 f18f28874a
			
		
	
	
		f18f28874a
		
			
		
	
	
	
	
		
			
			# Objective - Better consistency with `add_systems`. - Deprecating `add_plugin` in favor of a more powerful `add_plugins`. - Allow passing `Plugin` to `add_plugins`. - Allow passing tuples to `add_plugins`. ## Solution - `App::add_plugins` now takes an `impl Plugins` parameter. - `App::add_plugin` is deprecated. - `Plugins` is a new sealed trait that is only implemented for `Plugin`, `PluginGroup` and tuples over `Plugins`. - All examples, benchmarks and tests are changed to use `add_plugins`, using tuples where appropriate. --- ## Changelog ### Changed - `App::add_plugins` now accepts all types that implement `Plugins`, which is implemented for: - Types that implement `Plugin`. - Types that implement `PluginGroup`. - Tuples (up to 16 elements) over types that implement `Plugins`. - Deprecated `App::add_plugin` in favor of `App::add_plugins`. ## Migration Guide - Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
		
			
				
	
	
		
			194 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Simple benchmark to test per-entity draw overhead.
 | |
| //!
 | |
| //! To measure performance realistically, be sure to run this in release mode.
 | |
| //! `cargo run --example many_cubes --release`
 | |
| //!
 | |
| //! By default, this arranges the meshes in a cubical pattern, where the number of visible meshes
 | |
| //! varies with the viewing angle. You can choose to run the demo with a spherical pattern that
 | |
| //! distributes the meshes evenly.
 | |
| //!
 | |
| //! To start the demo using the spherical layout run
 | |
| //! `cargo run --example many_cubes --release sphere`
 | |
| 
 | |
| use std::f64::consts::PI;
 | |
| 
 | |
| use bevy::{
 | |
|     diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
 | |
|     math::{DVec2, DVec3},
 | |
|     prelude::*,
 | |
|     window::{PresentMode, WindowPlugin},
 | |
| };
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins((
 | |
|             DefaultPlugins.set(WindowPlugin {
 | |
|                 primary_window: Some(Window {
 | |
|                     present_mode: PresentMode::AutoNoVsync,
 | |
|                     ..default()
 | |
|                 }),
 | |
|                 ..default()
 | |
|             }),
 | |
|             FrameTimeDiagnosticsPlugin,
 | |
|             LogDiagnosticsPlugin::default(),
 | |
|         ))
 | |
|         .add_systems(Startup, setup)
 | |
|         .add_systems(Update, (move_camera, print_mesh_count))
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| fn setup(
 | |
|     mut commands: Commands,
 | |
|     mut meshes: ResMut<Assets<Mesh>>,
 | |
|     mut materials: ResMut<Assets<StandardMaterial>>,
 | |
| ) {
 | |
|     warn!(include_str!("warning_string.txt"));
 | |
| 
 | |
|     const WIDTH: usize = 200;
 | |
|     const HEIGHT: usize = 200;
 | |
|     let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
 | |
|     let material = materials.add(StandardMaterial {
 | |
|         base_color: Color::PINK,
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     match std::env::args().nth(1).as_deref() {
 | |
|         Some("sphere") => {
 | |
|             // NOTE: This pattern is good for testing performance of culling as it provides roughly
 | |
|             // the same number of visible meshes regardless of the viewing angle.
 | |
|             const N_POINTS: usize = WIDTH * HEIGHT * 4;
 | |
|             // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
 | |
|             let radius = WIDTH as f64 * 2.5;
 | |
|             let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
 | |
|             for i in 0..N_POINTS {
 | |
|                 let spherical_polar_theta_phi =
 | |
|                     fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
 | |
|                 let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
 | |
|                 commands.spawn(PbrBundle {
 | |
|                     mesh: mesh.clone_weak(),
 | |
|                     material: material.clone_weak(),
 | |
|                     transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
 | |
|                     ..default()
 | |
|                 });
 | |
|             }
 | |
| 
 | |
|             // camera
 | |
|             commands.spawn(Camera3dBundle::default());
 | |
|         }
 | |
|         _ => {
 | |
|             // NOTE: This pattern is good for demonstrating that frustum culling is working correctly
 | |
|             // as the number of visible meshes rises and falls depending on the viewing angle.
 | |
|             for x in 0..WIDTH {
 | |
|                 for y in 0..HEIGHT {
 | |
|                     // introduce spaces to break any kind of moiré pattern
 | |
|                     if x % 10 == 0 || y % 10 == 0 {
 | |
|                         continue;
 | |
|                     }
 | |
|                     // cube
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz(
 | |
|                             (x as f32) * 2.5,
 | |
|                             HEIGHT as f32 * 2.5,
 | |
|                             (y as f32) * 2.5,
 | |
|                         ),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone_weak(),
 | |
|                         material: material.clone_weak(),
 | |
|                         transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
 | |
|                         ..default()
 | |
|                     });
 | |
|                 }
 | |
|             }
 | |
|             // camera
 | |
|             commands.spawn(Camera3dBundle {
 | |
|                 transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
 | |
|                 ..default()
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // add one cube, the only one with strong handles
 | |
|     // also serves as a reference point during rotation
 | |
|     commands.spawn(PbrBundle {
 | |
|         mesh,
 | |
|         material,
 | |
|         transform: Transform {
 | |
|             translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
 | |
|             scale: Vec3::splat(5.0),
 | |
|             ..default()
 | |
|         },
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     commands.spawn(DirectionalLightBundle { ..default() });
 | |
| }
 | |
| 
 | |
| // NOTE: This epsilon value is apparently optimal for optimizing for the average
 | |
| // nearest-neighbor distance. See:
 | |
| // http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
 | |
| // for details.
 | |
| const EPSILON: f64 = 0.36;
 | |
| 
 | |
| fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
 | |
|     DVec2::new(
 | |
|         PI * 2. * (i as f64 / golden_ratio),
 | |
|         (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
 | |
|     )
 | |
| }
 | |
| 
 | |
| fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
 | |
|     let (sin_theta, cos_theta) = p.x.sin_cos();
 | |
|     let (sin_phi, cos_phi) = p.y.sin_cos();
 | |
|     DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
 | |
| }
 | |
| 
 | |
| // System for rotating the camera
 | |
| fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
 | |
|     let mut camera_transform = camera_query.single_mut();
 | |
|     let delta = time.delta_seconds() * 0.15;
 | |
|     camera_transform.rotate_z(delta);
 | |
|     camera_transform.rotate_x(delta);
 | |
| }
 | |
| 
 | |
| // System for printing the number of meshes on every tick of the timer
 | |
| fn print_mesh_count(
 | |
|     time: Res<Time>,
 | |
|     mut timer: Local<PrintingTimer>,
 | |
|     sprites: Query<(&Handle<Mesh>, &ComputedVisibility)>,
 | |
| ) {
 | |
|     timer.tick(time.delta());
 | |
| 
 | |
|     if timer.just_finished() {
 | |
|         info!(
 | |
|             "Meshes: {} - Visible Meshes {}",
 | |
|             sprites.iter().len(),
 | |
|             sprites.iter().filter(|(_, cv)| cv.is_visible()).count(),
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[derive(Deref, DerefMut)]
 | |
| struct PrintingTimer(Timer);
 | |
| 
 | |
| impl Default for PrintingTimer {
 | |
|     fn default() -> Self {
 | |
|         Self(Timer::from_seconds(1.0, TimerMode::Repeating))
 | |
|     }
 | |
| }
 |