot1.nlerp(rot2, 0.5).as_degrees(), 67.5);
assert_eq!(rot1.nlerp(rot2, 1.0).as_degrees(), 135.0);
let rot1 = Rot2::IDENTITY;
let rot2 = Rot2::from_sin_cos(0.0, -1.0);
assert!(rot1.nlerp(rot2, 1.0 / 3.0).is_near_identity());
assert!(rot1.nlerp(rot2, 0.0).is_near_identity());
// At 0.5, there is no valid rotation, so the fallback is the original angle.
assert_eq!(rot1.nlerp(rot2, 0.5).as_degrees(), 0.0);
assert_eq!(ops::abs(rot1.nlerp(rot2, 1.0).as_degrees()), 180.0);
}
#[test]
fn slerp() {
let rot1 = Rot2::IDENTITY;
let rot2 = Rot2::degrees(135.0);
assert_eq!(rot1.slerp(rot2, 1.0 / 3.0).as_degrees(), 45.0);
assert!(rot1.slerp(rot2, 0.0).is_near_identity());
assert_eq!(rot1.slerp(rot2, 0.5).as_degrees(), 67.5);
assert_eq!(rot1.slerp(rot2, 1.0).as_degrees(), 135.0);
let rot1 = Rot2::IDENTITY;
let rot2 = Rot2::from_sin_cos(0.0, -1.0);
assert!(ops::abs(rot1.slerp(rot2, 1.0 / 3.0).as_degrees() - 60.0) < 10e-6);
assert!(rot1.slerp(rot2, 0.0).is_near_identity());
assert_eq!(rot1.slerp(rot2, 0.5).as_degrees(), 90.0);
assert_eq!(ops::abs(rot1.slerp(rot2, 1.0).as_degrees()), 180.0);
}
}