bevy/crates/bevy_render/src/render_resource/pipeline_cache.rs
Zachary Harrold 450328d15e
Replaced parking_lot with std::sync (#9545)
# Objective

- Fixes #4610 

## Solution

- Replaced all instances of `parking_lot` locks with equivalents from
`std::sync`. Acquiring locks within `std::sync` can fail, so
`.expect("Lock Poisoned")` statements were added where required.

## Comments

In [this
comment](https://github.com/bevyengine/bevy/issues/4610#issuecomment-1592407881),
the lack of deadlock detection was mentioned as a potential reason to
not make this change. From what I can gather, Bevy doesn't appear to be
using this functionality within the engine. Unless it was expected that
a Bevy consumer was expected to enable and use this functionality, it
appears to be a feature lost without consequence.

Unfortunately, `cpal` and `wgpu` both still rely on `parking_lot`,
leaving it in the dependency graph even after this change.

From my basic experimentation, this change doesn't appear to have any
performance impacts, positive or negative. I tested this using
`bevymark` with 50,000 entities and observed 20ms of frame-time before
and after the change. More extensive testing with larger/real projects
should probably be done.
2023-10-02 12:44:34 +00:00

876 lines
32 KiB
Rust

use crate::{
render_resource::{
BindGroupLayout, BindGroupLayoutId, ComputePipeline, ComputePipelineDescriptor,
RawComputePipelineDescriptor, RawFragmentState, RawRenderPipelineDescriptor,
RawVertexState, RenderPipeline, RenderPipelineDescriptor, Shader, ShaderImport, Source,
},
renderer::RenderDevice,
Extract,
};
use bevy_asset::{AssetEvent, AssetId, Assets};
use bevy_ecs::system::{Res, ResMut};
use bevy_ecs::{event::EventReader, system::Resource};
use bevy_utils::{
default,
tracing::{debug, error},
Entry, HashMap, HashSet,
};
use naga::valid::Capabilities;
use std::{
borrow::Cow,
hash::Hash,
mem,
ops::Deref,
sync::{Mutex, PoisonError},
};
use thiserror::Error;
#[cfg(feature = "shader_format_spirv")]
use wgpu::util::make_spirv;
use wgpu::{
Features, PipelineLayoutDescriptor, PushConstantRange, ShaderModuleDescriptor,
VertexBufferLayout as RawVertexBufferLayout,
};
use crate::render_resource::resource_macros::*;
render_resource_wrapper!(ErasedShaderModule, wgpu::ShaderModule);
render_resource_wrapper!(ErasedPipelineLayout, wgpu::PipelineLayout);
/// A descriptor for a [`Pipeline`].
///
/// Used to store an heterogenous collection of render and compute pipeline descriptors together.
#[derive(Debug)]
pub enum PipelineDescriptor {
RenderPipelineDescriptor(Box<RenderPipelineDescriptor>),
ComputePipelineDescriptor(Box<ComputePipelineDescriptor>),
}
/// A pipeline defining the data layout and shader logic for a specific GPU task.
///
/// Used to store an heterogenous collection of render and compute pipelines together.
#[derive(Debug)]
pub enum Pipeline {
RenderPipeline(RenderPipeline),
ComputePipeline(ComputePipeline),
}
type CachedPipelineId = usize;
/// Index of a cached render pipeline in a [`PipelineCache`].
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct CachedRenderPipelineId(CachedPipelineId);
impl CachedRenderPipelineId {
/// An invalid cached render pipeline index, often used to initialize a variable.
pub const INVALID: Self = CachedRenderPipelineId(usize::MAX);
#[inline]
pub fn id(&self) -> usize {
self.0
}
}
/// Index of a cached compute pipeline in a [`PipelineCache`].
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct CachedComputePipelineId(CachedPipelineId);
impl CachedComputePipelineId {
/// An invalid cached compute pipeline index, often used to initialize a variable.
pub const INVALID: Self = CachedComputePipelineId(usize::MAX);
#[inline]
pub fn id(&self) -> usize {
self.0
}
}
pub struct CachedPipeline {
pub descriptor: PipelineDescriptor,
pub state: CachedPipelineState,
}
/// State of a cached pipeline inserted into a [`PipelineCache`].
#[derive(Debug)]
pub enum CachedPipelineState {
/// The pipeline GPU object is queued for creation.
Queued,
/// The pipeline GPU object was created successfully and is available (allocated on the GPU).
Ok(Pipeline),
/// An error occurred while trying to create the pipeline GPU object.
Err(PipelineCacheError),
}
impl CachedPipelineState {
/// Convenience method to "unwrap" a pipeline state into its underlying GPU object.
///
/// # Returns
///
/// The method returns the allocated pipeline GPU object.
///
/// # Panics
///
/// This method panics if the pipeline GPU object is not available, either because it is
/// pending creation or because an error occurred while attempting to create GPU object.
pub fn unwrap(&self) -> &Pipeline {
match self {
CachedPipelineState::Ok(pipeline) => pipeline,
CachedPipelineState::Queued => {
panic!("Pipeline has not been compiled yet. It is still in the 'Queued' state.")
}
CachedPipelineState::Err(err) => panic!("{}", err),
}
}
}
#[derive(Default)]
struct ShaderData {
pipelines: HashSet<CachedPipelineId>,
processed_shaders: HashMap<Vec<ShaderDefVal>, ErasedShaderModule>,
resolved_imports: HashMap<ShaderImport, AssetId<Shader>>,
dependents: HashSet<AssetId<Shader>>,
}
struct ShaderCache {
data: HashMap<AssetId<Shader>, ShaderData>,
shaders: HashMap<AssetId<Shader>, Shader>,
import_path_shaders: HashMap<ShaderImport, AssetId<Shader>>,
waiting_on_import: HashMap<ShaderImport, Vec<AssetId<Shader>>>,
composer: naga_oil::compose::Composer,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum ShaderDefVal {
Bool(String, bool),
Int(String, i32),
UInt(String, u32),
}
impl From<&str> for ShaderDefVal {
fn from(key: &str) -> Self {
ShaderDefVal::Bool(key.to_string(), true)
}
}
impl From<String> for ShaderDefVal {
fn from(key: String) -> Self {
ShaderDefVal::Bool(key, true)
}
}
impl ShaderDefVal {
pub fn value_as_string(&self) -> String {
match self {
ShaderDefVal::Bool(_, def) => def.to_string(),
ShaderDefVal::Int(_, def) => def.to_string(),
ShaderDefVal::UInt(_, def) => def.to_string(),
}
}
}
impl ShaderCache {
fn new(render_device: &RenderDevice) -> Self {
const CAPABILITIES: &[(Features, Capabilities)] = &[
(Features::PUSH_CONSTANTS, Capabilities::PUSH_CONSTANT),
(Features::SHADER_F64, Capabilities::FLOAT64),
(
Features::SHADER_PRIMITIVE_INDEX,
Capabilities::PRIMITIVE_INDEX,
),
(
Features::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING,
Capabilities::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING,
),
(
Features::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING,
Capabilities::SAMPLER_NON_UNIFORM_INDEXING,
),
(
Features::UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING,
Capabilities::UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING,
),
];
let features = render_device.features();
let mut capabilities = Capabilities::empty();
for (feature, capability) in CAPABILITIES {
if features.contains(*feature) {
capabilities |= *capability;
}
}
#[cfg(debug_assertions)]
let composer = naga_oil::compose::Composer::default();
#[cfg(not(debug_assertions))]
let composer = naga_oil::compose::Composer::non_validating();
let composer = composer.with_capabilities(capabilities);
Self {
composer,
data: Default::default(),
shaders: Default::default(),
import_path_shaders: Default::default(),
waiting_on_import: Default::default(),
}
}
fn add_import_to_composer(
composer: &mut naga_oil::compose::Composer,
import_path_shaders: &HashMap<ShaderImport, AssetId<Shader>>,
shaders: &HashMap<AssetId<Shader>, Shader>,
import: &ShaderImport,
) -> Result<(), PipelineCacheError> {
if !composer.contains_module(&import.module_name()) {
if let Some(shader_handle) = import_path_shaders.get(import) {
if let Some(shader) = shaders.get(shader_handle) {
for import in &shader.imports {
Self::add_import_to_composer(
composer,
import_path_shaders,
shaders,
import,
)?;
}
composer.add_composable_module(shader.into())?;
}
}
// if we fail to add a module the composer will tell us what is missing
}
Ok(())
}
#[allow(clippy::result_large_err)]
fn get(
&mut self,
render_device: &RenderDevice,
pipeline: CachedPipelineId,
id: AssetId<Shader>,
shader_defs: &[ShaderDefVal],
) -> Result<ErasedShaderModule, PipelineCacheError> {
let shader = self
.shaders
.get(&id)
.ok_or(PipelineCacheError::ShaderNotLoaded(id))?;
let data = self.data.entry(id).or_default();
let n_asset_imports = shader
.imports()
.filter(|import| matches!(import, ShaderImport::AssetPath(_)))
.count();
let n_resolved_asset_imports = data
.resolved_imports
.keys()
.filter(|import| matches!(import, ShaderImport::AssetPath(_)))
.count();
if n_asset_imports != n_resolved_asset_imports {
return Err(PipelineCacheError::ShaderImportNotYetAvailable);
}
data.pipelines.insert(pipeline);
// PERF: this shader_defs clone isn't great. use raw_entry_mut when it stabilizes
let module = match data.processed_shaders.entry(shader_defs.to_vec()) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let mut shader_defs = shader_defs.to_vec();
#[cfg(all(feature = "webgl", target_arch = "wasm32"))]
{
shader_defs.push("NO_ARRAY_TEXTURES_SUPPORT".into());
shader_defs.push("SIXTEEN_BYTE_ALIGNMENT".into());
}
shader_defs.push(ShaderDefVal::UInt(
String::from("AVAILABLE_STORAGE_BUFFER_BINDINGS"),
render_device.limits().max_storage_buffers_per_shader_stage,
));
debug!(
"processing shader {:?}, with shader defs {:?}",
id, shader_defs
);
let shader_source = match &shader.source {
#[cfg(feature = "shader_format_spirv")]
Source::SpirV(data) => make_spirv(data),
#[cfg(not(feature = "shader_format_spirv"))]
Source::SpirV(_) => {
unimplemented!(
"Enable feature \"shader_format_spirv\" to use SPIR-V shaders"
)
}
_ => {
for import in shader.imports() {
Self::add_import_to_composer(
&mut self.composer,
&self.import_path_shaders,
&self.shaders,
import,
)?;
}
let shader_defs = shader_defs
.into_iter()
.chain(shader.shader_defs.iter().cloned())
.map(|def| match def {
ShaderDefVal::Bool(k, v) => {
(k, naga_oil::compose::ShaderDefValue::Bool(v))
}
ShaderDefVal::Int(k, v) => {
(k, naga_oil::compose::ShaderDefValue::Int(v))
}
ShaderDefVal::UInt(k, v) => {
(k, naga_oil::compose::ShaderDefValue::UInt(v))
}
})
.collect::<std::collections::HashMap<_, _>>();
let naga = self.composer.make_naga_module(
naga_oil::compose::NagaModuleDescriptor {
shader_defs,
..shader.into()
},
)?;
wgpu::ShaderSource::Naga(Cow::Owned(naga))
}
};
let module_descriptor = ShaderModuleDescriptor {
label: None,
source: shader_source,
};
render_device
.wgpu_device()
.push_error_scope(wgpu::ErrorFilter::Validation);
let shader_module = render_device.create_shader_module(module_descriptor);
let error = render_device.wgpu_device().pop_error_scope();
// `now_or_never` will return Some if the future is ready and None otherwise.
// On native platforms, wgpu will yield the error immediately while on wasm it may take longer since the browser APIs are asynchronous.
// So to keep the complexity of the ShaderCache low, we will only catch this error early on native platforms,
// and on wasm the error will be handled by wgpu and crash the application.
if let Some(Some(wgpu::Error::Validation { description, .. })) =
bevy_utils::futures::now_or_never(error)
{
return Err(PipelineCacheError::CreateShaderModule(description));
}
entry.insert(ErasedShaderModule::new(shader_module))
}
};
Ok(module.clone())
}
fn clear(&mut self, id: AssetId<Shader>) -> Vec<CachedPipelineId> {
let mut shaders_to_clear = vec![id];
let mut pipelines_to_queue = Vec::new();
while let Some(handle) = shaders_to_clear.pop() {
if let Some(data) = self.data.get_mut(&handle) {
data.processed_shaders.clear();
pipelines_to_queue.extend(data.pipelines.iter().copied());
shaders_to_clear.extend(data.dependents.iter().copied());
if let Some(Shader { import_path, .. }) = self.shaders.get(&handle) {
self.composer
.remove_composable_module(&import_path.module_name());
}
}
}
pipelines_to_queue
}
fn set_shader(&mut self, id: AssetId<Shader>, shader: Shader) -> Vec<CachedPipelineId> {
let pipelines_to_queue = self.clear(id);
let path = shader.import_path();
self.import_path_shaders.insert(path.clone(), id);
if let Some(waiting_shaders) = self.waiting_on_import.get_mut(path) {
for waiting_shader in waiting_shaders.drain(..) {
// resolve waiting shader import
let data = self.data.entry(waiting_shader).or_default();
data.resolved_imports.insert(path.clone(), id);
// add waiting shader as dependent of this shader
let data = self.data.entry(id).or_default();
data.dependents.insert(waiting_shader);
}
}
for import in shader.imports() {
if let Some(import_id) = self.import_path_shaders.get(import).copied() {
// resolve import because it is currently available
let data = self.data.entry(id).or_default();
data.resolved_imports.insert(import.clone(), import_id);
// add this shader as a dependent of the import
let data = self.data.entry(import_id).or_default();
data.dependents.insert(id);
} else {
let waiting = self.waiting_on_import.entry(import.clone()).or_default();
waiting.push(id);
}
}
self.shaders.insert(id, shader);
pipelines_to_queue
}
fn remove(&mut self, id: AssetId<Shader>) -> Vec<CachedPipelineId> {
let pipelines_to_queue = self.clear(id);
if let Some(shader) = self.shaders.remove(&id) {
self.import_path_shaders.remove(shader.import_path());
}
pipelines_to_queue
}
}
type LayoutCacheKey = (Vec<BindGroupLayoutId>, Vec<PushConstantRange>);
#[derive(Default)]
struct LayoutCache {
layouts: HashMap<LayoutCacheKey, ErasedPipelineLayout>,
}
impl LayoutCache {
fn get(
&mut self,
render_device: &RenderDevice,
bind_group_layouts: &[BindGroupLayout],
push_constant_ranges: Vec<PushConstantRange>,
) -> &wgpu::PipelineLayout {
let bind_group_ids = bind_group_layouts.iter().map(|l| l.id()).collect();
self.layouts
.entry((bind_group_ids, push_constant_ranges))
.or_insert_with_key(|(_, push_constant_ranges)| {
let bind_group_layouts = bind_group_layouts
.iter()
.map(|l| l.value())
.collect::<Vec<_>>();
ErasedPipelineLayout::new(render_device.create_pipeline_layout(
&PipelineLayoutDescriptor {
bind_group_layouts: &bind_group_layouts,
push_constant_ranges,
..default()
},
))
})
}
}
/// Cache for render and compute pipelines.
///
/// The cache stores existing render and compute pipelines allocated on the GPU, as well as
/// pending creation. Pipelines inserted into the cache are identified by a unique ID, which
/// can be used to retrieve the actual GPU object once it's ready. The creation of the GPU
/// pipeline object is deferred to the [`RenderSet::Render`] step, just before the render
/// graph starts being processed, as this requires access to the GPU.
///
/// Note that the cache do not perform automatic deduplication of identical pipelines. It is
/// up to the user not to insert the same pipeline twice to avoid wasting GPU resources.
///
/// [`RenderSet::Render`]: crate::RenderSet::Render
#[derive(Resource)]
pub struct PipelineCache {
layout_cache: LayoutCache,
shader_cache: ShaderCache,
device: RenderDevice,
pipelines: Vec<CachedPipeline>,
waiting_pipelines: HashSet<CachedPipelineId>,
new_pipelines: Mutex<Vec<CachedPipeline>>,
}
impl PipelineCache {
pub fn pipelines(&self) -> impl Iterator<Item = &CachedPipeline> {
self.pipelines.iter()
}
/// Create a new pipeline cache associated with the given render device.
pub fn new(device: RenderDevice) -> Self {
Self {
shader_cache: ShaderCache::new(&device),
device,
layout_cache: default(),
waiting_pipelines: default(),
new_pipelines: default(),
pipelines: default(),
}
}
/// Get the state of a cached render pipeline.
///
/// See [`PipelineCache::queue_render_pipeline()`].
#[inline]
pub fn get_render_pipeline_state(&self, id: CachedRenderPipelineId) -> &CachedPipelineState {
&self.pipelines[id.0].state
}
/// Get the state of a cached compute pipeline.
///
/// See [`PipelineCache::queue_compute_pipeline()`].
#[inline]
pub fn get_compute_pipeline_state(&self, id: CachedComputePipelineId) -> &CachedPipelineState {
&self.pipelines[id.0].state
}
/// Get the render pipeline descriptor a cached render pipeline was inserted from.
///
/// See [`PipelineCache::queue_render_pipeline()`].
#[inline]
pub fn get_render_pipeline_descriptor(
&self,
id: CachedRenderPipelineId,
) -> &RenderPipelineDescriptor {
match &self.pipelines[id.0].descriptor {
PipelineDescriptor::RenderPipelineDescriptor(descriptor) => descriptor,
PipelineDescriptor::ComputePipelineDescriptor(_) => unreachable!(),
}
}
/// Get the compute pipeline descriptor a cached render pipeline was inserted from.
///
/// See [`PipelineCache::queue_compute_pipeline()`].
#[inline]
pub fn get_compute_pipeline_descriptor(
&self,
id: CachedComputePipelineId,
) -> &ComputePipelineDescriptor {
match &self.pipelines[id.0].descriptor {
PipelineDescriptor::RenderPipelineDescriptor(_) => unreachable!(),
PipelineDescriptor::ComputePipelineDescriptor(descriptor) => descriptor,
}
}
/// Try to retrieve a render pipeline GPU object from a cached ID.
///
/// # Returns
///
/// This method returns a successfully created render pipeline if any, or `None` if the pipeline
/// was not created yet or if there was an error during creation. You can check the actual creation
/// state with [`PipelineCache::get_render_pipeline_state()`].
#[inline]
pub fn get_render_pipeline(&self, id: CachedRenderPipelineId) -> Option<&RenderPipeline> {
if let CachedPipelineState::Ok(Pipeline::RenderPipeline(pipeline)) =
&self.pipelines[id.0].state
{
Some(pipeline)
} else {
None
}
}
/// Try to retrieve a compute pipeline GPU object from a cached ID.
///
/// # Returns
///
/// This method returns a successfully created compute pipeline if any, or `None` if the pipeline
/// was not created yet or if there was an error during creation. You can check the actual creation
/// state with [`PipelineCache::get_compute_pipeline_state()`].
#[inline]
pub fn get_compute_pipeline(&self, id: CachedComputePipelineId) -> Option<&ComputePipeline> {
if let CachedPipelineState::Ok(Pipeline::ComputePipeline(pipeline)) =
&self.pipelines[id.0].state
{
Some(pipeline)
} else {
None
}
}
/// Insert a render pipeline into the cache, and queue its creation.
///
/// The pipeline is always inserted and queued for creation. There is no attempt to deduplicate it with
/// an already cached pipeline.
///
/// # Returns
///
/// This method returns the unique render shader ID of the cached pipeline, which can be used to query
/// the caching state with [`get_render_pipeline_state()`] and to retrieve the created GPU pipeline once
/// it's ready with [`get_render_pipeline()`].
///
/// [`get_render_pipeline_state()`]: PipelineCache::get_render_pipeline_state
/// [`get_render_pipeline()`]: PipelineCache::get_render_pipeline
pub fn queue_render_pipeline(
&self,
descriptor: RenderPipelineDescriptor,
) -> CachedRenderPipelineId {
let mut new_pipelines = self
.new_pipelines
.lock()
.unwrap_or_else(PoisonError::into_inner);
let id = CachedRenderPipelineId(self.pipelines.len() + new_pipelines.len());
new_pipelines.push(CachedPipeline {
descriptor: PipelineDescriptor::RenderPipelineDescriptor(Box::new(descriptor)),
state: CachedPipelineState::Queued,
});
id
}
/// Insert a compute pipeline into the cache, and queue its creation.
///
/// The pipeline is always inserted and queued for creation. There is no attempt to deduplicate it with
/// an already cached pipeline.
///
/// # Returns
///
/// This method returns the unique compute shader ID of the cached pipeline, which can be used to query
/// the caching state with [`get_compute_pipeline_state()`] and to retrieve the created GPU pipeline once
/// it's ready with [`get_compute_pipeline()`].
///
/// [`get_compute_pipeline_state()`]: PipelineCache::get_compute_pipeline_state
/// [`get_compute_pipeline()`]: PipelineCache::get_compute_pipeline
pub fn queue_compute_pipeline(
&self,
descriptor: ComputePipelineDescriptor,
) -> CachedComputePipelineId {
let mut new_pipelines = self
.new_pipelines
.lock()
.unwrap_or_else(PoisonError::into_inner);
let id = CachedComputePipelineId(self.pipelines.len() + new_pipelines.len());
new_pipelines.push(CachedPipeline {
descriptor: PipelineDescriptor::ComputePipelineDescriptor(Box::new(descriptor)),
state: CachedPipelineState::Queued,
});
id
}
fn set_shader(&mut self, id: AssetId<Shader>, shader: &Shader) {
let pipelines_to_queue = self.shader_cache.set_shader(id, shader.clone());
for cached_pipeline in pipelines_to_queue {
self.pipelines[cached_pipeline].state = CachedPipelineState::Queued;
self.waiting_pipelines.insert(cached_pipeline);
}
}
fn remove_shader(&mut self, shader: AssetId<Shader>) {
let pipelines_to_queue = self.shader_cache.remove(shader);
for cached_pipeline in pipelines_to_queue {
self.pipelines[cached_pipeline].state = CachedPipelineState::Queued;
self.waiting_pipelines.insert(cached_pipeline);
}
}
fn process_render_pipeline(
&mut self,
id: CachedPipelineId,
descriptor: &RenderPipelineDescriptor,
) -> CachedPipelineState {
let vertex_module = match self.shader_cache.get(
&self.device,
id,
descriptor.vertex.shader.id(),
&descriptor.vertex.shader_defs,
) {
Ok(module) => module,
Err(err) => {
return CachedPipelineState::Err(err);
}
};
let fragment_data = if let Some(fragment) = &descriptor.fragment {
let fragment_module = match self.shader_cache.get(
&self.device,
id,
fragment.shader.id(),
&fragment.shader_defs,
) {
Ok(module) => module,
Err(err) => {
return CachedPipelineState::Err(err);
}
};
Some((
fragment_module,
fragment.entry_point.deref(),
fragment.targets.as_slice(),
))
} else {
None
};
let vertex_buffer_layouts = descriptor
.vertex
.buffers
.iter()
.map(|layout| RawVertexBufferLayout {
array_stride: layout.array_stride,
attributes: &layout.attributes,
step_mode: layout.step_mode,
})
.collect::<Vec<_>>();
let layout = if descriptor.layout.is_empty() && descriptor.push_constant_ranges.is_empty() {
None
} else {
Some(self.layout_cache.get(
&self.device,
&descriptor.layout,
descriptor.push_constant_ranges.to_vec(),
))
};
let descriptor = RawRenderPipelineDescriptor {
multiview: None,
depth_stencil: descriptor.depth_stencil.clone(),
label: descriptor.label.as_deref(),
layout,
multisample: descriptor.multisample,
primitive: descriptor.primitive,
vertex: RawVertexState {
buffers: &vertex_buffer_layouts,
entry_point: descriptor.vertex.entry_point.deref(),
module: &vertex_module,
},
fragment: fragment_data
.as_ref()
.map(|(module, entry_point, targets)| RawFragmentState {
entry_point,
module,
targets,
}),
};
let pipeline = self.device.create_render_pipeline(&descriptor);
CachedPipelineState::Ok(Pipeline::RenderPipeline(pipeline))
}
fn process_compute_pipeline(
&mut self,
id: CachedPipelineId,
descriptor: &ComputePipelineDescriptor,
) -> CachedPipelineState {
let compute_module = match self.shader_cache.get(
&self.device,
id,
descriptor.shader.id(),
&descriptor.shader_defs,
) {
Ok(module) => module,
Err(err) => {
return CachedPipelineState::Err(err);
}
};
let layout = if descriptor.layout.is_empty() && descriptor.push_constant_ranges.is_empty() {
None
} else {
Some(self.layout_cache.get(
&self.device,
&descriptor.layout,
descriptor.push_constant_ranges.to_vec(),
))
};
let descriptor = RawComputePipelineDescriptor {
label: descriptor.label.as_deref(),
layout,
module: &compute_module,
entry_point: descriptor.entry_point.as_ref(),
};
let pipeline = self.device.create_compute_pipeline(&descriptor);
CachedPipelineState::Ok(Pipeline::ComputePipeline(pipeline))
}
/// Process the pipeline queue and create all pending pipelines if possible.
///
/// This is generally called automatically during the [`RenderSet::Render`] step, but can
/// be called manually to force creation at a different time.
///
/// [`RenderSet::Render`]: crate::RenderSet::Render
pub fn process_queue(&mut self) {
let mut waiting_pipelines = mem::take(&mut self.waiting_pipelines);
let mut pipelines = mem::take(&mut self.pipelines);
{
let mut new_pipelines = self
.new_pipelines
.lock()
.unwrap_or_else(PoisonError::into_inner);
for new_pipeline in new_pipelines.drain(..) {
let id = pipelines.len();
pipelines.push(new_pipeline);
waiting_pipelines.insert(id);
}
}
for id in waiting_pipelines {
let pipeline = &mut pipelines[id];
if matches!(pipeline.state, CachedPipelineState::Ok(_)) {
continue;
}
pipeline.state = match &pipeline.descriptor {
PipelineDescriptor::RenderPipelineDescriptor(descriptor) => {
self.process_render_pipeline(id, descriptor)
}
PipelineDescriptor::ComputePipelineDescriptor(descriptor) => {
self.process_compute_pipeline(id, descriptor)
}
};
if let CachedPipelineState::Err(err) = &pipeline.state {
match err {
PipelineCacheError::ShaderNotLoaded(_)
| PipelineCacheError::ShaderImportNotYetAvailable => {
// retry
self.waiting_pipelines.insert(id);
}
// shader could not be processed ... retrying won't help
PipelineCacheError::ProcessShaderError(err) => {
let error_detail = err.emit_to_string(&self.shader_cache.composer);
error!("failed to process shader:\n{}", error_detail);
continue;
}
PipelineCacheError::CreateShaderModule(description) => {
error!("failed to create shader module: {}", description);
continue;
}
}
}
}
self.pipelines = pipelines;
}
pub(crate) fn process_pipeline_queue_system(mut cache: ResMut<Self>) {
cache.process_queue();
}
pub(crate) fn extract_shaders(
mut cache: ResMut<Self>,
shaders: Extract<Res<Assets<Shader>>>,
mut events: Extract<EventReader<AssetEvent<Shader>>>,
) {
for event in events.read() {
match event {
AssetEvent::Added { id } | AssetEvent::Modified { id } => {
if let Some(shader) = shaders.get(*id) {
cache.set_shader(*id, shader);
}
}
AssetEvent::Removed { id } => cache.remove_shader(*id),
AssetEvent::LoadedWithDependencies { .. } => {
// TODO: handle this
}
}
}
}
}
/// Type of error returned by a [`PipelineCache`] when the creation of a GPU pipeline object failed.
#[derive(Error, Debug)]
pub enum PipelineCacheError {
#[error(
"Pipeline could not be compiled because the following shader is not loaded yet: {0:?}"
)]
ShaderNotLoaded(AssetId<Shader>),
#[error(transparent)]
ProcessShaderError(#[from] naga_oil::compose::ComposerError),
#[error("Shader import not yet available.")]
ShaderImportNotYetAvailable,
#[error("Could not create shader module: {0}")]
CreateShaderModule(String),
}