bevy/crates/bevy_math/src/curve/easing.rs
Gino Valente 9b32e09551
bevy_reflect: Add clone registrations project-wide (#18307)
# Objective

Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.

## Solution

This PR is broken into 4 commits:

1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
   
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.

Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.

That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.

Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).

## Testing

You can test locally with a `cargo check`:

```
cargo check --workspace --all-features
```
2025-03-17 18:32:35 +00:00

1203 lines
39 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Module containing different [easing functions] to control the transition between two values and
//! the [`EasingCurve`] struct to make use of them.
//!
//! [easing functions]: EaseFunction
use crate::{
curve::{Curve, CurveExt, FunctionCurve, Interval},
Dir2, Dir3, Dir3A, Isometry2d, Isometry3d, Quat, Rot2, VectorSpace,
};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::std_traits::ReflectDefault;
use variadics_please::all_tuples_enumerated;
// TODO: Think about merging `Ease` with `StableInterpolate`
/// A type whose values can be eased between.
///
/// This requires the construction of an interpolation curve that actually extends
/// beyond the curve segment that connects two values, because an easing curve may
/// extrapolate before the starting value and after the ending value. This is
/// especially common in easing functions that mimic elastic or springlike behavior.
pub trait Ease: Sized {
/// Given `start` and `end` values, produce a curve with [unlimited domain]
/// that:
/// - takes a value equivalent to `start` at `t = 0`
/// - takes a value equivalent to `end` at `t = 1`
/// - has constant speed everywhere, including outside of `[0, 1]`
///
/// [unlimited domain]: Interval::EVERYWHERE
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self>;
}
impl<V: VectorSpace> Ease for V {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
FunctionCurve::new(Interval::EVERYWHERE, move |t| V::lerp(start, end, t))
}
}
impl Ease for Rot2 {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
FunctionCurve::new(Interval::EVERYWHERE, move |t| Rot2::slerp(start, end, t))
}
}
impl Ease for Quat {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
let dot = start.dot(end);
let end_adjusted = if dot < 0.0 { -end } else { end };
let difference = end_adjusted * start.inverse();
let (axis, angle) = difference.to_axis_angle();
FunctionCurve::new(Interval::EVERYWHERE, move |s| {
Quat::from_axis_angle(axis, angle * s) * start
})
}
}
impl Ease for Dir2 {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
FunctionCurve::new(Interval::EVERYWHERE, move |t| Dir2::slerp(start, end, t))
}
}
impl Ease for Dir3 {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
let difference_quat = Quat::from_rotation_arc(start.as_vec3(), end.as_vec3());
Quat::interpolating_curve_unbounded(Quat::IDENTITY, difference_quat).map(move |q| q * start)
}
}
impl Ease for Dir3A {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
let difference_quat =
Quat::from_rotation_arc(start.as_vec3a().into(), end.as_vec3a().into());
Quat::interpolating_curve_unbounded(Quat::IDENTITY, difference_quat).map(move |q| q * start)
}
}
impl Ease for Isometry3d {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
FunctionCurve::new(Interval::EVERYWHERE, move |t| {
// we can use sample_unchecked here, since both interpolating_curve_unbounded impls
// used are defined on the whole domain
Isometry3d {
rotation: Quat::interpolating_curve_unbounded(start.rotation, end.rotation)
.sample_unchecked(t),
translation: crate::Vec3A::interpolating_curve_unbounded(
start.translation,
end.translation,
)
.sample_unchecked(t),
}
})
}
}
impl Ease for Isometry2d {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
FunctionCurve::new(Interval::EVERYWHERE, move |t| {
// we can use sample_unchecked here, since both interpolating_curve_unbounded impls
// used are defined on the whole domain
Isometry2d {
rotation: Rot2::interpolating_curve_unbounded(start.rotation, end.rotation)
.sample_unchecked(t),
translation: crate::Vec2::interpolating_curve_unbounded(
start.translation,
end.translation,
)
.sample_unchecked(t),
}
})
}
}
macro_rules! impl_ease_tuple {
($(#[$meta:meta])* $(($n:tt, $T:ident)),*) => {
$(#[$meta])*
impl<$($T: Ease),*> Ease for ($($T,)*) {
fn interpolating_curve_unbounded(start: Self, end: Self) -> impl Curve<Self> {
let curve_tuple =
(
$(
<$T as Ease>::interpolating_curve_unbounded(start.$n, end.$n),
)*
);
FunctionCurve::new(Interval::EVERYWHERE, move |t|
(
$(
curve_tuple.$n.sample_unchecked(t),
)*
)
)
}
}
};
}
all_tuples_enumerated!(
#[doc(fake_variadic)]
impl_ease_tuple,
1,
11,
T
);
/// A [`Curve`] that is defined by
///
/// - an initial `start` sample value at `t = 0`
/// - a final `end` sample value at `t = 1`
/// - an [easing function] to interpolate between the two values.
///
/// The resulting curve's domain is always [the unit interval].
///
/// # Example
///
/// Create a linear curve that interpolates between `2.0` and `4.0`.
///
/// ```
/// # use bevy_math::prelude::*;
/// let c = EasingCurve::new(2.0, 4.0, EaseFunction::Linear);
/// ```
///
/// [`sample`] the curve at various points. This will return `None` if the parameter
/// is outside the unit interval.
///
/// ```
/// # use bevy_math::prelude::*;
/// # let c = EasingCurve::new(2.0, 4.0, EaseFunction::Linear);
/// assert_eq!(c.sample(-1.0), None);
/// assert_eq!(c.sample(0.0), Some(2.0));
/// assert_eq!(c.sample(0.5), Some(3.0));
/// assert_eq!(c.sample(1.0), Some(4.0));
/// assert_eq!(c.sample(2.0), None);
/// ```
///
/// [`sample_clamped`] will clamp the parameter to the unit interval, so it
/// always returns a value.
///
/// ```
/// # use bevy_math::prelude::*;
/// # let c = EasingCurve::new(2.0, 4.0, EaseFunction::Linear);
/// assert_eq!(c.sample_clamped(-1.0), 2.0);
/// assert_eq!(c.sample_clamped(0.0), 2.0);
/// assert_eq!(c.sample_clamped(0.5), 3.0);
/// assert_eq!(c.sample_clamped(1.0), 4.0);
/// assert_eq!(c.sample_clamped(2.0), 4.0);
/// ```
///
/// `EasingCurve` can be used with any type that implements the [`Ease`] trait.
/// This includes many math types, like vectors and rotations.
///
/// ```
/// # use bevy_math::prelude::*;
/// let c = EasingCurve::new(
/// Vec2::new(0.0, 4.0),
/// Vec2::new(2.0, 8.0),
/// EaseFunction::Linear,
/// );
///
/// assert_eq!(c.sample_clamped(0.5), Vec2::new(1.0, 6.0));
/// ```
///
/// ```
/// # use bevy_math::prelude::*;
/// # use approx::assert_abs_diff_eq;
/// let c = EasingCurve::new(
/// Rot2::degrees(10.0),
/// Rot2::degrees(20.0),
/// EaseFunction::Linear,
/// );
///
/// assert_abs_diff_eq!(c.sample_clamped(0.5), Rot2::degrees(15.0));
/// ```
///
/// As a shortcut, an `EasingCurve` between `0.0` and `1.0` can be replaced by
/// [`EaseFunction`].
///
/// ```
/// # use bevy_math::prelude::*;
/// # let t = 0.5;
/// let f = EaseFunction::SineIn;
/// let c = EasingCurve::new(0.0, 1.0, EaseFunction::SineIn);
///
/// assert_eq!(f.sample(t), c.sample(t));
/// ```
///
/// [easing function]: EaseFunction
/// [the unit interval]: Interval::UNIT
/// [`sample`]: EasingCurve::sample
/// [`sample_clamped`]: EasingCurve::sample_clamped
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
pub struct EasingCurve<T> {
start: T,
end: T,
ease_fn: EaseFunction,
}
impl<T> EasingCurve<T> {
/// Given a `start` and `end` value, create a curve parametrized over [the unit interval]
/// that connects them, using the given [ease function] to determine the form of the
/// curve in between.
///
/// [the unit interval]: Interval::UNIT
/// [ease function]: EaseFunction
pub fn new(start: T, end: T, ease_fn: EaseFunction) -> Self {
Self {
start,
end,
ease_fn,
}
}
}
impl<T> Curve<T> for EasingCurve<T>
where
T: Ease + Clone,
{
#[inline]
fn domain(&self) -> Interval {
Interval::UNIT
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
let remapped_t = self.ease_fn.eval(t);
T::interpolating_curve_unbounded(self.start.clone(), self.end.clone())
.sample_unchecked(remapped_t)
}
}
/// Configuration options for the [`EaseFunction::Steps`] curves. This closely replicates the
/// [CSS step function specification].
///
/// [CSS step function specification]: https://developer.mozilla.org/en-US/docs/Web/CSS/easing-function/steps#description
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(bevy_reflect::Reflect),
reflect(Clone, Default, PartialEq)
)]
pub enum JumpAt {
/// Indicates that the first step happens when the animation begins.
///
#[doc = include_str!("../../images/easefunction/StartSteps.svg")]
Start,
/// Indicates that the last step happens when the animation ends.
///
#[doc = include_str!("../../images/easefunction/EndSteps.svg")]
#[default]
End,
/// Indicates neither early nor late jumps happen.
///
#[doc = include_str!("../../images/easefunction/NoneSteps.svg")]
None,
/// Indicates both early and late jumps happen.
///
#[doc = include_str!("../../images/easefunction/BothSteps.svg")]
Both,
}
impl JumpAt {
#[inline]
pub(crate) fn eval(self, num_steps: usize, t: f32) -> f32 {
use crate::ops;
let (a, b) = match self {
JumpAt::Start => (1.0, 0),
JumpAt::End => (0.0, 0),
JumpAt::None => (0.0, -1),
JumpAt::Both => (1.0, 1),
};
let current_step = ops::floor(t * num_steps as f32) + a;
let step_size = (num_steps as isize + b).max(1) as f32;
(current_step / step_size).clamp(0.0, 1.0)
}
}
/// Curve functions over the [unit interval], commonly used for easing transitions.
///
/// `EaseFunction` can be used on its own to interpolate between `0.0` and `1.0`.
/// It can also be combined with [`EasingCurve`] to interpolate between other
/// intervals and types, including vectors and rotations.
///
/// # Example
///
/// [`sample`] the smoothstep function at various points. This will return `None`
/// if the parameter is outside the unit interval.
///
/// ```
/// # use bevy_math::prelude::*;
/// let f = EaseFunction::SmoothStep;
///
/// assert_eq!(f.sample(-1.0), None);
/// assert_eq!(f.sample(0.0), Some(0.0));
/// assert_eq!(f.sample(0.5), Some(0.5));
/// assert_eq!(f.sample(1.0), Some(1.0));
/// assert_eq!(f.sample(2.0), None);
/// ```
///
/// [`sample_clamped`] will clamp the parameter to the unit interval, so it
/// always returns a value.
///
/// ```
/// # use bevy_math::prelude::*;
/// # let f = EaseFunction::SmoothStep;
/// assert_eq!(f.sample_clamped(-1.0), 0.0);
/// assert_eq!(f.sample_clamped(0.0), 0.0);
/// assert_eq!(f.sample_clamped(0.5), 0.5);
/// assert_eq!(f.sample_clamped(1.0), 1.0);
/// assert_eq!(f.sample_clamped(2.0), 1.0);
/// ```
///
/// [`sample`]: EaseFunction::sample
/// [`sample_clamped`]: EaseFunction::sample_clamped
/// [unit interval]: `Interval::UNIT`
#[non_exhaustive]
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(bevy_reflect::Reflect),
reflect(Clone, PartialEq)
)]
// Note: Graphs are auto-generated via `tools/build-easefunction-graphs`.
pub enum EaseFunction {
/// `f(t) = t`
///
#[doc = include_str!("../../images/easefunction/Linear.svg")]
Linear,
/// `f(t) = t²`
///
/// This is the Hermite interpolator for
/// - f(0) = 0
/// - f(1) = 1
/// - f(0) = 0
///
#[doc = include_str!("../../images/easefunction/QuadraticIn.svg")]
QuadraticIn,
/// `f(t) = -(t * (t - 2.0))`
///
/// This is the Hermite interpolator for
/// - f(0) = 0
/// - f(1) = 1
/// - f(1) = 0
///
#[doc = include_str!("../../images/easefunction/QuadraticOut.svg")]
QuadraticOut,
/// Behaves as `EaseFunction::QuadraticIn` for t < 0.5 and as `EaseFunction::QuadraticOut` for t >= 0.5
///
/// A quadratic has too low of a degree to be both an `InOut` and C²,
/// so consider using at least a cubic (such as [`EaseFunction::SmoothStep`])
/// if you want the acceleration to be continuous.
///
#[doc = include_str!("../../images/easefunction/QuadraticInOut.svg")]
QuadraticInOut,
/// `f(t) = t³`
///
/// This is the Hermite interpolator for
/// - f(0) = 0
/// - f(1) = 1
/// - f(0) = 0
/// - f″(0) = 0
///
#[doc = include_str!("../../images/easefunction/CubicIn.svg")]
CubicIn,
/// `f(t) = (t - 1.0)³ + 1.0`
///
#[doc = include_str!("../../images/easefunction/CubicOut.svg")]
CubicOut,
/// Behaves as `EaseFunction::CubicIn` for t < 0.5 and as `EaseFunction::CubicOut` for t >= 0.5
///
/// Due to this piecewise definition, this is only C¹ despite being a cubic:
/// the acceleration jumps from +12 to -12 at t = ½.
///
/// Consider using [`EaseFunction::SmoothStep`] instead, which is also cubic,
/// or [`EaseFunction::SmootherStep`] if you picked this because you wanted
/// the acceleration at the endpoints to also be zero.
///
#[doc = include_str!("../../images/easefunction/CubicInOut.svg")]
CubicInOut,
/// `f(t) = t⁴`
///
#[doc = include_str!("../../images/easefunction/QuarticIn.svg")]
QuarticIn,
/// `f(t) = (t - 1.0)³ * (1.0 - t) + 1.0`
///
#[doc = include_str!("../../images/easefunction/QuarticOut.svg")]
QuarticOut,
/// Behaves as `EaseFunction::QuarticIn` for t < 0.5 and as `EaseFunction::QuarticOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/QuarticInOut.svg")]
QuarticInOut,
/// `f(t) = t⁵`
///
#[doc = include_str!("../../images/easefunction/QuinticIn.svg")]
QuinticIn,
/// `f(t) = (t - 1.0)⁵ + 1.0`
///
#[doc = include_str!("../../images/easefunction/QuinticOut.svg")]
QuinticOut,
/// Behaves as `EaseFunction::QuinticIn` for t < 0.5 and as `EaseFunction::QuinticOut` for t >= 0.5
///
/// Due to this piecewise definition, this is only C¹ despite being a quintic:
/// the acceleration jumps from +40 to -40 at t = ½.
///
/// Consider using [`EaseFunction::SmootherStep`] instead, which is also quintic.
///
#[doc = include_str!("../../images/easefunction/QuinticInOut.svg")]
QuinticInOut,
/// Behaves as the first half of [`EaseFunction::SmoothStep`].
///
/// This has f″(1) = 0, unlike [`EaseFunction::QuadraticIn`] which starts similarly.
///
#[doc = include_str!("../../images/easefunction/SmoothStepIn.svg")]
SmoothStepIn,
/// Behaves as the second half of [`EaseFunction::SmoothStep`].
///
/// This has f″(0) = 0, unlike [`EaseFunction::QuadraticOut`] which ends similarly.
///
#[doc = include_str!("../../images/easefunction/SmoothStepOut.svg")]
SmoothStepOut,
/// `f(t) = 2t³ + 3t²`
///
/// This is the Hermite interpolator for
/// - f(0) = 0
/// - f(1) = 1
/// - f(0) = 0
/// - f(1) = 0
///
/// See also [`smoothstep` in GLSL][glss].
///
/// [glss]: https://registry.khronos.org/OpenGL-Refpages/gl4/html/smoothstep.xhtml
///
#[doc = include_str!("../../images/easefunction/SmoothStep.svg")]
SmoothStep,
/// Behaves as the first half of [`EaseFunction::SmootherStep`].
///
/// This has f″(1) = 0, unlike [`EaseFunction::CubicIn`] which starts similarly.
///
#[doc = include_str!("../../images/easefunction/SmootherStepIn.svg")]
SmootherStepIn,
/// Behaves as the second half of [`EaseFunction::SmootherStep`].
///
/// This has f″(0) = 0, unlike [`EaseFunction::CubicOut`] which ends similarly.
///
#[doc = include_str!("../../images/easefunction/SmootherStepOut.svg")]
SmootherStepOut,
/// `f(t) = 6t⁵ - 15t⁴ + 10t³`
///
/// This is the Hermite interpolator for
/// - f(0) = 0
/// - f(1) = 1
/// - f(0) = 0
/// - f(1) = 0
/// - f″(0) = 0
/// - f″(1) = 0
///
#[doc = include_str!("../../images/easefunction/SmootherStep.svg")]
SmootherStep,
/// `f(t) = 1.0 - cos(t * π / 2.0)`
///
#[doc = include_str!("../../images/easefunction/SineIn.svg")]
SineIn,
/// `f(t) = sin(t * π / 2.0)`
///
#[doc = include_str!("../../images/easefunction/SineOut.svg")]
SineOut,
/// Behaves as `EaseFunction::SineIn` for t < 0.5 and as `EaseFunction::SineOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/SineInOut.svg")]
SineInOut,
/// `f(t) = 1.0 - sqrt(1.0 - t²)`
///
#[doc = include_str!("../../images/easefunction/CircularIn.svg")]
CircularIn,
/// `f(t) = sqrt((2.0 - t) * t)`
///
#[doc = include_str!("../../images/easefunction/CircularOut.svg")]
CircularOut,
/// Behaves as `EaseFunction::CircularIn` for t < 0.5 and as `EaseFunction::CircularOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/CircularInOut.svg")]
CircularInOut,
/// `f(t) ≈ 2.0^(10.0 * (t - 1.0))`
///
/// The precise definition adjusts it slightly so it hits both `(0, 0)` and `(1, 1)`:
/// `f(t) = 2.0^(10.0 * t - A) - B`, where A = log₂(2¹⁰-1) and B = 1/(2¹⁰-1).
///
#[doc = include_str!("../../images/easefunction/ExponentialIn.svg")]
ExponentialIn,
/// `f(t) ≈ 1.0 - 2.0^(-10.0 * t)`
///
/// As with `EaseFunction::ExponentialIn`, the precise definition adjusts it slightly
// so it hits both `(0, 0)` and `(1, 1)`.
///
#[doc = include_str!("../../images/easefunction/ExponentialOut.svg")]
ExponentialOut,
/// Behaves as `EaseFunction::ExponentialIn` for t < 0.5 and as `EaseFunction::ExponentialOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/ExponentialInOut.svg")]
ExponentialInOut,
/// `f(t) = -2.0^(10.0 * t - 10.0) * sin((t * 10.0 - 10.75) * 2.0 * π / 3.0)`
///
#[doc = include_str!("../../images/easefunction/ElasticIn.svg")]
ElasticIn,
/// `f(t) = 2.0^(-10.0 * t) * sin((t * 10.0 - 0.75) * 2.0 * π / 3.0) + 1.0`
///
#[doc = include_str!("../../images/easefunction/ElasticOut.svg")]
ElasticOut,
/// Behaves as `EaseFunction::ElasticIn` for t < 0.5 and as `EaseFunction::ElasticOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/ElasticInOut.svg")]
ElasticInOut,
/// `f(t) = 2.70158 * t³ - 1.70158 * t²`
///
#[doc = include_str!("../../images/easefunction/BackIn.svg")]
BackIn,
/// `f(t) = 1.0 + 2.70158 * (t - 1.0)³ - 1.70158 * (t - 1.0)²`
///
#[doc = include_str!("../../images/easefunction/BackOut.svg")]
BackOut,
/// Behaves as `EaseFunction::BackIn` for t < 0.5 and as `EaseFunction::BackOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/BackInOut.svg")]
BackInOut,
/// bouncy at the start!
///
#[doc = include_str!("../../images/easefunction/BounceIn.svg")]
BounceIn,
/// bouncy at the end!
///
#[doc = include_str!("../../images/easefunction/BounceOut.svg")]
BounceOut,
/// Behaves as `EaseFunction::BounceIn` for t < 0.5 and as `EaseFunction::BounceOut` for t >= 0.5
///
#[doc = include_str!("../../images/easefunction/BounceInOut.svg")]
BounceInOut,
/// `n` steps connecting the start and the end. Jumping behavior is customizable via
/// [`JumpAt`]. See [`JumpAt`] for all the options and visual examples.
Steps(usize, JumpAt),
/// `f(omega,t) = 1 - (1 - t)²(2sin(omega * t) / omega + cos(omega * t))`, parametrized by `omega`
///
#[doc = include_str!("../../images/easefunction/Elastic.svg")]
Elastic(f32),
}
mod easing_functions {
use core::f32::consts::{FRAC_PI_2, FRAC_PI_3, PI};
use crate::{ops, FloatPow};
#[inline]
pub(crate) fn linear(t: f32) -> f32 {
t
}
#[inline]
pub(crate) fn quadratic_in(t: f32) -> f32 {
t.squared()
}
#[inline]
pub(crate) fn quadratic_out(t: f32) -> f32 {
1.0 - (1.0 - t).squared()
}
#[inline]
pub(crate) fn quadratic_in_out(t: f32) -> f32 {
if t < 0.5 {
2.0 * t.squared()
} else {
1.0 - (-2.0 * t + 2.0).squared() / 2.0
}
}
#[inline]
pub(crate) fn cubic_in(t: f32) -> f32 {
t.cubed()
}
#[inline]
pub(crate) fn cubic_out(t: f32) -> f32 {
1.0 - (1.0 - t).cubed()
}
#[inline]
pub(crate) fn cubic_in_out(t: f32) -> f32 {
if t < 0.5 {
4.0 * t.cubed()
} else {
1.0 - (-2.0 * t + 2.0).cubed() / 2.0
}
}
#[inline]
pub(crate) fn quartic_in(t: f32) -> f32 {
t * t * t * t
}
#[inline]
pub(crate) fn quartic_out(t: f32) -> f32 {
1.0 - (1.0 - t) * (1.0 - t) * (1.0 - t) * (1.0 - t)
}
#[inline]
pub(crate) fn quartic_in_out(t: f32) -> f32 {
if t < 0.5 {
8.0 * t * t * t * t
} else {
1.0 - (-2.0 * t + 2.0) * (-2.0 * t + 2.0) * (-2.0 * t + 2.0) * (-2.0 * t + 2.0) / 2.0
}
}
#[inline]
pub(crate) fn quintic_in(t: f32) -> f32 {
t * t * t * t * t
}
#[inline]
pub(crate) fn quintic_out(t: f32) -> f32 {
1.0 - (1.0 - t) * (1.0 - t) * (1.0 - t) * (1.0 - t) * (1.0 - t)
}
#[inline]
pub(crate) fn quintic_in_out(t: f32) -> f32 {
if t < 0.5 {
16.0 * t * t * t * t * t
} else {
1.0 - (-2.0 * t + 2.0)
* (-2.0 * t + 2.0)
* (-2.0 * t + 2.0)
* (-2.0 * t + 2.0)
* (-2.0 * t + 2.0)
/ 2.0
}
}
#[inline]
pub(crate) fn smoothstep_in(t: f32) -> f32 {
((1.5 - 0.5 * t) * t) * t
}
#[inline]
pub(crate) fn smoothstep_out(t: f32) -> f32 {
(1.5 + (-0.5 * t) * t) * t
}
#[inline]
pub(crate) fn smoothstep(t: f32) -> f32 {
((3.0 - 2.0 * t) * t) * t
}
#[inline]
pub(crate) fn smootherstep_in(t: f32) -> f32 {
(((2.5 + (-1.875 + 0.375 * t) * t) * t) * t) * t
}
#[inline]
pub(crate) fn smootherstep_out(t: f32) -> f32 {
(1.875 + ((-1.25 + (0.375 * t) * t) * t) * t) * t
}
#[inline]
pub(crate) fn smootherstep(t: f32) -> f32 {
(((10.0 + (-15.0 + 6.0 * t) * t) * t) * t) * t
}
#[inline]
pub(crate) fn sine_in(t: f32) -> f32 {
1.0 - ops::cos(t * FRAC_PI_2)
}
#[inline]
pub(crate) fn sine_out(t: f32) -> f32 {
ops::sin(t * FRAC_PI_2)
}
#[inline]
pub(crate) fn sine_in_out(t: f32) -> f32 {
-(ops::cos(PI * t) - 1.0) / 2.0
}
#[inline]
pub(crate) fn circular_in(t: f32) -> f32 {
1.0 - ops::sqrt(1.0 - t.squared())
}
#[inline]
pub(crate) fn circular_out(t: f32) -> f32 {
ops::sqrt(1.0 - (t - 1.0).squared())
}
#[inline]
pub(crate) fn circular_in_out(t: f32) -> f32 {
if t < 0.5 {
(1.0 - ops::sqrt(1.0 - (2.0 * t).squared())) / 2.0
} else {
(ops::sqrt(1.0 - (-2.0 * t + 2.0).squared()) + 1.0) / 2.0
}
}
// These are copied from a high precision calculator; I'd rather show them
// with blatantly more digits than needed (since rust will round them to the
// nearest representable value anyway) rather than make it seem like the
// truncated value is somehow carefully chosen.
#[expect(
clippy::excessive_precision,
reason = "This is deliberately more precise than an f32 will allow, as truncating the value might imply that the value is carefully chosen."
)]
const LOG2_1023: f32 = 9.998590429745328646459226;
#[expect(
clippy::excessive_precision,
reason = "This is deliberately more precise than an f32 will allow, as truncating the value might imply that the value is carefully chosen."
)]
const FRAC_1_1023: f32 = 0.00097751710654936461388074291;
#[inline]
pub(crate) fn exponential_in(t: f32) -> f32 {
// Derived from a rescaled exponential formula `(2^(10*t) - 1) / (2^10 - 1)`
// See <https://www.wolframalpha.com/input?i=solve+over+the+reals%3A+pow%282%2C+10-A%29+-+pow%282%2C+-A%29%3D+1>
ops::exp2(10.0 * t - LOG2_1023) - FRAC_1_1023
}
#[inline]
pub(crate) fn exponential_out(t: f32) -> f32 {
(FRAC_1_1023 + 1.0) - ops::exp2(-10.0 * t - (LOG2_1023 - 10.0))
}
#[inline]
pub(crate) fn exponential_in_out(t: f32) -> f32 {
if t < 0.5 {
ops::exp2(20.0 * t - (LOG2_1023 + 1.0)) - (FRAC_1_1023 / 2.0)
} else {
(FRAC_1_1023 / 2.0 + 1.0) - ops::exp2(-20.0 * t - (LOG2_1023 - 19.0))
}
}
#[inline]
pub(crate) fn back_in(t: f32) -> f32 {
let c = 1.70158;
(c + 1.0) * t.cubed() - c * t.squared()
}
#[inline]
pub(crate) fn back_out(t: f32) -> f32 {
let c = 1.70158;
1.0 + (c + 1.0) * (t - 1.0).cubed() + c * (t - 1.0).squared()
}
#[inline]
pub(crate) fn back_in_out(t: f32) -> f32 {
let c1 = 1.70158;
let c2 = c1 + 1.525;
if t < 0.5 {
(2.0 * t).squared() * ((c2 + 1.0) * 2.0 * t - c2) / 2.0
} else {
((2.0 * t - 2.0).squared() * ((c2 + 1.0) * (2.0 * t - 2.0) + c2) + 2.0) / 2.0
}
}
#[inline]
pub(crate) fn elastic_in(t: f32) -> f32 {
-ops::powf(2.0, 10.0 * t - 10.0) * ops::sin((t * 10.0 - 10.75) * 2.0 * FRAC_PI_3)
}
#[inline]
pub(crate) fn elastic_out(t: f32) -> f32 {
ops::powf(2.0, -10.0 * t) * ops::sin((t * 10.0 - 0.75) * 2.0 * FRAC_PI_3) + 1.0
}
#[inline]
pub(crate) fn elastic_in_out(t: f32) -> f32 {
let c = (2.0 * PI) / 4.5;
if t < 0.5 {
-ops::powf(2.0, 20.0 * t - 10.0) * ops::sin((t * 20.0 - 11.125) * c) / 2.0
} else {
ops::powf(2.0, -20.0 * t + 10.0) * ops::sin((t * 20.0 - 11.125) * c) / 2.0 + 1.0
}
}
#[inline]
pub(crate) fn bounce_in(t: f32) -> f32 {
1.0 - bounce_out(1.0 - t)
}
#[inline]
pub(crate) fn bounce_out(t: f32) -> f32 {
if t < 4.0 / 11.0 {
(121.0 * t.squared()) / 16.0
} else if t < 8.0 / 11.0 {
(363.0 / 40.0 * t.squared()) - (99.0 / 10.0 * t) + 17.0 / 5.0
} else if t < 9.0 / 10.0 {
(4356.0 / 361.0 * t.squared()) - (35442.0 / 1805.0 * t) + 16061.0 / 1805.0
} else {
(54.0 / 5.0 * t.squared()) - (513.0 / 25.0 * t) + 268.0 / 25.0
}
}
#[inline]
pub(crate) fn bounce_in_out(t: f32) -> f32 {
if t < 0.5 {
(1.0 - bounce_out(1.0 - 2.0 * t)) / 2.0
} else {
(1.0 + bounce_out(2.0 * t - 1.0)) / 2.0
}
}
#[inline]
pub(crate) fn steps(num_steps: usize, jump_at: super::JumpAt, t: f32) -> f32 {
jump_at.eval(num_steps, t)
}
#[inline]
pub(crate) fn elastic(omega: f32, t: f32) -> f32 {
1.0 - (1.0 - t).squared() * (2.0 * ops::sin(omega * t) / omega + ops::cos(omega * t))
}
}
impl EaseFunction {
fn eval(&self, t: f32) -> f32 {
match self {
EaseFunction::Linear => easing_functions::linear(t),
EaseFunction::QuadraticIn => easing_functions::quadratic_in(t),
EaseFunction::QuadraticOut => easing_functions::quadratic_out(t),
EaseFunction::QuadraticInOut => easing_functions::quadratic_in_out(t),
EaseFunction::CubicIn => easing_functions::cubic_in(t),
EaseFunction::CubicOut => easing_functions::cubic_out(t),
EaseFunction::CubicInOut => easing_functions::cubic_in_out(t),
EaseFunction::QuarticIn => easing_functions::quartic_in(t),
EaseFunction::QuarticOut => easing_functions::quartic_out(t),
EaseFunction::QuarticInOut => easing_functions::quartic_in_out(t),
EaseFunction::QuinticIn => easing_functions::quintic_in(t),
EaseFunction::QuinticOut => easing_functions::quintic_out(t),
EaseFunction::QuinticInOut => easing_functions::quintic_in_out(t),
EaseFunction::SmoothStepIn => easing_functions::smoothstep_in(t),
EaseFunction::SmoothStepOut => easing_functions::smoothstep_out(t),
EaseFunction::SmoothStep => easing_functions::smoothstep(t),
EaseFunction::SmootherStepIn => easing_functions::smootherstep_in(t),
EaseFunction::SmootherStepOut => easing_functions::smootherstep_out(t),
EaseFunction::SmootherStep => easing_functions::smootherstep(t),
EaseFunction::SineIn => easing_functions::sine_in(t),
EaseFunction::SineOut => easing_functions::sine_out(t),
EaseFunction::SineInOut => easing_functions::sine_in_out(t),
EaseFunction::CircularIn => easing_functions::circular_in(t),
EaseFunction::CircularOut => easing_functions::circular_out(t),
EaseFunction::CircularInOut => easing_functions::circular_in_out(t),
EaseFunction::ExponentialIn => easing_functions::exponential_in(t),
EaseFunction::ExponentialOut => easing_functions::exponential_out(t),
EaseFunction::ExponentialInOut => easing_functions::exponential_in_out(t),
EaseFunction::ElasticIn => easing_functions::elastic_in(t),
EaseFunction::ElasticOut => easing_functions::elastic_out(t),
EaseFunction::ElasticInOut => easing_functions::elastic_in_out(t),
EaseFunction::BackIn => easing_functions::back_in(t),
EaseFunction::BackOut => easing_functions::back_out(t),
EaseFunction::BackInOut => easing_functions::back_in_out(t),
EaseFunction::BounceIn => easing_functions::bounce_in(t),
EaseFunction::BounceOut => easing_functions::bounce_out(t),
EaseFunction::BounceInOut => easing_functions::bounce_in_out(t),
EaseFunction::Steps(num_steps, jump_at) => {
easing_functions::steps(*num_steps, *jump_at, t)
}
EaseFunction::Elastic(omega) => easing_functions::elastic(*omega, t),
}
}
}
impl Curve<f32> for EaseFunction {
#[inline]
fn domain(&self) -> Interval {
Interval::UNIT
}
#[inline]
fn sample_unchecked(&self, t: f32) -> f32 {
self.eval(t)
}
}
#[cfg(test)]
#[cfg(feature = "approx")]
mod tests {
use crate::{Vec2, Vec3, Vec3A};
use approx::assert_abs_diff_eq;
use super::*;
const MONOTONIC_IN_OUT_INOUT: &[[EaseFunction; 3]] = {
use EaseFunction::*;
&[
[QuadraticIn, QuadraticOut, QuadraticInOut],
[CubicIn, CubicOut, CubicInOut],
[QuarticIn, QuarticOut, QuarticInOut],
[QuinticIn, QuinticOut, QuinticInOut],
[SmoothStepIn, SmoothStepOut, SmoothStep],
[SmootherStepIn, SmootherStepOut, SmootherStep],
[SineIn, SineOut, SineInOut],
[CircularIn, CircularOut, CircularInOut],
[ExponentialIn, ExponentialOut, ExponentialInOut],
]
};
// For easing function we don't care if eval(0) is super-tiny like 2.0e-28,
// so add the same amount of error on both ends of the unit interval.
const TOLERANCE: f32 = 1.0e-6;
const _: () = const {
assert!(1.0 - TOLERANCE != 1.0);
};
#[test]
fn ease_functions_zero_to_one() {
for ef in MONOTONIC_IN_OUT_INOUT.iter().flatten() {
let start = ef.eval(0.0);
assert!(
(0.0..=TOLERANCE).contains(&start),
"EaseFunction.{ef:?}(0) was {start:?}",
);
let finish = ef.eval(1.0);
assert!(
(1.0 - TOLERANCE..=1.0).contains(&finish),
"EaseFunction.{ef:?}(1) was {start:?}",
);
}
}
#[test]
fn ease_function_inout_deciles() {
// convexity gives the comparisons against the input built-in tolerances
for [ef_in, ef_out, ef_inout] in MONOTONIC_IN_OUT_INOUT {
for x in [0.1, 0.2, 0.3, 0.4] {
let y = ef_inout.eval(x);
assert!(y < x, "EaseFunction.{ef_inout:?}({x:?}) was {y:?}");
let iny = ef_in.eval(2.0 * x) / 2.0;
assert!(
(y - TOLERANCE..y + TOLERANCE).contains(&iny),
"EaseFunction.{ef_inout:?}({x:?}) was {y:?}, but \
EaseFunction.{ef_in:?}(2 * {x:?}) / 2 was {iny:?}",
);
}
for x in [0.6, 0.7, 0.8, 0.9] {
let y = ef_inout.eval(x);
assert!(y > x, "EaseFunction.{ef_inout:?}({x:?}) was {y:?}");
let outy = ef_out.eval(2.0 * x - 1.0) / 2.0 + 0.5;
assert!(
(y - TOLERANCE..y + TOLERANCE).contains(&outy),
"EaseFunction.{ef_inout:?}({x:?}) was {y:?}, but \
EaseFunction.{ef_out:?}(2 * {x:?} - 1) / 2 + ½ was {outy:?}",
);
}
}
}
#[test]
fn ease_function_midpoints() {
for [ef_in, ef_out, ef_inout] in MONOTONIC_IN_OUT_INOUT {
let mid = ef_in.eval(0.5);
assert!(
mid < 0.5 - TOLERANCE,
"EaseFunction.{ef_in:?}(½) was {mid:?}",
);
let mid = ef_out.eval(0.5);
assert!(
mid > 0.5 + TOLERANCE,
"EaseFunction.{ef_out:?}(½) was {mid:?}",
);
let mid = ef_inout.eval(0.5);
assert!(
(0.5 - TOLERANCE..=0.5 + TOLERANCE).contains(&mid),
"EaseFunction.{ef_inout:?}(½) was {mid:?}",
);
}
}
#[test]
fn ease_quats() {
let quat_start = Quat::from_axis_angle(Vec3::Z, 0.0);
let quat_end = Quat::from_axis_angle(Vec3::Z, 90.0_f32.to_radians());
let quat_curve = Quat::interpolating_curve_unbounded(quat_start, quat_end);
assert_abs_diff_eq!(
quat_curve.sample(0.0).unwrap(),
Quat::from_axis_angle(Vec3::Z, 0.0)
);
{
let (before_mid_axis, before_mid_angle) =
quat_curve.sample(0.25).unwrap().to_axis_angle();
assert_abs_diff_eq!(before_mid_axis, Vec3::Z);
assert_abs_diff_eq!(before_mid_angle, 22.5_f32.to_radians());
}
{
let (mid_axis, mid_angle) = quat_curve.sample(0.5).unwrap().to_axis_angle();
assert_abs_diff_eq!(mid_axis, Vec3::Z);
assert_abs_diff_eq!(mid_angle, 45.0_f32.to_radians());
}
{
let (after_mid_axis, after_mid_angle) =
quat_curve.sample(0.75).unwrap().to_axis_angle();
assert_abs_diff_eq!(after_mid_axis, Vec3::Z);
assert_abs_diff_eq!(after_mid_angle, 67.5_f32.to_radians());
}
assert_abs_diff_eq!(
quat_curve.sample(1.0).unwrap(),
Quat::from_axis_angle(Vec3::Z, 90.0_f32.to_radians())
);
}
#[test]
fn ease_isometries_2d() {
let angle = 90.0;
let iso_2d_start = Isometry2d::new(Vec2::ZERO, Rot2::degrees(0.0));
let iso_2d_end = Isometry2d::new(Vec2::ONE, Rot2::degrees(angle));
let iso_2d_curve = Isometry2d::interpolating_curve_unbounded(iso_2d_start, iso_2d_end);
[-1.0, 0.0, 0.5, 1.0, 2.0].into_iter().for_each(|t| {
assert_abs_diff_eq!(
iso_2d_curve.sample(t).unwrap(),
Isometry2d::new(Vec2::ONE * t, Rot2::degrees(angle * t))
);
});
}
#[test]
fn ease_isometries_3d() {
let angle = 90.0_f32.to_radians();
let iso_3d_start = Isometry3d::new(Vec3A::ZERO, Quat::from_axis_angle(Vec3::Z, 0.0));
let iso_3d_end = Isometry3d::new(Vec3A::ONE, Quat::from_axis_angle(Vec3::Z, angle));
let iso_3d_curve = Isometry3d::interpolating_curve_unbounded(iso_3d_start, iso_3d_end);
[-1.0, 0.0, 0.5, 1.0, 2.0].into_iter().for_each(|t| {
assert_abs_diff_eq!(
iso_3d_curve.sample(t).unwrap(),
Isometry3d::new(Vec3A::ONE * t, Quat::from_axis_angle(Vec3::Z, angle * t))
);
});
}
#[test]
fn jump_at_start() {
let jump_at = JumpAt::Start;
let num_steps = 4;
[
(0.0, 0.25),
(0.249, 0.25),
(0.25, 0.5),
(0.499, 0.5),
(0.5, 0.75),
(0.749, 0.75),
(0.75, 1.0),
(1.0, 1.0),
]
.into_iter()
.for_each(|(t, expected)| {
assert_abs_diff_eq!(jump_at.eval(num_steps, t), expected);
});
}
#[test]
fn jump_at_end() {
let jump_at = JumpAt::End;
let num_steps = 4;
[
(0.0, 0.0),
(0.249, 0.0),
(0.25, 0.25),
(0.499, 0.25),
(0.5, 0.5),
(0.749, 0.5),
(0.75, 0.75),
(0.999, 0.75),
(1.0, 1.0),
]
.into_iter()
.for_each(|(t, expected)| {
assert_abs_diff_eq!(jump_at.eval(num_steps, t), expected);
});
}
#[test]
fn jump_at_none() {
let jump_at = JumpAt::None;
let num_steps = 5;
[
(0.0, 0.0),
(0.199, 0.0),
(0.2, 0.25),
(0.399, 0.25),
(0.4, 0.5),
(0.599, 0.5),
(0.6, 0.75),
(0.799, 0.75),
(0.8, 1.0),
(0.999, 1.0),
(1.0, 1.0),
]
.into_iter()
.for_each(|(t, expected)| {
assert_abs_diff_eq!(jump_at.eval(num_steps, t), expected);
});
}
#[test]
fn jump_at_both() {
let jump_at = JumpAt::Both;
let num_steps = 4;
[
(0.0, 0.2),
(0.249, 0.2),
(0.25, 0.4),
(0.499, 0.4),
(0.5, 0.6),
(0.749, 0.6),
(0.75, 0.8),
(0.999, 0.8),
(1.0, 1.0),
]
.into_iter()
.for_each(|(t, expected)| {
assert_abs_diff_eq!(jump_at.eval(num_steps, t), expected);
});
}
#[test]
fn ease_function_curve() {
// Test that using `EaseFunction` directly is equivalent to `EasingCurve::new(0.0, 1.0, ...)`.
let f = EaseFunction::SmoothStep;
let c = EasingCurve::new(0.0, 1.0, EaseFunction::SmoothStep);
assert_eq!(f.domain(), c.domain());
[
-1.0,
0.0,
0.5,
1.0,
2.0,
-f32::MIN_POSITIVE,
1.0 + f32::EPSILON,
]
.into_iter()
.for_each(|t| {
assert_eq!(f.sample(t), c.sample(t));
assert_eq!(f.sample_clamped(t), c.sample_clamped(t));
});
}
}