bevy/crates/bevy_ecs/src/query/state.rs
vil'mo b30ee2d051
Disallow requesting write resource access in Queries (#17116)
Related to https://github.com/bevyengine/bevy/pull/16843

Since `WorldQuery::Fetch` is `Clone`, it can't store mutable references
to resources, so it doesn't make sense to mutably access resources. In
that sense, it is hard to find usecases of mutably accessing resources
and to clearly define, what mutably accessing resources would mean, so
it's been decided to disallow write resource access.
Also changed documentation of safety requirements of
`WorldQuery::init_fetch` and `WorldQuery::fetch` to clearly state to the
caller, what safety invariants they need to uphold.
2025-01-06 19:04:26 +00:00

2320 lines
90 KiB
Rust

use crate::{
archetype::{Archetype, ArchetypeComponentId, ArchetypeGeneration, ArchetypeId},
batching::BatchingStrategy,
component::{ComponentId, Tick},
entity::{Entity, EntityBorrow, EntitySet},
prelude::FromWorld,
query::{
Access, DebugCheckedUnwrap, FilteredAccess, QueryCombinationIter, QueryIter, QueryParIter,
WorldQuery,
},
storage::{SparseSetIndex, TableId},
world::{unsafe_world_cell::UnsafeWorldCell, World, WorldId},
};
use alloc::vec::Vec;
use core::{fmt, mem::MaybeUninit, ptr};
use fixedbitset::FixedBitSet;
use log::warn;
#[cfg(feature = "trace")]
use tracing::Span;
use super::{
NopWorldQuery, QueryBuilder, QueryData, QueryEntityError, QueryFilter, QueryManyIter,
QueryManyUniqueIter, QuerySingleError, ROQueryItem,
};
/// An ID for either a table or an archetype. Used for Query iteration.
///
/// Query iteration is exclusively dense (over tables) or archetypal (over archetypes) based on whether
/// the query filters are dense or not. This is represented by the [`QueryState::is_dense`] field.
///
/// Note that `D::IS_DENSE` and `F::IS_DENSE` have no relationship with `QueryState::is_dense` and
/// any combination of their values can happen.
///
/// This is a union instead of an enum as the usage is determined at compile time, as all [`StorageId`]s for
/// a [`QueryState`] will be all [`TableId`]s or all [`ArchetypeId`]s, and not a mixture of both. This
/// removes the need for discriminator to minimize memory usage and branching during iteration, but requires
/// a safety invariant be verified when disambiguating them.
///
/// # Safety
/// Must be initialized and accessed as a [`TableId`], if both generic parameters to the query are dense.
/// Must be initialized and accessed as an [`ArchetypeId`] otherwise.
#[derive(Clone, Copy)]
pub(super) union StorageId {
pub(super) table_id: TableId,
pub(super) archetype_id: ArchetypeId,
}
/// Provides scoped access to a [`World`] state according to a given [`QueryData`] and [`QueryFilter`].
///
/// This data is cached between system runs, and is used to:
/// - store metadata about which [`Table`] or [`Archetype`] are matched by the query. "Matched" means
/// that the query will iterate over the data in the matched table/archetype.
/// - cache the [`State`] needed to compute the [`Fetch`] struct used to retrieve data
/// from a specific [`Table`] or [`Archetype`]
/// - build iterators that can iterate over the query results
///
/// [`State`]: crate::query::world_query::WorldQuery::State
/// [`Fetch`]: crate::query::world_query::WorldQuery::Fetch
/// [`Table`]: crate::storage::Table
#[repr(C)]
// SAFETY NOTE:
// Do not add any new fields that use the `D` or `F` generic parameters as this may
// make `QueryState::as_transmuted_state` unsound if not done with care.
pub struct QueryState<D: QueryData, F: QueryFilter = ()> {
world_id: WorldId,
pub(crate) archetype_generation: ArchetypeGeneration,
/// Metadata about the [`Table`](crate::storage::Table)s matched by this query.
pub(crate) matched_tables: FixedBitSet,
/// Metadata about the [`Archetype`]s matched by this query.
pub(crate) matched_archetypes: FixedBitSet,
/// [`FilteredAccess`] computed by combining the `D` and `F` access. Used to check which other queries
/// this query can run in parallel with.
pub(crate) component_access: FilteredAccess<ComponentId>,
// NOTE: we maintain both a bitset and a vec because iterating the vec is faster
pub(super) matched_storage_ids: Vec<StorageId>,
// Represents whether this query iteration is dense or not. When this is true
// `matched_storage_ids` stores `TableId`s, otherwise it stores `ArchetypeId`s.
pub(super) is_dense: bool,
pub(crate) fetch_state: D::State,
pub(crate) filter_state: F::State,
#[cfg(feature = "trace")]
par_iter_span: Span,
}
impl<D: QueryData, F: QueryFilter> fmt::Debug for QueryState<D, F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("QueryState")
.field("world_id", &self.world_id)
.field("matched_table_count", &self.matched_tables.count_ones(..))
.field(
"matched_archetype_count",
&self.matched_archetypes.count_ones(..),
)
.finish_non_exhaustive()
}
}
impl<D: QueryData, F: QueryFilter> FromWorld for QueryState<D, F> {
fn from_world(world: &mut World) -> Self {
world.query_filtered()
}
}
impl<D: QueryData, F: QueryFilter> QueryState<D, F> {
/// Converts this `QueryState` reference to a `QueryState` that does not access anything mutably.
pub fn as_readonly(&self) -> &QueryState<D::ReadOnly, F> {
// SAFETY: invariant on `WorldQuery` trait upholds that `D::ReadOnly` and `F::ReadOnly`
// have a subset of the access, and match the exact same archetypes/tables as `D`/`F` respectively.
unsafe { self.as_transmuted_state::<D::ReadOnly, F>() }
}
/// Converts this `QueryState` reference to a `QueryState` that does not return any data
/// which can be faster.
///
/// This doesn't use `NopWorldQuery` as it loses filter functionality, for example
/// `NopWorldQuery<Changed<T>>` is functionally equivalent to `With<T>`.
pub(crate) fn as_nop(&self) -> &QueryState<NopWorldQuery<D>, F> {
// SAFETY: `NopWorldQuery` doesn't have any accesses and defers to
// `D` for table/archetype matching
unsafe { self.as_transmuted_state::<NopWorldQuery<D>, F>() }
}
/// Converts this `QueryState` reference to any other `QueryState` with
/// the same `WorldQuery::State` associated types.
///
/// Consider using `as_readonly` or `as_nop` instead which are safe functions.
///
/// # Safety
///
/// `NewD` must have a subset of the access that `D` does and match the exact same archetypes/tables
/// `NewF` must have a subset of the access that `F` does and match the exact same archetypes/tables
pub(crate) unsafe fn as_transmuted_state<
NewD: QueryData<State = D::State>,
NewF: QueryFilter<State = F::State>,
>(
&self,
) -> &QueryState<NewD, NewF> {
&*ptr::from_ref(self).cast::<QueryState<NewD, NewF>>()
}
/// Returns the components accessed by this query.
pub fn component_access(&self) -> &FilteredAccess<ComponentId> {
&self.component_access
}
/// Returns the tables matched by this query.
pub fn matched_tables(&self) -> impl Iterator<Item = TableId> + '_ {
self.matched_tables.ones().map(TableId::from_usize)
}
/// Returns the archetypes matched by this query.
pub fn matched_archetypes(&self) -> impl Iterator<Item = ArchetypeId> + '_ {
self.matched_archetypes.ones().map(ArchetypeId::new)
}
}
impl<D: QueryData, F: QueryFilter> QueryState<D, F> {
/// Creates a new [`QueryState`] from a given [`World`] and inherits the result of `world.id()`.
pub fn new(world: &mut World) -> Self {
let mut state = Self::new_uninitialized(world);
state.update_archetypes(world);
state
}
/// Creates a new [`QueryState`] from an immutable [`World`] reference and inherits the result of `world.id()`.
///
/// This function may fail if, for example,
/// the components that make up this query have not been registered into the world.
pub fn try_new(world: &World) -> Option<Self> {
let mut state = Self::try_new_uninitialized(world)?;
state.update_archetypes(world);
Some(state)
}
/// Identical to `new`, but it populates the provided `access` with the matched results.
pub(crate) fn new_with_access(
world: &mut World,
access: &mut Access<ArchetypeComponentId>,
) -> Self {
let mut state = Self::new_uninitialized(world);
for archetype in world.archetypes.iter() {
// SAFETY: The state was just initialized from the `world` above, and the archetypes being added
// come directly from the same world.
unsafe {
if state.new_archetype_internal(archetype) {
state.update_archetype_component_access(archetype, access);
}
}
}
state.archetype_generation = world.archetypes.generation();
// Resource access is not part of any archetype and must be handled separately
if state.component_access.access().has_read_all_resources() {
access.read_all_resources();
} else {
for component_id in state.component_access.access().resource_reads() {
access.add_resource_read(world.initialize_resource_internal(component_id).id());
}
}
debug_assert!(
!state.component_access.access().has_any_resource_write(),
"Mutable resource access in queries is not allowed"
);
state
}
/// Creates a new [`QueryState`] but does not populate it with the matched results from the World yet
///
/// `new_archetype` and its variants must be called on all of the World's archetypes before the
/// state can return valid query results.
fn new_uninitialized(world: &mut World) -> Self {
let fetch_state = D::init_state(world);
let filter_state = F::init_state(world);
Self::from_states_uninitialized(world.id(), fetch_state, filter_state)
}
/// Creates a new [`QueryState`] but does not populate it with the matched results from the World yet
///
/// `new_archetype` and its variants must be called on all of the World's archetypes before the
/// state can return valid query results.
fn try_new_uninitialized(world: &World) -> Option<Self> {
let fetch_state = D::get_state(world.components())?;
let filter_state = F::get_state(world.components())?;
Some(Self::from_states_uninitialized(
world.id(),
fetch_state,
filter_state,
))
}
/// Creates a new [`QueryState`] but does not populate it with the matched results from the World yet
///
/// `new_archetype` and its variants must be called on all of the World's archetypes before the
/// state can return valid query results.
fn from_states_uninitialized(
world_id: WorldId,
fetch_state: <D as WorldQuery>::State,
filter_state: <F as WorldQuery>::State,
) -> Self {
let mut component_access = FilteredAccess::default();
D::update_component_access(&fetch_state, &mut component_access);
// Use a temporary empty FilteredAccess for filters. This prevents them from conflicting with the
// main Query's `fetch_state` access. Filters are allowed to conflict with the main query fetch
// because they are evaluated *before* a specific reference is constructed.
let mut filter_component_access = FilteredAccess::default();
F::update_component_access(&filter_state, &mut filter_component_access);
// Merge the temporary filter access with the main access. This ensures that filter access is
// properly considered in a global "cross-query" context (both within systems and across systems).
component_access.extend(&filter_component_access);
// For queries without dynamic filters the dense-ness of the query is equal to the dense-ness
// of its static type parameters.
let is_dense = D::IS_DENSE && F::IS_DENSE;
Self {
world_id,
archetype_generation: ArchetypeGeneration::initial(),
matched_storage_ids: Vec::new(),
is_dense,
fetch_state,
filter_state,
component_access,
matched_tables: Default::default(),
matched_archetypes: Default::default(),
#[cfg(feature = "trace")]
par_iter_span: tracing::info_span!(
"par_for_each",
query = core::any::type_name::<D>(),
filter = core::any::type_name::<F>(),
),
}
}
/// Creates a new [`QueryState`] from a given [`QueryBuilder`] and inherits its [`FilteredAccess`].
pub fn from_builder(builder: &mut QueryBuilder<D, F>) -> Self {
let mut fetch_state = D::init_state(builder.world_mut());
let filter_state = F::init_state(builder.world_mut());
D::set_access(&mut fetch_state, builder.access());
let mut state = Self {
world_id: builder.world().id(),
archetype_generation: ArchetypeGeneration::initial(),
matched_storage_ids: Vec::new(),
// For dynamic queries the dense-ness is given by the query builder.
is_dense: builder.is_dense(),
fetch_state,
filter_state,
component_access: builder.access().clone(),
matched_tables: Default::default(),
matched_archetypes: Default::default(),
#[cfg(feature = "trace")]
par_iter_span: tracing::info_span!(
"par_for_each",
data = core::any::type_name::<D>(),
filter = core::any::type_name::<F>(),
),
};
state.update_archetypes(builder.world());
state
}
/// Checks if the query is empty for the given [`World`], where the last change and current tick are given.
///
/// This is equivalent to `self.iter().next().is_none()`, and thus the worst case runtime will be `O(n)`
/// where `n` is the number of *potential* matches. This can be notably expensive for queries that rely
/// on non-archetypal filters such as [`Added`] or [`Changed`] which must individually check each query
/// result for a match.
///
/// # Panics
///
/// If `world` does not match the one used to call `QueryState::new` for this instance.
///
/// [`Added`]: crate::query::Added
/// [`Changed`]: crate::query::Changed
#[inline]
pub fn is_empty(&self, world: &World, last_run: Tick, this_run: Tick) -> bool {
self.validate_world(world.id());
// SAFETY:
// - We have read-only access to the entire world.
// - The world has been validated.
unsafe {
self.is_empty_unsafe_world_cell(
world.as_unsafe_world_cell_readonly(),
last_run,
this_run,
)
}
}
/// Returns `true` if the given [`Entity`] matches the query.
///
/// This is always guaranteed to run in `O(1)` time.
#[inline]
pub fn contains(&self, entity: Entity, world: &World, last_run: Tick, this_run: Tick) -> bool {
// SAFETY: NopFetch does not access any members while &self ensures no one has exclusive access
unsafe {
self.as_nop()
.get_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
entity,
last_run,
this_run,
)
.is_ok()
}
}
/// Checks if the query is empty for the given [`UnsafeWorldCell`].
///
/// # Safety
///
/// - `world` must have permission to read any components required by this instance's `F` [`QueryFilter`].
/// - `world` must match the one used to create this [`QueryState`].
#[inline]
pub(crate) unsafe fn is_empty_unsafe_world_cell(
&self,
world: UnsafeWorldCell,
last_run: Tick,
this_run: Tick,
) -> bool {
// SAFETY:
// - The caller ensures that `world` has permission to access any data used by the filter.
// - The caller ensures that the world matches.
unsafe {
self.as_nop()
.iter_unchecked_manual(world, last_run, this_run)
.next()
.is_none()
}
}
/// Updates the state's internal view of the [`World`]'s archetypes. If this is not called before querying data,
/// the results may not accurately reflect what is in the `world`.
///
/// This is only required if a `manual` method (such as [`Self::get_manual`]) is being called, and it only needs to
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
/// non-`manual` methods such as [`QueryState::get`] do not need to call this as it will be automatically called for them.
///
/// If you have an [`UnsafeWorldCell`] instead of `&World`, consider using [`QueryState::update_archetypes_unsafe_world_cell`].
///
/// # Panics
///
/// If `world` does not match the one used to call `QueryState::new` for this instance.
#[inline]
pub fn update_archetypes(&mut self, world: &World) {
self.update_archetypes_unsafe_world_cell(world.as_unsafe_world_cell_readonly());
}
/// Updates the state's internal view of the `world`'s archetypes. If this is not called before querying data,
/// the results may not accurately reflect what is in the `world`.
///
/// This is only required if a `manual` method (such as [`Self::get_manual`]) is being called, and it only needs to
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
/// non-`manual` methods such as [`QueryState::get`] do not need to call this as it will be automatically called for them.
///
/// # Note
///
/// This method only accesses world metadata.
///
/// # Panics
///
/// If `world` does not match the one used to call `QueryState::new` for this instance.
pub fn update_archetypes_unsafe_world_cell(&mut self, world: UnsafeWorldCell) {
self.validate_world(world.id());
if self.component_access.required.is_empty() {
let archetypes = world.archetypes();
let old_generation =
core::mem::replace(&mut self.archetype_generation, archetypes.generation());
for archetype in &archetypes[old_generation..] {
// SAFETY: The validate_world call ensures that the world is the same the QueryState
// was initialized from.
unsafe {
self.new_archetype_internal(archetype);
}
}
} else {
// skip if we are already up to date
if self.archetype_generation == world.archetypes().generation() {
return;
}
// if there are required components, we can optimize by only iterating through archetypes
// that contain at least one of the required components
let potential_archetypes = self
.component_access
.required
.ones()
.filter_map(|idx| {
let component_id = ComponentId::get_sparse_set_index(idx);
world
.archetypes()
.component_index()
.get(&component_id)
.map(|index| index.keys())
})
// select the component with the fewest archetypes
.min_by_key(ExactSizeIterator::len);
if let Some(archetypes) = potential_archetypes {
for archetype_id in archetypes {
// exclude archetypes that have already been processed
if archetype_id < &self.archetype_generation.0 {
continue;
}
// SAFETY: get_potential_archetypes only returns archetype ids that are valid for the world
let archetype = &world.archetypes()[*archetype_id];
// SAFETY: The validate_world call ensures that the world is the same the QueryState
// was initialized from.
unsafe {
self.new_archetype_internal(archetype);
}
}
}
self.archetype_generation = world.archetypes().generation();
}
}
/// # Panics
///
/// If `world_id` does not match the [`World`] used to call `QueryState::new` for this instance.
///
/// Many unsafe query methods require the world to match for soundness. This function is the easiest
/// way of ensuring that it matches.
#[inline]
#[track_caller]
pub fn validate_world(&self, world_id: WorldId) {
#[inline(never)]
#[track_caller]
#[cold]
fn panic_mismatched(this: WorldId, other: WorldId) -> ! {
panic!("Encountered a mismatched World. This QueryState was created from {this:?}, but a method was called using {other:?}.");
}
if self.world_id != world_id {
panic_mismatched(self.world_id, world_id);
}
}
/// Update the current [`QueryState`] with information from the provided [`Archetype`]
/// (if applicable, i.e. if the archetype has any intersecting [`ComponentId`] with the current [`QueryState`]).
///
/// The passed in `access` will be updated with any new accesses introduced by the new archetype.
///
/// # Safety
/// `archetype` must be from the `World` this state was initialized from.
pub unsafe fn new_archetype(
&mut self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
) {
// SAFETY: The caller ensures that `archetype` is from the World the state was initialized from.
let matches = unsafe { self.new_archetype_internal(archetype) };
if matches {
// SAFETY: The caller ensures that `archetype` is from the World the state was initialized from.
unsafe { self.update_archetype_component_access(archetype, access) };
}
}
/// Process the given [`Archetype`] to update internal metadata about the [`Table`](crate::storage::Table)s
/// and [`Archetype`]s that are matched by this query.
///
/// Returns `true` if the given `archetype` matches the query. Otherwise, returns `false`.
/// If there is no match, then there is no need to update the query's [`FilteredAccess`].
///
/// # Safety
/// `archetype` must be from the `World` this state was initialized from.
unsafe fn new_archetype_internal(&mut self, archetype: &Archetype) -> bool {
if D::matches_component_set(&self.fetch_state, &|id| archetype.contains(id))
&& F::matches_component_set(&self.filter_state, &|id| archetype.contains(id))
&& self.matches_component_set(&|id| archetype.contains(id))
{
let archetype_index = archetype.id().index();
if !self.matched_archetypes.contains(archetype_index) {
self.matched_archetypes.grow_and_insert(archetype_index);
if !self.is_dense {
self.matched_storage_ids.push(StorageId {
archetype_id: archetype.id(),
});
}
}
let table_index = archetype.table_id().as_usize();
if !self.matched_tables.contains(table_index) {
self.matched_tables.grow_and_insert(table_index);
if self.is_dense {
self.matched_storage_ids.push(StorageId {
table_id: archetype.table_id(),
});
}
}
true
} else {
false
}
}
/// Returns `true` if this query matches a set of components. Otherwise, returns `false`.
pub fn matches_component_set(&self, set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
self.component_access.filter_sets.iter().any(|set| {
set.with
.ones()
.all(|index| set_contains_id(ComponentId::get_sparse_set_index(index)))
&& set
.without
.ones()
.all(|index| !set_contains_id(ComponentId::get_sparse_set_index(index)))
})
}
/// For the given `archetype`, adds any component accessed used by this query's underlying [`FilteredAccess`] to `access`.
///
/// The passed in `access` will be updated with any new accesses introduced by the new archetype.
///
/// # Safety
/// `archetype` must be from the `World` this state was initialized from.
pub unsafe fn update_archetype_component_access(
&mut self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
) {
// As a fast path, we can iterate directly over the components involved
// if the `access` isn't inverted.
let (component_reads_and_writes, component_reads_and_writes_inverted) =
self.component_access.access.component_reads_and_writes();
let (component_writes, component_writes_inverted) =
self.component_access.access.component_writes();
if !component_reads_and_writes_inverted && !component_writes_inverted {
component_reads_and_writes.for_each(|id| {
if let Some(id) = archetype.get_archetype_component_id(id) {
access.add_component_read(id);
}
});
component_writes.for_each(|id| {
if let Some(id) = archetype.get_archetype_component_id(id) {
access.add_component_write(id);
}
});
return;
}
for (component_id, archetype_component_id) in
archetype.components_with_archetype_component_id()
{
if self
.component_access
.access
.has_component_read(component_id)
{
access.add_component_read(archetype_component_id);
}
if self
.component_access
.access
.has_component_write(component_id)
{
access.add_component_write(archetype_component_id);
}
}
}
/// Use this to transform a [`QueryState`] into a more generic [`QueryState`].
/// This can be useful for passing to another function that might take the more general form.
/// See [`Query::transmute_lens`](crate::system::Query::transmute_lens) for more details.
///
/// You should not call [`update_archetypes`](Self::update_archetypes) on the returned [`QueryState`] as the result will be unpredictable.
/// You might end up with a mix of archetypes that only matched the original query + archetypes that only match
/// the new [`QueryState`]. Most of the safe methods on [`QueryState`] call [`QueryState::update_archetypes`] internally, so this
/// best used through a [`Query`](crate::system::Query).
pub fn transmute<'a, NewD: QueryData>(
&self,
world: impl Into<UnsafeWorldCell<'a>>,
) -> QueryState<NewD> {
self.transmute_filtered::<NewD, ()>(world.into())
}
/// Creates a new [`QueryState`] with the same underlying [`FilteredAccess`], matched tables and archetypes
/// as self but with a new type signature.
///
/// Panics if `NewD` or `NewF` require accesses that this query does not have.
pub fn transmute_filtered<'a, NewD: QueryData, NewF: QueryFilter>(
&self,
world: impl Into<UnsafeWorldCell<'a>>,
) -> QueryState<NewD, NewF> {
let world = world.into();
self.validate_world(world.id());
let mut component_access = FilteredAccess::default();
let mut fetch_state = NewD::get_state(world.components()).expect("Could not create fetch_state, Please initialize all referenced components before transmuting.");
let filter_state = NewF::get_state(world.components()).expect("Could not create filter_state, Please initialize all referenced components before transmuting.");
NewD::set_access(&mut fetch_state, &self.component_access);
NewD::update_component_access(&fetch_state, &mut component_access);
let mut filter_component_access = FilteredAccess::default();
NewF::update_component_access(&filter_state, &mut filter_component_access);
component_access.extend(&filter_component_access);
assert!(
component_access.is_subset(&self.component_access),
"Transmuted state for {} attempts to access terms that are not allowed by original state {}.",
core::any::type_name::<(NewD, NewF)>(), core::any::type_name::<(D, F)>()
);
QueryState {
world_id: self.world_id,
archetype_generation: self.archetype_generation,
matched_storage_ids: self.matched_storage_ids.clone(),
is_dense: self.is_dense,
fetch_state,
filter_state,
component_access: self.component_access.clone(),
matched_tables: self.matched_tables.clone(),
matched_archetypes: self.matched_archetypes.clone(),
#[cfg(feature = "trace")]
par_iter_span: tracing::info_span!(
"par_for_each",
query = core::any::type_name::<NewD>(),
filter = core::any::type_name::<NewF>(),
),
}
}
/// Use this to combine two queries. The data accessed will be the intersection
/// of archetypes included in both queries. This can be useful for accessing a
/// subset of the entities between two queries.
///
/// You should not call `update_archetypes` on the returned `QueryState` as the result
/// could be unpredictable. You might end up with a mix of archetypes that only matched
/// the original query + archetypes that only match the new `QueryState`. Most of the
/// safe methods on `QueryState` call [`QueryState::update_archetypes`] internally, so
/// this is best used through a `Query`.
///
/// ## Performance
///
/// This will have similar performance as constructing a new `QueryState` since much of internal state
/// needs to be reconstructed. But it will be a little faster as it only needs to compare the intersection
/// of matching archetypes rather than iterating over all archetypes.
///
/// ## Panics
///
/// Will panic if `NewD` contains accesses not in `Q` or `OtherQ`.
pub fn join<'a, OtherD: QueryData, NewD: QueryData>(
&self,
world: impl Into<UnsafeWorldCell<'a>>,
other: &QueryState<OtherD>,
) -> QueryState<NewD, ()> {
self.join_filtered::<_, (), NewD, ()>(world, other)
}
/// Use this to combine two queries. The data accessed will be the intersection
/// of archetypes included in both queries.
///
/// ## Panics
///
/// Will panic if `NewD` or `NewF` requires accesses not in `Q` or `OtherQ`.
pub fn join_filtered<
'a,
OtherD: QueryData,
OtherF: QueryFilter,
NewD: QueryData,
NewF: QueryFilter,
>(
&self,
world: impl Into<UnsafeWorldCell<'a>>,
other: &QueryState<OtherD, OtherF>,
) -> QueryState<NewD, NewF> {
if self.world_id != other.world_id {
panic!("Joining queries initialized on different worlds is not allowed.");
}
let world = world.into();
self.validate_world(world.id());
let mut component_access = FilteredAccess::default();
let mut new_fetch_state = NewD::get_state(world.components())
.expect("Could not create fetch_state, Please initialize all referenced components before transmuting.");
let new_filter_state = NewF::get_state(world.components())
.expect("Could not create filter_state, Please initialize all referenced components before transmuting.");
NewD::set_access(&mut new_fetch_state, &self.component_access);
NewD::update_component_access(&new_fetch_state, &mut component_access);
let mut new_filter_component_access = FilteredAccess::default();
NewF::update_component_access(&new_filter_state, &mut new_filter_component_access);
component_access.extend(&new_filter_component_access);
let mut joined_component_access = self.component_access.clone();
joined_component_access.extend(&other.component_access);
assert!(
component_access.is_subset(&joined_component_access),
"Joined state for {} attempts to access terms that are not allowed by state {} joined with {}.",
core::any::type_name::<(NewD, NewF)>(), core::any::type_name::<(D, F)>(), core::any::type_name::<(OtherD, OtherF)>()
);
if self.archetype_generation != other.archetype_generation {
warn!("You have tried to join queries with different archetype_generations. This could lead to unpredictable results.");
}
// the join is dense of both the queries were dense.
let is_dense = self.is_dense && other.is_dense;
// take the intersection of the matched ids
let mut matched_tables = self.matched_tables.clone();
let mut matched_archetypes = self.matched_archetypes.clone();
matched_tables.intersect_with(&other.matched_tables);
matched_archetypes.intersect_with(&other.matched_archetypes);
let matched_storage_ids = if is_dense {
matched_tables
.ones()
.map(|id| StorageId {
table_id: TableId::from_usize(id),
})
.collect()
} else {
matched_archetypes
.ones()
.map(|id| StorageId {
archetype_id: ArchetypeId::new(id),
})
.collect()
};
QueryState {
world_id: self.world_id,
archetype_generation: self.archetype_generation,
matched_storage_ids,
is_dense,
fetch_state: new_fetch_state,
filter_state: new_filter_state,
component_access: joined_component_access,
matched_tables,
matched_archetypes,
#[cfg(feature = "trace")]
par_iter_span: tracing::info_span!(
"par_for_each",
query = core::any::type_name::<NewD>(),
filter = core::any::type_name::<NewF>(),
),
}
}
/// Gets the query result for the given [`World`] and [`Entity`].
///
/// This can only be called for read-only queries, see [`Self::get_mut`] for write-queries.
///
/// This is always guaranteed to run in `O(1)` time.
#[inline]
pub fn get<'w>(
&mut self,
world: &'w World,
entity: Entity,
) -> Result<ROQueryItem<'w, D>, QueryEntityError<'w>> {
self.update_archetypes(world);
// SAFETY: query is read only
unsafe {
self.as_readonly().get_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
entity,
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns the read-only query results for the given array of [`Entity`].
///
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is
/// returned instead.
///
/// Note that the unlike [`QueryState::get_many_mut`], the entities passed in do not need to be unique.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::query::QueryEntityError;
///
/// #[derive(Component, PartialEq, Debug)]
/// struct A(usize);
///
/// let mut world = World::new();
/// let entity_vec: Vec<Entity> = (0..3).map(|i|world.spawn(A(i)).id()).collect();
/// let entities: [Entity; 3] = entity_vec.try_into().unwrap();
///
/// world.spawn(A(73));
///
/// let mut query_state = world.query::<&A>();
///
/// let component_values = query_state.get_many(&world, entities).unwrap();
///
/// assert_eq!(component_values, [&A(0), &A(1), &A(2)]);
///
/// let wrong_entity = Entity::from_raw(365);
///
/// assert_eq!(match query_state.get_many(&mut world, [wrong_entity]).unwrap_err() {QueryEntityError::NoSuchEntity(entity, _) => entity, _ => panic!()}, wrong_entity);
/// ```
#[inline]
pub fn get_many<'w, const N: usize>(
&mut self,
world: &'w World,
entities: [Entity; N],
) -> Result<[ROQueryItem<'w, D>; N], QueryEntityError<'w>> {
self.update_archetypes(world);
// SAFETY:
// - We have read-only access to the entire world.
// - `update_archetypes` validates that the `World` matches.
unsafe {
self.get_many_read_only_manual(
world.as_unsafe_world_cell_readonly(),
entities,
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Gets the query result for the given [`World`] and [`Entity`].
///
/// This is always guaranteed to run in `O(1)` time.
#[inline]
pub fn get_mut<'w>(
&mut self,
world: &'w mut World,
entity: Entity,
) -> Result<D::Item<'w>, QueryEntityError<'w>> {
self.update_archetypes(world);
let change_tick = world.change_tick();
let last_change_tick = world.last_change_tick();
// SAFETY: query has unique world access
unsafe {
self.get_unchecked_manual(
world.as_unsafe_world_cell(),
entity,
last_change_tick,
change_tick,
)
}
}
/// Returns the query results for the given array of [`Entity`].
///
/// In case of a nonexisting entity or mismatched component, a [`QueryEntityError`] is
/// returned instead.
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::query::QueryEntityError;
///
/// #[derive(Component, PartialEq, Debug)]
/// struct A(usize);
///
/// let mut world = World::new();
///
/// let entities: Vec<Entity> = (0..3).map(|i|world.spawn(A(i)).id()).collect();
/// let entities: [Entity; 3] = entities.try_into().unwrap();
///
/// world.spawn(A(73));
///
/// let mut query_state = world.query::<&mut A>();
///
/// let mut mutable_component_values = query_state.get_many_mut(&mut world, entities).unwrap();
///
/// for mut a in &mut mutable_component_values {
/// a.0 += 5;
/// }
///
/// let component_values = query_state.get_many(&world, entities).unwrap();
///
/// assert_eq!(component_values, [&A(5), &A(6), &A(7)]);
///
/// let wrong_entity = Entity::from_raw(57);
/// let invalid_entity = world.spawn_empty().id();
///
/// assert_eq!(match query_state.get_many(&mut world, [wrong_entity]).unwrap_err() {QueryEntityError::NoSuchEntity(entity, _) => entity, _ => panic!()}, wrong_entity);
/// assert_eq!(match query_state.get_many_mut(&mut world, [invalid_entity]).unwrap_err() {QueryEntityError::QueryDoesNotMatch(entity, _) => entity, _ => panic!()}, invalid_entity);
/// assert_eq!(query_state.get_many_mut(&mut world, [entities[0], entities[0]]).unwrap_err(), QueryEntityError::AliasedMutability(entities[0]));
/// ```
#[inline]
pub fn get_many_mut<'w, const N: usize>(
&mut self,
world: &'w mut World,
entities: [Entity; N],
) -> Result<[D::Item<'w>; N], QueryEntityError<'w>> {
self.update_archetypes(world);
let change_tick = world.change_tick();
let last_change_tick = world.last_change_tick();
// SAFETY: method requires exclusive world access
// and world has been validated via update_archetypes
unsafe {
self.get_many_unchecked_manual(
world.as_unsafe_world_cell(),
entities,
last_change_tick,
change_tick,
)
}
}
/// Gets the query result for the given [`World`] and [`Entity`].
///
/// This method is slightly more efficient than [`QueryState::get`] in some situations, since
/// it does not update this instance's internal cache. This method will return an error if `entity`
/// belongs to an archetype that has not been cached.
///
/// To ensure that the cache is up to date, call [`QueryState::update_archetypes`] before this method.
/// The cache is also updated in [`QueryState::new`], `QueryState::get`, or any method with mutable
/// access to `self`.
///
/// This can only be called for read-only queries, see [`Self::get_mut`] for mutable queries.
///
/// This is always guaranteed to run in `O(1)` time.
#[inline]
pub fn get_manual<'w>(
&self,
world: &'w World,
entity: Entity,
) -> Result<ROQueryItem<'w, D>, QueryEntityError<'w>> {
self.validate_world(world.id());
// SAFETY: query is read only and world is validated
unsafe {
self.as_readonly().get_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
entity,
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Gets the query result for the given [`World`] and [`Entity`].
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
#[inline]
pub unsafe fn get_unchecked<'w>(
&mut self,
world: UnsafeWorldCell<'w>,
entity: Entity,
) -> Result<D::Item<'w>, QueryEntityError<'w>> {
self.update_archetypes_unsafe_world_cell(world);
self.get_unchecked_manual(world, entity, world.last_change_tick(), world.change_tick())
}
/// Gets the query result for the given [`World`] and [`Entity`], where the last change and
/// the current change tick are given.
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
///
/// This must be called on the same `World` that the `Query` was generated from:
/// use `QueryState::validate_world` to verify this.
pub(crate) unsafe fn get_unchecked_manual<'w>(
&self,
world: UnsafeWorldCell<'w>,
entity: Entity,
last_run: Tick,
this_run: Tick,
) -> Result<D::Item<'w>, QueryEntityError<'w>> {
let location = world
.entities()
.get(entity)
.ok_or(QueryEntityError::NoSuchEntity(
entity,
world
.entities()
.entity_does_not_exist_error_details_message(entity),
))?;
if !self
.matched_archetypes
.contains(location.archetype_id.index())
{
return Err(QueryEntityError::QueryDoesNotMatch(entity, world));
}
let archetype = world
.archetypes()
.get(location.archetype_id)
.debug_checked_unwrap();
let mut fetch = D::init_fetch(world, &self.fetch_state, last_run, this_run);
let mut filter = F::init_fetch(world, &self.filter_state, last_run, this_run);
let table = world
.storages()
.tables
.get(location.table_id)
.debug_checked_unwrap();
D::set_archetype(&mut fetch, &self.fetch_state, archetype, table);
F::set_archetype(&mut filter, &self.filter_state, archetype, table);
if F::filter_fetch(&mut filter, entity, location.table_row) {
Ok(D::fetch(&mut fetch, entity, location.table_row))
} else {
Err(QueryEntityError::QueryDoesNotMatch(entity, world))
}
}
/// Gets the read-only query results for the given [`World`] and array of [`Entity`], where the last change and
/// the current change tick are given.
///
/// # Safety
///
/// * `world` must have permission to read all of the components returned from this call.
/// No mutable references may coexist with any of the returned references.
/// * This must be called on the same `World` that the `Query` was generated from:
/// use `QueryState::validate_world` to verify this.
pub(crate) unsafe fn get_many_read_only_manual<'w, const N: usize>(
&self,
world: UnsafeWorldCell<'w>,
entities: [Entity; N],
last_run: Tick,
this_run: Tick,
) -> Result<[ROQueryItem<'w, D>; N], QueryEntityError<'w>> {
let mut values = [(); N].map(|_| MaybeUninit::uninit());
for (value, entity) in core::iter::zip(&mut values, entities) {
// SAFETY: fetch is read-only and world must be validated
let item = unsafe {
self.as_readonly()
.get_unchecked_manual(world, entity, last_run, this_run)?
};
*value = MaybeUninit::new(item);
}
// SAFETY: Each value has been fully initialized.
Ok(values.map(|x| unsafe { x.assume_init() }))
}
/// Gets the query results for the given [`World`] and array of [`Entity`], where the last change and
/// the current change tick are given.
///
/// This is always guaranteed to run in `O(1)` time.
///
/// # Safety
///
/// This does not check for unique access to subsets of the entity-component data.
/// To be safe, make sure mutable queries have unique access to the components they query.
///
/// This must be called on the same `World` that the `Query` was generated from:
/// use `QueryState::validate_world` to verify this.
pub(crate) unsafe fn get_many_unchecked_manual<'w, const N: usize>(
&self,
world: UnsafeWorldCell<'w>,
entities: [Entity; N],
last_run: Tick,
this_run: Tick,
) -> Result<[D::Item<'w>; N], QueryEntityError<'w>> {
// Verify that all entities are unique
for i in 0..N {
for j in 0..i {
if entities[i] == entities[j] {
return Err(QueryEntityError::AliasedMutability(entities[i]));
}
}
}
let mut values = [(); N].map(|_| MaybeUninit::uninit());
for (value, entity) in core::iter::zip(&mut values, entities) {
let item = self.get_unchecked_manual(world, entity, last_run, this_run)?;
*value = MaybeUninit::new(item);
}
// SAFETY: Each value has been fully initialized.
Ok(values.map(|x| x.assume_init()))
}
/// Returns an [`Iterator`] over the query results for the given [`World`].
///
/// This can only be called for read-only queries, see [`Self::iter_mut`] for write-queries.
#[inline]
pub fn iter<'w, 's>(&'s mut self, world: &'w World) -> QueryIter<'w, 's, D::ReadOnly, F> {
self.update_archetypes(world);
// SAFETY: query is read only
unsafe {
self.as_readonly().iter_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an [`Iterator`] over the query results for the given [`World`].
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
#[inline]
pub fn iter_mut<'w, 's>(&'s mut self, world: &'w mut World) -> QueryIter<'w, 's, D, F> {
self.update_archetypes(world);
let change_tick = world.change_tick();
let last_change_tick = world.last_change_tick();
// SAFETY: query has unique world access
unsafe {
self.iter_unchecked_manual(world.as_unsafe_world_cell(), last_change_tick, change_tick)
}
}
/// Returns an [`Iterator`] over the query results for the given [`World`] without updating the query's archetypes.
/// Archetypes must be manually updated before by using [`Self::update_archetypes`].
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
///
/// This can only be called for read-only queries.
#[inline]
pub fn iter_manual<'w, 's>(&'s self, world: &'w World) -> QueryIter<'w, 's, D::ReadOnly, F> {
self.validate_world(world.id());
// SAFETY: query is read only and world is validated
unsafe {
self.as_readonly().iter_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an [`Iterator`] over all possible combinations of `K` query results without repetition.
/// This can only be called for read-only queries.
///
/// A combination is an arrangement of a collection of items where order does not matter.
///
/// `K` is the number of items that make up each subset, and the number of items returned by the iterator.
/// `N` is the number of total entities output by query.
///
/// For example, given the list [1, 2, 3, 4], where `K` is 2, the combinations without repeats are
/// [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4].
/// And in this case, `N` would be defined as 4 since the size of the input list is 4.
///
/// For combinations of size `K` of query taking `N` inputs, you will get:
/// - if `K == N`: one combination of all query results
/// - if `K < N`: all possible `K`-sized combinations of query results, without repetition
/// - if `K > N`: empty set (no `K`-sized combinations exist)
///
/// The `iter_combinations` method does not guarantee order of iteration.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// This can only be called for read-only queries, see [`Self::iter_combinations_mut`] for
/// write-queries.
#[inline]
pub fn iter_combinations<'w, 's, const K: usize>(
&'s mut self,
world: &'w World,
) -> QueryCombinationIter<'w, 's, D::ReadOnly, F, K> {
self.update_archetypes(world);
// SAFETY: query is read only
unsafe {
self.as_readonly().iter_combinations_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an [`Iterator`] over all possible combinations of `K` query results without repetition.
///
/// A combination is an arrangement of a collection of items where order does not matter.
///
/// `K` is the number of items that make up each subset, and the number of items returned by the iterator.
/// `N` is the number of total entities output by query.
///
/// For example, given the list [1, 2, 3, 4], where `K` is 2, the combinations without repeats are
/// [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4].
/// And in this case, `N` would be defined as 4 since the size of the input list is 4.
///
/// For combinations of size `K` of query taking `N` inputs, you will get:
/// - if `K == N`: one combination of all query results
/// - if `K < N`: all possible `K`-sized combinations of query results, without repetition
/// - if `K > N`: empty set (no `K`-sized combinations exist)
///
/// The `iter_combinations_mut` method does not guarantee order of iteration.
#[inline]
pub fn iter_combinations_mut<'w, 's, const K: usize>(
&'s mut self,
world: &'w mut World,
) -> QueryCombinationIter<'w, 's, D, F, K> {
self.update_archetypes(world);
let change_tick = world.change_tick();
let last_change_tick = world.last_change_tick();
// SAFETY: query has unique world access
unsafe {
self.iter_combinations_unchecked_manual(
world.as_unsafe_world_cell(),
last_change_tick,
change_tick,
)
}
}
/// Returns an [`Iterator`] over the read-only query items generated from an [`Entity`] list.
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
///
/// # See also
///
/// - [`iter_many_mut`](Self::iter_many_mut) to get mutable query items.
#[inline]
pub fn iter_many<'w, 's, EntityList: IntoIterator<Item: EntityBorrow>>(
&'s mut self,
world: &'w World,
entities: EntityList,
) -> QueryManyIter<'w, 's, D::ReadOnly, F, EntityList::IntoIter> {
self.update_archetypes(world);
// SAFETY: query is read only
unsafe {
self.as_readonly().iter_many_unchecked_manual(
entities,
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an [`Iterator`] over the read-only query items generated from an [`Entity`] list.
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
///
/// If `world` archetypes changed since [`Self::update_archetypes`] was last called,
/// this will skip entities contained in new archetypes.
///
/// This can only be called for read-only queries.
///
/// # See also
///
/// - [`iter_many`](Self::iter_many) to update archetypes.
/// - [`iter_manual`](Self::iter_manual) to iterate over all query items.
#[inline]
pub fn iter_many_manual<'w, 's, EntityList: IntoIterator<Item: EntityBorrow>>(
&'s self,
world: &'w World,
entities: EntityList,
) -> QueryManyIter<'w, 's, D::ReadOnly, F, EntityList::IntoIter> {
self.validate_world(world.id());
// SAFETY: query is read only, world id is validated
unsafe {
self.as_readonly().iter_many_unchecked_manual(
entities,
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an iterator over the query items generated from an [`Entity`] list.
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
#[inline]
pub fn iter_many_mut<'w, 's, EntityList: IntoIterator<Item: EntityBorrow>>(
&'s mut self,
world: &'w mut World,
entities: EntityList,
) -> QueryManyIter<'w, 's, D, F, EntityList::IntoIter> {
self.update_archetypes(world);
let change_tick = world.change_tick();
let last_change_tick = world.last_change_tick();
// SAFETY: Query has unique world access.
unsafe {
self.iter_many_unchecked_manual(
entities,
world.as_unsafe_world_cell(),
last_change_tick,
change_tick,
)
}
}
/// Returns an [`Iterator`] over the unique read-only query items generated from an [`EntitySet`].
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
///
/// # See also
///
/// - [`iter_many_unique_mut`](Self::iter_many_unique_mut) to get mutable query items.
#[inline]
pub fn iter_many_unique<'w, 's, EntityList: EntitySet>(
&'s mut self,
world: &'w World,
entities: EntityList,
) -> QueryManyUniqueIter<'w, 's, D::ReadOnly, F, EntityList::IntoIter> {
self.update_archetypes(world);
// SAFETY: query is read only
unsafe {
self.as_readonly().iter_many_unique_unchecked_manual(
entities,
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an [`Iterator`] over the unique read-only query items generated from an [`EntitySet`].
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
///
/// If `world` archetypes changed since [`Self::update_archetypes`] was last called,
/// this will skip entities contained in new archetypes.
///
/// This can only be called for read-only queries.
///
/// # See also
///
/// - [`iter_many_unique`](Self::iter_many) to update archetypes.
/// - [`iter_many`](Self::iter_many) to iterate over a non-unique entity list.
/// - [`iter_manual`](Self::iter_manual) to iterate over all query items.
#[inline]
pub fn iter_many_unique_manual<'w, 's, EntityList: EntitySet>(
&'s self,
world: &'w World,
entities: EntityList,
) -> QueryManyUniqueIter<'w, 's, D::ReadOnly, F, EntityList::IntoIter> {
self.validate_world(world.id());
// SAFETY: query is read only, world id is validated
unsafe {
self.as_readonly().iter_many_unique_unchecked_manual(
entities,
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns an iterator over the unique query items generated from an [`EntitySet`].
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
#[inline]
pub fn iter_many_unique_mut<'w, 's, EntityList: EntitySet>(
&'s mut self,
world: &'w mut World,
entities: EntityList,
) -> QueryManyUniqueIter<'w, 's, D, F, EntityList::IntoIter> {
self.update_archetypes(world);
let last_change_tick = world.last_change_tick();
let change_tick = world.change_tick();
// SAFETY: Query has unique world access.
unsafe {
self.iter_many_unique_unchecked_manual(
entities,
world.as_unsafe_world_cell(),
last_change_tick,
change_tick,
)
}
}
/// Returns an [`Iterator`] over the query results for the given [`World`].
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
#[inline]
pub unsafe fn iter_unchecked<'w, 's>(
&'s mut self,
world: UnsafeWorldCell<'w>,
) -> QueryIter<'w, 's, D, F> {
self.update_archetypes_unsafe_world_cell(world);
self.iter_unchecked_manual(world, world.last_change_tick(), world.change_tick())
}
/// Returns an [`Iterator`] over all possible combinations of `K` query results for the
/// given [`World`] without repetition.
/// This can only be called for read-only queries.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
#[inline]
pub unsafe fn iter_combinations_unchecked<'w, 's, const K: usize>(
&'s mut self,
world: UnsafeWorldCell<'w>,
) -> QueryCombinationIter<'w, 's, D, F, K> {
self.update_archetypes_unsafe_world_cell(world);
self.iter_combinations_unchecked_manual(
world,
world.last_change_tick(),
world.change_tick(),
)
}
/// Returns an [`Iterator`] for the given [`World`], where the last change and
/// the current change tick are given.
///
/// This iterator is always guaranteed to return results from each matching entity once and only once.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
/// This does not validate that `world.id()` matches `self.world_id`. Calling this on a `world`
/// with a mismatched [`WorldId`] is unsound.
#[inline]
pub(crate) unsafe fn iter_unchecked_manual<'w, 's>(
&'s self,
world: UnsafeWorldCell<'w>,
last_run: Tick,
this_run: Tick,
) -> QueryIter<'w, 's, D, F> {
QueryIter::new(world, self, last_run, this_run)
}
/// Returns an [`Iterator`] for the given [`World`] and list of [`Entity`]'s, where the last change and
/// the current change tick are given.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
/// This does not check for entity uniqueness
/// This does not validate that `world.id()` matches `self.world_id`. Calling this on a `world`
/// with a mismatched [`WorldId`] is unsound.
#[inline]
pub(crate) unsafe fn iter_many_unchecked_manual<'w, 's, EntityList>(
&'s self,
entities: EntityList,
world: UnsafeWorldCell<'w>,
last_run: Tick,
this_run: Tick,
) -> QueryManyIter<'w, 's, D, F, EntityList::IntoIter>
where
EntityList: IntoIterator<Item: EntityBorrow>,
{
QueryManyIter::new(world, self, entities, last_run, this_run)
}
/// Returns an [`Iterator`] for the given [`World`] and an [`EntitySet`], where the last change and
/// the current change tick are given.
///
/// Items are returned in the order of the list of entities.
/// Entities that don't match the query are skipped.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
/// This does not validate that `world.id()` matches `self.world_id`. Calling this on a `world`
/// with a mismatched [`WorldId`] is unsound.
#[inline]
pub(crate) unsafe fn iter_many_unique_unchecked_manual<'w, 's, EntityList: EntitySet>(
&'s self,
entities: EntityList,
world: UnsafeWorldCell<'w>,
last_run: Tick,
this_run: Tick,
) -> QueryManyUniqueIter<'w, 's, D, F, EntityList::IntoIter> {
QueryManyUniqueIter::new(world, self, entities, last_run, this_run)
}
/// Returns an [`Iterator`] over all possible combinations of `K` query results for the
/// given [`World`] without repetition.
/// This can only be called for read-only queries.
///
/// This iterator is always guaranteed to return results from each unique pair of matching entities.
/// Iteration order is not guaranteed.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
/// This does not validate that `world.id()` matches `self.world_id`. Calling this on a `world`
/// with a mismatched [`WorldId`] is unsound.
#[inline]
pub(crate) unsafe fn iter_combinations_unchecked_manual<'w, 's, const K: usize>(
&'s self,
world: UnsafeWorldCell<'w>,
last_run: Tick,
this_run: Tick,
) -> QueryCombinationIter<'w, 's, D, F, K> {
QueryCombinationIter::new(world, self, last_run, this_run)
}
/// Returns a parallel iterator over the query results for the given [`World`].
///
/// This can only be called for read-only queries, see [`par_iter_mut`] for write-queries.
///
/// Note that you must use the `for_each` method to iterate over the
/// results, see [`par_iter_mut`] for an example.
///
/// [`par_iter_mut`]: Self::par_iter_mut
#[inline]
pub fn par_iter<'w, 's>(
&'s mut self,
world: &'w World,
) -> QueryParIter<'w, 's, D::ReadOnly, F> {
self.update_archetypes(world);
QueryParIter {
world: world.as_unsafe_world_cell_readonly(),
state: self.as_readonly(),
last_run: world.last_change_tick(),
this_run: world.read_change_tick(),
batching_strategy: BatchingStrategy::new(),
}
}
/// Returns a parallel iterator over the query results for the given [`World`].
///
/// This can only be called for mutable queries, see [`par_iter`] for read-only-queries.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::query::QueryEntityError;
///
/// #[derive(Component, PartialEq, Debug)]
/// struct A(usize);
///
/// # bevy_tasks::ComputeTaskPool::get_or_init(|| bevy_tasks::TaskPool::new());
///
/// let mut world = World::new();
///
/// # let entities: Vec<Entity> = (0..3).map(|i| world.spawn(A(i)).id()).collect();
/// # let entities: [Entity; 3] = entities.try_into().unwrap();
///
/// let mut query_state = world.query::<&mut A>();
///
/// query_state.par_iter_mut(&mut world).for_each(|mut a| {
/// a.0 += 5;
/// });
///
/// # let component_values = query_state.get_many(&world, entities).unwrap();
///
/// # assert_eq!(component_values, [&A(5), &A(6), &A(7)]);
///
/// # let wrong_entity = Entity::from_raw(57);
/// # let invalid_entity = world.spawn_empty().id();
///
/// # assert_eq!(match query_state.get_many(&mut world, [wrong_entity]).unwrap_err() {QueryEntityError::NoSuchEntity(entity, _) => entity, _ => panic!()}, wrong_entity);
/// assert_eq!(match query_state.get_many_mut(&mut world, [invalid_entity]).unwrap_err() {QueryEntityError::QueryDoesNotMatch(entity, _) => entity, _ => panic!()}, invalid_entity);
/// # assert_eq!(query_state.get_many_mut(&mut world, [entities[0], entities[0]]).unwrap_err(), QueryEntityError::AliasedMutability(entities[0]));
/// ```
///
/// # Panics
/// The [`ComputeTaskPool`] is not initialized. If using this from a query that is being
/// initialized and run from the ECS scheduler, this should never panic.
///
/// [`par_iter`]: Self::par_iter
/// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
#[inline]
pub fn par_iter_mut<'w, 's>(&'s mut self, world: &'w mut World) -> QueryParIter<'w, 's, D, F> {
self.update_archetypes(world);
let this_run = world.change_tick();
let last_run = world.last_change_tick();
QueryParIter {
world: world.as_unsafe_world_cell(),
state: self,
last_run,
this_run,
batching_strategy: BatchingStrategy::new(),
}
}
/// Runs `func` on each query result in parallel for the given [`World`], where the last change and
/// the current change tick are given. This is faster than the equivalent
/// `iter()` method, but cannot be chained like a normal [`Iterator`].
///
/// # Panics
/// The [`ComputeTaskPool`] is not initialized. If using this from a query that is being
/// initialized and run from the ECS scheduler, this should never panic.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
/// This does not validate that `world.id()` matches `self.world_id`. Calling this on a `world`
/// with a mismatched [`WorldId`] is unsound.
///
/// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
#[cfg(all(not(target_arch = "wasm32"), feature = "multi_threaded"))]
pub(crate) unsafe fn par_fold_init_unchecked_manual<'w, T, FN, INIT>(
&self,
init_accum: INIT,
world: UnsafeWorldCell<'w>,
batch_size: usize,
func: FN,
last_run: Tick,
this_run: Tick,
) where
FN: Fn(T, D::Item<'w>) -> T + Send + Sync + Clone,
INIT: Fn() -> T + Sync + Send + Clone,
{
// NOTE: If you are changing query iteration code, remember to update the following places, where relevant:
// QueryIter, QueryIterationCursor, QueryManyIter, QueryCombinationIter,QueryState::par_fold_init_unchecked_manual
use arrayvec::ArrayVec;
bevy_tasks::ComputeTaskPool::get().scope(|scope| {
// SAFETY: We only access table data that has been registered in `self.archetype_component_access`.
let tables = unsafe { &world.storages().tables };
let archetypes = world.archetypes();
let mut batch_queue = ArrayVec::new();
let mut queue_entity_count = 0;
// submit a list of storages which smaller than batch_size as single task
let submit_batch_queue = |queue: &mut ArrayVec<StorageId, 128>| {
if queue.is_empty() {
return;
}
let queue = core::mem::take(queue);
let mut func = func.clone();
let init_accum = init_accum.clone();
scope.spawn(async move {
#[cfg(feature = "trace")]
let _span = self.par_iter_span.enter();
let mut iter = self.iter_unchecked_manual(world, last_run, this_run);
let mut accum = init_accum();
for storage_id in queue {
accum = iter.fold_over_storage_range(accum, &mut func, storage_id, None);
}
});
};
// submit single storage larger than batch_size
let submit_single = |count, storage_id: StorageId| {
for offset in (0..count).step_by(batch_size) {
let mut func = func.clone();
let init_accum = init_accum.clone();
let len = batch_size.min(count - offset);
let batch = offset..offset + len;
scope.spawn(async move {
#[cfg(feature = "trace")]
let _span = self.par_iter_span.enter();
let accum = init_accum();
self.iter_unchecked_manual(world, last_run, this_run)
.fold_over_storage_range(accum, &mut func, storage_id, Some(batch));
});
}
};
let storage_entity_count = |storage_id: StorageId| -> usize {
if self.is_dense {
tables[storage_id.table_id].entity_count()
} else {
archetypes[storage_id.archetype_id].len()
}
};
for storage_id in &self.matched_storage_ids {
let count = storage_entity_count(*storage_id);
// skip empty storage
if count == 0 {
continue;
}
// immediately submit large storage
if count >= batch_size {
submit_single(count, *storage_id);
continue;
}
// merge small storage
batch_queue.push(*storage_id);
queue_entity_count += count;
// submit batch_queue
if queue_entity_count >= batch_size || batch_queue.is_full() {
submit_batch_queue(&mut batch_queue);
queue_entity_count = 0;
}
}
submit_batch_queue(&mut batch_queue);
});
}
/// Returns a single immutable query result when there is exactly one entity matching
/// the query.
///
/// This can only be called for read-only queries,
/// see [`single_mut`](Self::single_mut) for write-queries.
///
/// # Panics
///
/// Panics if the number of query results is not exactly one. Use
/// [`get_single`](Self::get_single) to return a `Result` instead of panicking.
#[track_caller]
#[inline]
pub fn single<'w>(&mut self, world: &'w World) -> ROQueryItem<'w, D> {
match self.get_single(world) {
Ok(items) => items,
Err(error) => panic!("Cannot get single query result: {error}"),
}
}
/// Returns a single immutable query result when there is exactly one entity matching
/// the query.
///
/// This can only be called for read-only queries,
/// see [`get_single_mut`](Self::get_single_mut) for write-queries.
///
/// If the number of query results is not exactly one, a [`QuerySingleError`] is returned
/// instead.
#[inline]
pub fn get_single<'w>(
&mut self,
world: &'w World,
) -> Result<ROQueryItem<'w, D>, QuerySingleError> {
self.update_archetypes(world);
// SAFETY: query is read only
unsafe {
self.as_readonly().get_single_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
world.last_change_tick(),
world.read_change_tick(),
)
}
}
/// Returns a single mutable query result when there is exactly one entity matching
/// the query.
///
/// # Panics
///
/// Panics if the number of query results is not exactly one. Use
/// [`get_single_mut`](Self::get_single_mut) to return a `Result` instead of panicking.
#[track_caller]
#[inline]
pub fn single_mut<'w>(&mut self, world: &'w mut World) -> D::Item<'w> {
// SAFETY: query has unique world access
match self.get_single_mut(world) {
Ok(items) => items,
Err(error) => panic!("Cannot get single query result: {error}"),
}
}
/// Returns a single mutable query result when there is exactly one entity matching
/// the query.
///
/// If the number of query results is not exactly one, a [`QuerySingleError`] is returned
/// instead.
#[inline]
pub fn get_single_mut<'w>(
&mut self,
world: &'w mut World,
) -> Result<D::Item<'w>, QuerySingleError> {
self.update_archetypes(world);
let change_tick = world.change_tick();
let last_change_tick = world.last_change_tick();
// SAFETY: query has unique world access
unsafe {
self.get_single_unchecked_manual(
world.as_unsafe_world_cell(),
last_change_tick,
change_tick,
)
}
}
/// Returns a query result when there is exactly one entity matching the query.
///
/// If the number of query results is not exactly one, a [`QuerySingleError`] is returned
/// instead.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
#[inline]
pub unsafe fn get_single_unchecked<'w>(
&mut self,
world: UnsafeWorldCell<'w>,
) -> Result<D::Item<'w>, QuerySingleError> {
self.update_archetypes_unsafe_world_cell(world);
self.get_single_unchecked_manual(world, world.last_change_tick(), world.change_tick())
}
/// Returns a query result when there is exactly one entity matching the query,
/// where the last change and the current change tick are given.
///
/// If the number of query results is not exactly one, a [`QuerySingleError`] is returned
/// instead.
///
/// # Safety
///
/// This does not check for mutable query correctness. To be safe, make sure mutable queries
/// have unique access to the components they query.
#[inline]
pub unsafe fn get_single_unchecked_manual<'w>(
&self,
world: UnsafeWorldCell<'w>,
last_run: Tick,
this_run: Tick,
) -> Result<D::Item<'w>, QuerySingleError> {
let mut query = self.iter_unchecked_manual(world, last_run, this_run);
let first = query.next();
let extra = query.next().is_some();
match (first, extra) {
(Some(r), false) => Ok(r),
(None, _) => Err(QuerySingleError::NoEntities(core::any::type_name::<Self>())),
(Some(_), _) => Err(QuerySingleError::MultipleEntities(core::any::type_name::<
Self,
>())),
}
}
}
impl<D: QueryData, F: QueryFilter> From<QueryBuilder<'_, D, F>> for QueryState<D, F> {
fn from(mut value: QueryBuilder<D, F>) -> Self {
QueryState::from_builder(&mut value)
}
}
#[cfg(test)]
mod tests {
use crate as bevy_ecs;
use crate::{
component::Component, prelude::*, query::QueryEntityError, world::FilteredEntityRef,
};
use alloc::vec::Vec;
#[test]
fn get_many_unchecked_manual_uniqueness() {
let mut world = World::new();
let entities: Vec<Entity> = (0..10).map(|_| world.spawn_empty().id()).collect();
let query_state = world.query::<Entity>();
// These don't matter for the test
let last_change_tick = world.last_change_tick();
let change_tick = world.change_tick();
// It's best to test get_many_unchecked_manual directly,
// as it is shared and unsafe
// We don't care about aliased mutability for the read-only equivalent
// SAFETY: Query does not access world data.
assert!(unsafe {
query_state
.get_many_unchecked_manual::<10>(
world.as_unsafe_world_cell_readonly(),
entities.clone().try_into().unwrap(),
last_change_tick,
change_tick,
)
.is_ok()
});
assert_eq!(
// SAFETY: Query does not access world data.
unsafe {
query_state
.get_many_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
[entities[0], entities[0]],
last_change_tick,
change_tick,
)
.unwrap_err()
},
QueryEntityError::AliasedMutability(entities[0])
);
assert_eq!(
// SAFETY: Query does not access world data.
unsafe {
query_state
.get_many_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
[entities[0], entities[1], entities[0]],
last_change_tick,
change_tick,
)
.unwrap_err()
},
QueryEntityError::AliasedMutability(entities[0])
);
assert_eq!(
// SAFETY: Query does not access world data.
unsafe {
query_state
.get_many_unchecked_manual(
world.as_unsafe_world_cell_readonly(),
[entities[9], entities[9]],
last_change_tick,
change_tick,
)
.unwrap_err()
},
QueryEntityError::AliasedMutability(entities[9])
);
}
#[test]
#[should_panic]
fn right_world_get() {
let mut world_1 = World::new();
let world_2 = World::new();
let mut query_state = world_1.query::<Entity>();
let _panics = query_state.get(&world_2, Entity::from_raw(0));
}
#[test]
#[should_panic]
fn right_world_get_many() {
let mut world_1 = World::new();
let world_2 = World::new();
let mut query_state = world_1.query::<Entity>();
let _panics = query_state.get_many(&world_2, []);
}
#[test]
#[should_panic]
fn right_world_get_many_mut() {
let mut world_1 = World::new();
let mut world_2 = World::new();
let mut query_state = world_1.query::<Entity>();
let _panics = query_state.get_many_mut(&mut world_2, []);
}
#[derive(Component, PartialEq, Debug)]
struct A(usize);
#[derive(Component, PartialEq, Debug)]
struct B(usize);
#[derive(Component, PartialEq, Debug)]
struct C(usize);
#[test]
fn can_transmute_to_more_general() {
let mut world = World::new();
world.spawn((A(1), B(0)));
let query_state = world.query::<(&A, &B)>();
let mut new_query_state = query_state.transmute::<&A>(&world);
assert_eq!(new_query_state.iter(&world).len(), 1);
let a = new_query_state.single(&world);
assert_eq!(a.0, 1);
}
#[test]
fn cannot_get_data_not_in_original_query() {
let mut world = World::new();
world.spawn((A(0), B(0)));
world.spawn((A(1), B(0), C(0)));
let query_state = world.query_filtered::<(&A, &B), Without<C>>();
let mut new_query_state = query_state.transmute::<&A>(&world);
// even though we change the query to not have Without<C>, we do not get the component with C.
let a = new_query_state.single(&world);
assert_eq!(a.0, 0);
}
#[test]
fn can_transmute_empty_tuple() {
let mut world = World::new();
world.register_component::<A>();
let entity = world.spawn(A(10)).id();
let q = world.query::<()>();
let mut q = q.transmute::<Entity>(&world);
assert_eq!(q.single(&world), entity);
}
#[test]
fn can_transmute_immut_fetch() {
let mut world = World::new();
world.spawn(A(10));
let q = world.query::<&A>();
let mut new_q = q.transmute::<Ref<A>>(&world);
assert!(new_q.single(&world).is_added());
let q = world.query::<Ref<A>>();
let _ = q.transmute::<&A>(&world);
}
#[test]
fn can_transmute_mut_fetch() {
let mut world = World::new();
world.spawn(A(0));
let q = world.query::<&mut A>();
let _ = q.transmute::<Ref<A>>(&world);
let _ = q.transmute::<&A>(&world);
}
#[test]
fn can_transmute_entity_mut() {
let mut world = World::new();
world.spawn(A(0));
let q: QueryState<EntityMut<'_>> = world.query::<EntityMut>();
let _ = q.transmute::<EntityRef>(&world);
}
#[test]
fn can_generalize_with_option() {
let mut world = World::new();
world.spawn((A(0), B(0)));
let query_state = world.query::<(Option<&A>, &B)>();
let _ = query_state.transmute::<Option<&A>>(&world);
let _ = query_state.transmute::<&B>(&world);
}
#[test]
#[should_panic(
expected = "Transmuted state for ((&bevy_ecs::query::state::tests::A, &bevy_ecs::query::state::tests::B), ()) attempts to access terms that are not allowed by original state (&bevy_ecs::query::state::tests::A, ())."
)]
fn cannot_transmute_to_include_data_not_in_original_query() {
let mut world = World::new();
world.register_component::<A>();
world.register_component::<B>();
world.spawn(A(0));
let query_state = world.query::<&A>();
let mut _new_query_state = query_state.transmute::<(&A, &B)>(&world);
}
#[test]
#[should_panic(
expected = "Transmuted state for (&mut bevy_ecs::query::state::tests::A, ()) attempts to access terms that are not allowed by original state (&bevy_ecs::query::state::tests::A, ())."
)]
fn cannot_transmute_immut_to_mut() {
let mut world = World::new();
world.spawn(A(0));
let query_state = world.query::<&A>();
let mut _new_query_state = query_state.transmute::<&mut A>(&world);
}
#[test]
#[should_panic(
expected = "Transmuted state for (&bevy_ecs::query::state::tests::A, ()) attempts to access terms that are not allowed by original state (core::option::Option<&bevy_ecs::query::state::tests::A>, ())."
)]
fn cannot_transmute_option_to_immut() {
let mut world = World::new();
world.spawn(C(0));
let query_state = world.query::<Option<&A>>();
let mut new_query_state = query_state.transmute::<&A>(&world);
let x = new_query_state.single(&world);
assert_eq!(x.0, 1234);
}
#[test]
#[should_panic(
expected = "Transmuted state for (&bevy_ecs::query::state::tests::A, ()) attempts to access terms that are not allowed by original state (bevy_ecs::world::entity_ref::EntityRef, ())."
)]
fn cannot_transmute_entity_ref() {
let mut world = World::new();
world.register_component::<A>();
let q = world.query::<EntityRef>();
let _ = q.transmute::<&A>(&world);
}
#[test]
fn can_transmute_filtered_entity() {
let mut world = World::new();
let entity = world.spawn((A(0), B(1))).id();
let query =
QueryState::<(Entity, &A, &B)>::new(&mut world).transmute::<FilteredEntityRef>(&world);
let mut query = query;
// Our result is completely untyped
let entity_ref = query.single(&world);
assert_eq!(entity, entity_ref.id());
assert_eq!(0, entity_ref.get::<A>().unwrap().0);
assert_eq!(1, entity_ref.get::<B>().unwrap().0);
}
#[test]
fn can_transmute_added() {
let mut world = World::new();
let entity_a = world.spawn(A(0)).id();
let mut query = QueryState::<(Entity, &A, Has<B>)>::new(&mut world)
.transmute_filtered::<(Entity, Has<B>), Added<A>>(&world);
assert_eq!((entity_a, false), query.single(&world));
world.clear_trackers();
let entity_b = world.spawn((A(0), B(0))).id();
assert_eq!((entity_b, true), query.single(&world));
world.clear_trackers();
assert!(query.get_single(&world).is_err());
}
#[test]
fn can_transmute_changed() {
let mut world = World::new();
let entity_a = world.spawn(A(0)).id();
let mut detection_query = QueryState::<(Entity, &A)>::new(&mut world)
.transmute_filtered::<Entity, Changed<A>>(&world);
let mut change_query = QueryState::<&mut A>::new(&mut world);
assert_eq!(entity_a, detection_query.single(&world));
world.clear_trackers();
assert!(detection_query.get_single(&world).is_err());
change_query.single_mut(&mut world).0 = 1;
assert_eq!(entity_a, detection_query.single(&world));
}
#[test]
#[should_panic(
expected = "Transmuted state for (bevy_ecs::entity::Entity, bevy_ecs::query::filter::Changed<bevy_ecs::query::state::tests::B>) attempts to access terms that are not allowed by original state (&bevy_ecs::query::state::tests::A, ())."
)]
fn cannot_transmute_changed_without_access() {
let mut world = World::new();
world.register_component::<A>();
world.register_component::<B>();
let query = QueryState::<&A>::new(&mut world);
let _new_query = query.transmute_filtered::<Entity, Changed<B>>(&world);
}
// Regression test for #14629
#[test]
#[should_panic]
fn transmute_with_different_world() {
let mut world = World::new();
world.spawn((A(1), B(2)));
let mut world2 = World::new();
world2.register_component::<B>();
world.query::<(&A, &B)>().transmute::<&B>(&world2);
}
/// Regression test for issue #14528
#[test]
fn transmute_from_sparse_to_dense() {
#[derive(Component)]
struct Dense;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
world.spawn(Dense);
world.spawn((Dense, Sparse));
let mut query = world
.query_filtered::<&Dense, With<Sparse>>()
.transmute::<&Dense>(&world);
let matched = query.iter(&world).count();
assert_eq!(matched, 1);
}
#[test]
fn transmute_from_dense_to_sparse() {
#[derive(Component)]
struct Dense;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
world.spawn(Dense);
world.spawn((Dense, Sparse));
let mut query = world
.query::<&Dense>()
.transmute_filtered::<&Dense, With<Sparse>>(&world);
// Note: `transmute_filtered` is supposed to keep the same matched tables/archetypes,
// so it doesn't actually filter out those entities without `Sparse` and the iteration
// remains dense.
let matched = query.iter(&world).count();
assert_eq!(matched, 2);
}
#[test]
fn join() {
let mut world = World::new();
world.spawn(A(0));
world.spawn(B(1));
let entity_ab = world.spawn((A(2), B(3))).id();
world.spawn((A(4), B(5), C(6)));
let query_1 = QueryState::<&A, Without<C>>::new(&mut world);
let query_2 = QueryState::<&B, Without<C>>::new(&mut world);
let mut new_query: QueryState<Entity, ()> = query_1.join_filtered(&world, &query_2);
assert_eq!(new_query.single(&world), entity_ab);
}
#[test]
fn join_with_get() {
let mut world = World::new();
world.spawn(A(0));
world.spawn(B(1));
let entity_ab = world.spawn((A(2), B(3))).id();
let entity_abc = world.spawn((A(4), B(5), C(6))).id();
let query_1 = QueryState::<&A>::new(&mut world);
let query_2 = QueryState::<&B, Without<C>>::new(&mut world);
let mut new_query: QueryState<Entity, ()> = query_1.join_filtered(&world, &query_2);
assert!(new_query.get(&world, entity_ab).is_ok());
// should not be able to get entity with c.
assert!(new_query.get(&world, entity_abc).is_err());
}
#[test]
#[should_panic(expected = "Joined state for (&bevy_ecs::query::state::tests::C, ()) \
attempts to access terms that are not allowed by state \
(&bevy_ecs::query::state::tests::A, ()) joined with (&bevy_ecs::query::state::tests::B, ()).")]
fn cannot_join_wrong_fetch() {
let mut world = World::new();
world.register_component::<C>();
let query_1 = QueryState::<&A>::new(&mut world);
let query_2 = QueryState::<&B>::new(&mut world);
let _query: QueryState<&C> = query_1.join(&world, &query_2);
}
#[test]
#[should_panic(
expected = "Joined state for (bevy_ecs::entity::Entity, bevy_ecs::query::filter::Changed<bevy_ecs::query::state::tests::C>) \
attempts to access terms that are not allowed by state \
(&bevy_ecs::query::state::tests::A, bevy_ecs::query::filter::Without<bevy_ecs::query::state::tests::C>) \
joined with (&bevy_ecs::query::state::tests::B, bevy_ecs::query::filter::Without<bevy_ecs::query::state::tests::C>)."
)]
fn cannot_join_wrong_filter() {
let mut world = World::new();
let query_1 = QueryState::<&A, Without<C>>::new(&mut world);
let query_2 = QueryState::<&B, Without<C>>::new(&mut world);
let _: QueryState<Entity, Changed<C>> = query_1.join_filtered(&world, &query_2);
}
}