bevy/crates/bevy_ui/src/ui_node.rs
ickshonpe 43b8fbda93
Unrequire VisibilityClass from Node (#17918)
# Objective

The UI doesn't use `ViewVisibility` so it doesn't do anything.

## Solution

Remove it.
2025-05-31 08:18:01 +00:00

2848 lines
97 KiB
Rust

use crate::{FocusPolicy, UiRect, Val};
use bevy_color::{Alpha, Color};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{prelude::*, system::SystemParam};
use bevy_math::{vec4, Rect, UVec2, Vec2, Vec4Swizzles};
use bevy_reflect::prelude::*;
use bevy_render::{
camera::{Camera, RenderTarget},
view::Visibility,
};
use bevy_sprite::BorderRect;
use bevy_transform::components::Transform;
use bevy_utils::once;
use bevy_window::{PrimaryWindow, WindowRef};
use core::{f32, num::NonZero};
use derive_more::derive::From;
use smallvec::SmallVec;
use thiserror::Error;
use tracing::warn;
/// Provides the computed size and layout properties of the node.
///
/// Fields in this struct are public but should not be modified under most circumstances.
/// For example, in a scrollbar you may want to derive the handle's size from the proportion of
/// scrollable content in-view. You can directly modify `ComputedNode` after layout to set the
/// handle size without any delays.
#[derive(Component, Debug, Copy, Clone, PartialEq, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct ComputedNode {
/// The order of the node in the UI layout.
/// Nodes with a higher stack index are drawn on top of and receive interactions before nodes with lower stack indices.
///
/// Automatically calculated in [`super::UiSystems::Stack`].
pub stack_index: u32,
/// The size of the node as width and height in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub size: Vec2,
/// Size of this node's content.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub content_size: Vec2,
/// The width of this node's outline.
/// If this value is `Auto`, negative or `0.` then no outline will be rendered.
/// Outline updates bypass change detection.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub outline_width: f32,
/// The amount of space between the outline and the edge of the node.
/// Outline updates bypass change detection.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub outline_offset: f32,
/// The unrounded size of the node as width and height in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub unrounded_size: Vec2,
/// Resolved border values in physical pixels.
/// Border updates bypass change detection.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub border: BorderRect,
/// Resolved border radius values in physical pixels.
/// Border radius updates bypass change detection.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub border_radius: ResolvedBorderRadius,
/// Resolved padding values in physical pixels.
/// Padding updates bypass change detection.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub padding: BorderRect,
/// Inverse scale factor for this Node.
/// Multiply physical coordinates by the inverse scale factor to give logical coordinates.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub inverse_scale_factor: f32,
}
impl ComputedNode {
/// The calculated node size as width and height in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn size(&self) -> Vec2 {
self.size
}
/// The calculated node content size as width and height in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn content_size(&self) -> Vec2 {
self.content_size
}
/// Check if the node is empty.
/// A node is considered empty if it has a zero or negative extent along either of its axes.
#[inline]
pub const fn is_empty(&self) -> bool {
self.size.x <= 0. || self.size.y <= 0.
}
/// The order of the node in the UI layout.
/// Nodes with a higher stack index are drawn on top of and receive interactions before nodes with lower stack indices.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
pub const fn stack_index(&self) -> u32 {
self.stack_index
}
/// The calculated node size as width and height in physical pixels before rounding.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn unrounded_size(&self) -> Vec2 {
self.unrounded_size
}
/// Returns the thickness of the UI node's outline in physical pixels.
/// If this value is negative or `0.` then no outline will be rendered.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn outline_width(&self) -> f32 {
self.outline_width
}
/// Returns the amount of space between the outline and the edge of the node in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn outline_offset(&self) -> f32 {
self.outline_offset
}
/// Returns the size of the node when including its outline.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn outlined_node_size(&self) -> Vec2 {
let offset = 2. * (self.outline_offset + self.outline_width);
Vec2::new(self.size.x + offset, self.size.y + offset)
}
/// Returns the border radius for each corner of the outline
/// An outline's border radius is derived from the node's border-radius
/// so that the outline wraps the border equally at all points.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn outline_radius(&self) -> ResolvedBorderRadius {
let outer_distance = self.outline_width + self.outline_offset;
const fn compute_radius(radius: f32, outer_distance: f32) -> f32 {
if radius > 0. {
radius + outer_distance
} else {
0.
}
}
ResolvedBorderRadius {
top_left: compute_radius(self.border_radius.top_left, outer_distance),
top_right: compute_radius(self.border_radius.top_right, outer_distance),
bottom_right: compute_radius(self.border_radius.bottom_right, outer_distance),
bottom_left: compute_radius(self.border_radius.bottom_left, outer_distance),
}
}
/// Returns the thickness of the node's border on each edge in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn border(&self) -> BorderRect {
self.border
}
/// Returns the border radius for each of the node's corners in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn border_radius(&self) -> ResolvedBorderRadius {
self.border_radius
}
/// Returns the inner border radius for each of the node's corners in physical pixels.
pub fn inner_radius(&self) -> ResolvedBorderRadius {
fn clamp_corner(r: f32, size: Vec2, offset: Vec2) -> f32 {
let s = 0.5 * size + offset;
let sm = s.x.min(s.y);
r.min(sm)
}
let b = vec4(
self.border.left,
self.border.top,
self.border.right,
self.border.bottom,
);
let s = self.size() - b.xy() - b.zw();
ResolvedBorderRadius {
top_left: clamp_corner(self.border_radius.top_left, s, b.xy()),
top_right: clamp_corner(self.border_radius.top_right, s, b.zy()),
bottom_right: clamp_corner(self.border_radius.bottom_left, s, b.xw()),
bottom_left: clamp_corner(self.border_radius.bottom_right, s, b.zw()),
}
}
/// Returns the thickness of the node's padding on each edge in physical pixels.
///
/// Automatically calculated by [`super::layout::ui_layout_system`].
#[inline]
pub const fn padding(&self) -> BorderRect {
self.padding
}
/// Returns the combined inset on each edge including both padding and border thickness in physical pixels.
#[inline]
pub const fn content_inset(&self) -> BorderRect {
BorderRect {
left: self.border.left + self.padding.left,
right: self.border.right + self.padding.right,
top: self.border.top + self.padding.top,
bottom: self.border.bottom + self.padding.bottom,
}
}
/// Returns the inverse of the scale factor for this node.
/// To convert from physical coordinates to logical coordinates multiply by this value.
#[inline]
pub const fn inverse_scale_factor(&self) -> f32 {
self.inverse_scale_factor
}
}
impl ComputedNode {
pub const DEFAULT: Self = Self {
stack_index: 0,
size: Vec2::ZERO,
content_size: Vec2::ZERO,
outline_width: 0.,
outline_offset: 0.,
unrounded_size: Vec2::ZERO,
border_radius: ResolvedBorderRadius::ZERO,
border: BorderRect::ZERO,
padding: BorderRect::ZERO,
inverse_scale_factor: 1.,
};
}
impl Default for ComputedNode {
fn default() -> Self {
Self::DEFAULT
}
}
/// The scroll position of the node.
///
/// Updating the values of `ScrollPosition` will reposition the children of the node by the offset amount.
/// `ScrollPosition` may be updated by the layout system when a layout change makes a previously valid `ScrollPosition` invalid.
/// Changing this does nothing on a `Node` without setting at least one `OverflowAxis` to `OverflowAxis::Scroll`.
#[derive(Component, Debug, Clone, Reflect)]
#[reflect(Component, Default, Clone)]
pub struct ScrollPosition {
/// How far across the node is scrolled, in logical pixels. (0 = not scrolled / scrolled to right)
pub offset_x: f32,
/// How far down the node is scrolled, in logical pixels. (0 = not scrolled / scrolled to top)
pub offset_y: f32,
}
impl ScrollPosition {
pub const DEFAULT: Self = Self {
offset_x: 0.0,
offset_y: 0.0,
};
}
impl Default for ScrollPosition {
fn default() -> Self {
Self::DEFAULT
}
}
impl From<&ScrollPosition> for Vec2 {
fn from(scroll_pos: &ScrollPosition) -> Self {
Vec2::new(scroll_pos.offset_x, scroll_pos.offset_y)
}
}
impl From<Vec2> for ScrollPosition {
fn from(vec: Vec2) -> Self {
ScrollPosition {
offset_x: vec.x,
offset_y: vec.y,
}
}
}
/// The base component for UI entities. It describes UI layout and style properties.
///
/// When defining new types of UI entities, require [`Node`] to make them behave like UI nodes.
///
/// Nodes can be laid out using either Flexbox or CSS Grid Layout.
///
/// See below for general learning resources and for documentation on the individual style properties.
///
/// ### Flexbox
///
/// - [MDN: Basic Concepts of Flexbox](https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox)
/// - [A Complete Guide To Flexbox](https://css-tricks.com/snippets/css/a-guide-to-flexbox/) by CSS Tricks. This is detailed guide with illustrations and comprehensive written explanation of the different Flexbox properties and how they work.
/// - [Flexbox Froggy](https://flexboxfroggy.com/). An interactive tutorial/game that teaches the essential parts of Flexbox in a fun engaging way.
///
/// ### CSS Grid
///
/// - [MDN: Basic Concepts of Grid Layout](https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout)
/// - [A Complete Guide To CSS Grid](https://css-tricks.com/snippets/css/complete-guide-grid/) by CSS Tricks. This is detailed guide with illustrations and comprehensive written explanation of the different CSS Grid properties and how they work.
/// - [CSS Grid Garden](https://cssgridgarden.com/). An interactive tutorial/game that teaches the essential parts of CSS Grid in a fun engaging way.
///
/// # See also
///
/// - [`RelativeCursorPosition`](crate::RelativeCursorPosition) to obtain the cursor position relative to this node
/// - [`Interaction`](crate::Interaction) to obtain the interaction state of this node
#[derive(Component, Clone, PartialEq, Debug, Reflect)]
#[require(
ComputedNode,
ComputedNodeTarget,
BackgroundColor,
BorderColor,
BorderRadius,
FocusPolicy,
ScrollPosition,
Transform,
Visibility,
ZIndex
)]
#[reflect(Component, Default, PartialEq, Debug, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct Node {
/// Which layout algorithm to use when laying out this node's contents:
/// - [`Display::Flex`]: Use the Flexbox layout algorithm
/// - [`Display::Grid`]: Use the CSS Grid layout algorithm
/// - [`Display::None`]: Hide this node and perform layout as if it does not exist.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/display>
pub display: Display,
/// Which part of a Node's box length styles like width and height control
/// - [`BoxSizing::BorderBox`]: They refer to the "border box" size (size including padding and border)
/// - [`BoxSizing::ContentBox`]: They refer to the "content box" size (size excluding padding and border)
///
/// `BoxSizing::BorderBox` is generally considered more intuitive and is the default in Bevy even though it is not on the web.
///
/// See: <https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing>
pub box_sizing: BoxSizing,
/// Whether a node should be laid out in-flow with, or independently of its siblings:
/// - [`PositionType::Relative`]: Layout this node in-flow with other nodes using the usual (flexbox/grid) layout algorithm.
/// - [`PositionType::Absolute`]: Layout this node on top and independently of other nodes.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/position>
pub position_type: PositionType,
/// Whether overflowing content should be displayed or clipped.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/overflow>
pub overflow: Overflow,
/// How the bounds of clipped content should be determined
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-clip-margin>
pub overflow_clip_margin: OverflowClipMargin,
/// The horizontal position of the left edge of the node.
/// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
/// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/left>
pub left: Val,
/// The horizontal position of the right edge of the node.
/// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
/// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/right>
pub right: Val,
/// The vertical position of the top edge of the node.
/// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
/// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/top>
pub top: Val,
/// The vertical position of the bottom edge of the node.
/// - For relatively positioned nodes, this is relative to the node's position as computed during regular layout.
/// - For absolutely positioned nodes, this is relative to the *parent* node's bounding box.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/bottom>
pub bottom: Val,
/// The ideal width of the node. `width` is used when it is within the bounds defined by `min_width` and `max_width`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/width>
pub width: Val,
/// The ideal height of the node. `height` is used when it is within the bounds defined by `min_height` and `max_height`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/height>
pub height: Val,
/// The minimum width of the node. `min_width` is used if it is greater than `width` and/or `max_width`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/min-width>
pub min_width: Val,
/// The minimum height of the node. `min_height` is used if it is greater than `height` and/or `max_height`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/min-height>
pub min_height: Val,
/// The maximum width of the node. `max_width` is used if it is within the bounds defined by `min_width` and `width`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/max-width>
pub max_width: Val,
/// The maximum height of the node. `max_height` is used if it is within the bounds defined by `min_height` and `height`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/max-height>
pub max_height: Val,
/// The aspect ratio of the node (defined as `width / height`)
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio>
pub aspect_ratio: Option<f32>,
/// Used to control how each individual item is aligned by default within the space they're given.
/// - For Flexbox containers, sets default cross axis alignment of the child items.
/// - For CSS Grid containers, controls block (vertical) axis alignment of children of this grid container within their grid areas.
///
/// This value is overridden if [`AlignSelf`] on the child node is set.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-items>
pub align_items: AlignItems,
/// Used to control how each individual item is aligned by default within the space they're given.
/// - For Flexbox containers, this property has no effect. See `justify_content` for main axis alignment of flex items.
/// - For CSS Grid containers, sets default inline (horizontal) axis alignment of child items within their grid areas.
///
/// This value is overridden if [`JustifySelf`] on the child node is set.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-items>
pub justify_items: JustifyItems,
/// Used to control how the specified item is aligned within the space it's given.
/// - For Flexbox items, controls cross axis alignment of the item.
/// - For CSS Grid items, controls block (vertical) axis alignment of a grid item within its grid area.
///
/// If set to `Auto`, alignment is inherited from the value of [`AlignItems`] set on the parent node.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-self>
pub align_self: AlignSelf,
/// Used to control how the specified item is aligned within the space it's given.
/// - For Flexbox items, this property has no effect. See `justify_content` for main axis alignment of flex items.
/// - For CSS Grid items, controls inline (horizontal) axis alignment of a grid item within its grid area.
///
/// If set to `Auto`, alignment is inherited from the value of [`JustifyItems`] set on the parent node.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-self>
pub justify_self: JustifySelf,
/// Used to control how items are distributed.
/// - For Flexbox containers, controls alignment of lines if `flex_wrap` is set to [`FlexWrap::Wrap`] and there are multiple lines of items.
/// - For CSS Grid containers, controls alignment of grid rows.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-content>
pub align_content: AlignContent,
/// Used to control how items are distributed.
/// - For Flexbox containers, controls alignment of items in the main axis.
/// - For CSS Grid containers, controls alignment of grid columns.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content>
pub justify_content: JustifyContent,
/// The amount of space around a node outside its border.
///
/// If a percentage value is used, the percentage is calculated based on the width of the parent node.
///
/// # Example
/// ```
/// # use bevy_ui::{Node, UiRect, Val};
/// let node = Node {
/// margin: UiRect {
/// left: Val::Percent(10.),
/// right: Val::Percent(10.),
/// top: Val::Percent(15.),
/// bottom: Val::Percent(15.)
/// },
/// ..Default::default()
/// };
/// ```
/// A node with this style and a parent with dimensions of 100px by 300px will have calculated margins of 10px on both left and right edges, and 15px on both top and bottom edges.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/margin>
pub margin: UiRect,
/// The amount of space between the edges of a node and its contents.
///
/// If a percentage value is used, the percentage is calculated based on the width of the parent node.
///
/// # Example
/// ```
/// # use bevy_ui::{Node, UiRect, Val};
/// let node = Node {
/// padding: UiRect {
/// left: Val::Percent(1.),
/// right: Val::Percent(2.),
/// top: Val::Percent(3.),
/// bottom: Val::Percent(4.)
/// },
/// ..Default::default()
/// };
/// ```
/// A node with this style and a parent with dimensions of 300px by 100px will have calculated padding of 3px on the left, 6px on the right, 9px on the top and 12px on the bottom.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/padding>
pub padding: UiRect,
/// The amount of space between the margins of a node and its padding.
///
/// If a percentage value is used, the percentage is calculated based on the width of the parent node.
///
/// The size of the node will be expanded if there are constraints that prevent the layout algorithm from placing the border within the existing node boundary.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/border-width>
pub border: UiRect,
/// Whether a Flexbox container should be a row or a column. This property has no effect on Grid nodes.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-direction>
pub flex_direction: FlexDirection,
/// Whether a Flexbox container should wrap its contents onto multiple lines if they overflow. This property has no effect on Grid nodes.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-wrap>
pub flex_wrap: FlexWrap,
/// Defines how much a flexbox item should grow if there's space available. Defaults to 0 (don't grow at all).
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-grow>
pub flex_grow: f32,
/// Defines how much a flexbox item should shrink if there's not enough space available. Defaults to 1.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-shrink>
pub flex_shrink: f32,
/// The initial length of a flexbox in the main axis, before flex growing/shrinking properties are applied.
///
/// `flex_basis` overrides `width` (if the main axis is horizontal) or `height` (if the main axis is vertical) when both are set, but it obeys the constraints defined by `min_width`/`min_height` and `max_width`/`max_height`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/flex-basis>
pub flex_basis: Val,
/// The size of the gutters between items in a vertical flexbox layout or between rows in a grid layout.
///
/// Note: Values of `Val::Auto` are not valid and are treated as zero.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/row-gap>
pub row_gap: Val,
/// The size of the gutters between items in a horizontal flexbox layout or between column in a grid layout.
///
/// Note: Values of `Val::Auto` are not valid and are treated as zero.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/column-gap>
pub column_gap: Val,
/// Controls whether automatically placed grid items are placed row-wise or column-wise as well as whether the sparse or dense packing algorithm is used.
/// Only affects Grid layouts.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-flow>
pub grid_auto_flow: GridAutoFlow,
/// Defines the number of rows a grid has and the sizes of those rows. If grid items are given explicit placements then more rows may
/// be implicitly generated by items that are placed out of bounds. The sizes of those rows are controlled by `grid_auto_rows` property.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-rows>
pub grid_template_rows: Vec<RepeatedGridTrack>,
/// Defines the number of columns a grid has and the sizes of those columns. If grid items are given explicit placements then more columns may
/// be implicitly generated by items that are placed out of bounds. The sizes of those columns are controlled by `grid_auto_columns` property.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-columns>
pub grid_template_columns: Vec<RepeatedGridTrack>,
/// Defines the size of implicitly created rows. Rows are created implicitly when grid items are given explicit placements that are out of bounds
/// of the rows explicitly created using `grid_template_rows`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-rows>
pub grid_auto_rows: Vec<GridTrack>,
/// Defines the size of implicitly created columns. Columns are created implicitly when grid items are given explicit placements that are out of bounds
/// of the columns explicitly created using `grid_template_columns`.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-columns>
pub grid_auto_columns: Vec<GridTrack>,
/// The row in which a grid item starts and how many rows it spans.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row>
pub grid_row: GridPlacement,
/// The column in which a grid item starts and how many columns it spans.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column>
pub grid_column: GridPlacement,
}
impl Node {
pub const DEFAULT: Self = Self {
display: Display::DEFAULT,
box_sizing: BoxSizing::DEFAULT,
position_type: PositionType::DEFAULT,
left: Val::Auto,
right: Val::Auto,
top: Val::Auto,
bottom: Val::Auto,
flex_direction: FlexDirection::DEFAULT,
flex_wrap: FlexWrap::DEFAULT,
align_items: AlignItems::DEFAULT,
justify_items: JustifyItems::DEFAULT,
align_self: AlignSelf::DEFAULT,
justify_self: JustifySelf::DEFAULT,
align_content: AlignContent::DEFAULT,
justify_content: JustifyContent::DEFAULT,
margin: UiRect::DEFAULT,
padding: UiRect::DEFAULT,
border: UiRect::DEFAULT,
flex_grow: 0.0,
flex_shrink: 1.0,
flex_basis: Val::Auto,
width: Val::Auto,
height: Val::Auto,
min_width: Val::Auto,
min_height: Val::Auto,
max_width: Val::Auto,
max_height: Val::Auto,
aspect_ratio: None,
overflow: Overflow::DEFAULT,
overflow_clip_margin: OverflowClipMargin::DEFAULT,
row_gap: Val::ZERO,
column_gap: Val::ZERO,
grid_auto_flow: GridAutoFlow::DEFAULT,
grid_template_rows: Vec::new(),
grid_template_columns: Vec::new(),
grid_auto_rows: Vec::new(),
grid_auto_columns: Vec::new(),
grid_column: GridPlacement::DEFAULT,
grid_row: GridPlacement::DEFAULT,
};
}
impl Default for Node {
fn default() -> Self {
Self::DEFAULT
}
}
/// Used to control how each individual item is aligned by default within the space they're given.
/// - For Flexbox containers, sets default cross axis alignment of the child items.
/// - For CSS Grid containers, controls block (vertical) axis alignment of children of this grid container within their grid areas.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-items>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum AlignItems {
/// The items are packed in their default position as if no alignment was applied.
Default,
/// The items are packed towards the start of the axis.
Start,
/// The items are packed towards the end of the axis.
End,
/// The items are packed towards the start of the axis, unless the flex direction is reversed;
/// then they are packed towards the end of the axis.
FlexStart,
/// The items are packed towards the end of the axis, unless the flex direction is reversed;
/// then they are packed towards the start of the axis.
FlexEnd,
/// The items are packed along the center of the axis.
Center,
/// The items are packed such that their baselines align.
Baseline,
/// The items are stretched to fill the space they're given.
Stretch,
}
impl AlignItems {
pub const DEFAULT: Self = Self::Default;
}
impl Default for AlignItems {
fn default() -> Self {
Self::DEFAULT
}
}
/// Used to control how each individual item is aligned by default within the space they're given.
/// - For Flexbox containers, this property has no effect. See `justify_content` for main axis alignment of flex items.
/// - For CSS Grid containers, sets default inline (horizontal) axis alignment of child items within their grid areas.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-items>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum JustifyItems {
/// The items are packed in their default position as if no alignment was applied.
Default,
/// The items are packed towards the start of the axis.
Start,
/// The items are packed towards the end of the axis.
End,
/// The items are packed along the center of the axis
Center,
/// The items are packed such that their baselines align.
Baseline,
/// The items are stretched to fill the space they're given.
Stretch,
}
impl JustifyItems {
pub const DEFAULT: Self = Self::Default;
}
impl Default for JustifyItems {
fn default() -> Self {
Self::DEFAULT
}
}
/// Used to control how the specified item is aligned within the space it's given.
/// - For Flexbox items, controls cross axis alignment of the item.
/// - For CSS Grid items, controls block (vertical) axis alignment of a grid item within its grid area.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-self>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum AlignSelf {
/// Use the parent node's [`AlignItems`] value to determine how this item should be aligned.
Auto,
/// This item will be aligned with the start of the axis.
Start,
/// This item will be aligned with the end of the axis.
End,
/// This item will be aligned with the start of the axis, unless the flex direction is reversed;
/// then it will be aligned with the end of the axis.
FlexStart,
/// This item will be aligned with the end of the axis, unless the flex direction is reversed;
/// then it will be aligned with the start of the axis.
FlexEnd,
/// This item will be aligned along the center of the axis.
Center,
/// This item will be aligned at the baseline.
Baseline,
/// This item will be stretched to fill the container.
Stretch,
}
impl AlignSelf {
pub const DEFAULT: Self = Self::Auto;
}
impl Default for AlignSelf {
fn default() -> Self {
Self::DEFAULT
}
}
/// Used to control how the specified item is aligned within the space it's given.
/// - For Flexbox items, this property has no effect. See `justify_content` for main axis alignment of flex items.
/// - For CSS Grid items, controls inline (horizontal) axis alignment of a grid item within its grid area.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-self>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum JustifySelf {
/// Use the parent node's [`JustifyItems`] value to determine how this item should be aligned.
Auto,
/// This item will be aligned with the start of the axis.
Start,
/// This item will be aligned with the end of the axis.
End,
/// This item will be aligned along the center of the axis.
Center,
/// This item will be aligned at the baseline.
Baseline,
/// This item will be stretched to fill the space it's given.
Stretch,
}
impl JustifySelf {
pub const DEFAULT: Self = Self::Auto;
}
impl Default for JustifySelf {
fn default() -> Self {
Self::DEFAULT
}
}
/// Used to control how items are distributed.
/// - For Flexbox containers, controls alignment of lines if `flex_wrap` is set to [`FlexWrap::Wrap`] and there are multiple lines of items.
/// - For CSS Grid containers, controls alignment of grid rows.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/align-content>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum AlignContent {
/// The items are packed in their default position as if no alignment was applied.
Default,
/// The items are packed towards the start of the axis.
Start,
/// The items are packed towards the end of the axis.
End,
/// The items are packed towards the start of the axis, unless the flex direction is reversed;
/// then the items are packed towards the end of the axis.
FlexStart,
/// The items are packed towards the end of the axis, unless the flex direction is reversed;
/// then the items are packed towards the start of the axis.
FlexEnd,
/// The items are packed along the center of the axis.
Center,
/// The items are stretched to fill the container along the axis.
Stretch,
/// The items are distributed such that the gap between any two items is equal.
SpaceBetween,
/// The items are distributed such that the gap between and around any two items is equal.
SpaceEvenly,
/// The items are distributed such that the gap between and around any two items is equal, with half-size gaps on either end.
SpaceAround,
}
impl AlignContent {
pub const DEFAULT: Self = Self::Default;
}
impl Default for AlignContent {
fn default() -> Self {
Self::DEFAULT
}
}
/// Used to control how items are distributed.
/// - For Flexbox containers, controls alignment of items in the main axis.
/// - For CSS Grid containers, controls alignment of grid columns.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum JustifyContent {
/// The items are packed in their default position as if no alignment was applied.
Default,
/// The items are packed towards the start of the axis.
Start,
/// The items are packed towards the end of the axis.
End,
/// The items are packed towards the start of the axis, unless the flex direction is reversed;
/// then the items are packed towards the end of the axis.
FlexStart,
/// The items are packed towards the end of the axis, unless the flex direction is reversed;
/// then the items are packed towards the start of the axis.
FlexEnd,
/// The items are packed along the center of the axis.
Center,
/// The items are stretched to fill the container along the axis.
Stretch,
/// The items are distributed such that the gap between any two items is equal.
SpaceBetween,
/// The items are distributed such that the gap between and around any two items is equal.
SpaceEvenly,
/// The items are distributed such that the gap between and around any two items is equal, with half-size gaps on either end.
SpaceAround,
}
impl JustifyContent {
pub const DEFAULT: Self = Self::Default;
}
impl Default for JustifyContent {
fn default() -> Self {
Self::DEFAULT
}
}
/// Defines the layout model used by this node.
///
/// Part of the [`Node`] component.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum Display {
/// Use Flexbox layout model to determine the position of this [`Node`]'s children.
Flex,
/// Use CSS Grid layout model to determine the position of this [`Node`]'s children.
Grid,
/// Use CSS Block layout model to determine the position of this [`Node`]'s children.
Block,
/// Use no layout, don't render this node and its children.
///
/// If you want to hide a node and its children,
/// but keep its layout in place, set its [`Visibility`] component instead.
None,
}
impl Display {
pub const DEFAULT: Self = Self::Flex;
}
impl Default for Display {
fn default() -> Self {
Self::DEFAULT
}
}
/// Which part of a Node's box length styles like width and height control
///
/// See: <https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum BoxSizing {
/// Length styles like width and height refer to the "border box" size (size including padding and border)
BorderBox,
/// Length styles like width and height refer to the "content box" size (size excluding padding and border)
ContentBox,
}
impl BoxSizing {
pub const DEFAULT: Self = Self::BorderBox;
}
impl Default for BoxSizing {
fn default() -> Self {
Self::DEFAULT
}
}
/// Defines how flexbox items are ordered within a flexbox
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum FlexDirection {
/// Same way as text direction along the main axis.
Row,
/// Flex from top to bottom.
Column,
/// Opposite way as text direction along the main axis.
RowReverse,
/// Flex from bottom to top.
ColumnReverse,
}
impl FlexDirection {
pub const DEFAULT: Self = Self::Row;
}
impl Default for FlexDirection {
fn default() -> Self {
Self::DEFAULT
}
}
/// Whether to show or hide overflowing items
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct Overflow {
/// Whether to show or clip overflowing items on the x axis
pub x: OverflowAxis,
/// Whether to show or clip overflowing items on the y axis
pub y: OverflowAxis,
}
impl Overflow {
pub const DEFAULT: Self = Self {
x: OverflowAxis::DEFAULT,
y: OverflowAxis::DEFAULT,
};
/// Show overflowing items on both axes
pub const fn visible() -> Self {
Self {
x: OverflowAxis::Visible,
y: OverflowAxis::Visible,
}
}
/// Clip overflowing items on both axes
pub const fn clip() -> Self {
Self {
x: OverflowAxis::Clip,
y: OverflowAxis::Clip,
}
}
/// Clip overflowing items on the x axis
pub const fn clip_x() -> Self {
Self {
x: OverflowAxis::Clip,
y: OverflowAxis::Visible,
}
}
/// Clip overflowing items on the y axis
pub const fn clip_y() -> Self {
Self {
x: OverflowAxis::Visible,
y: OverflowAxis::Clip,
}
}
/// Hide overflowing items on both axes by influencing layout and then clipping
pub const fn hidden() -> Self {
Self {
x: OverflowAxis::Hidden,
y: OverflowAxis::Hidden,
}
}
/// Hide overflowing items on the x axis by influencing layout and then clipping
pub const fn hidden_x() -> Self {
Self {
x: OverflowAxis::Hidden,
y: OverflowAxis::Visible,
}
}
/// Hide overflowing items on the y axis by influencing layout and then clipping
pub const fn hidden_y() -> Self {
Self {
x: OverflowAxis::Visible,
y: OverflowAxis::Hidden,
}
}
/// Overflow is visible on both axes
pub const fn is_visible(&self) -> bool {
self.x.is_visible() && self.y.is_visible()
}
pub const fn scroll() -> Self {
Self {
x: OverflowAxis::Scroll,
y: OverflowAxis::Scroll,
}
}
/// Scroll overflowing items on the x axis
pub const fn scroll_x() -> Self {
Self {
x: OverflowAxis::Scroll,
y: OverflowAxis::Visible,
}
}
/// Scroll overflowing items on the y axis
pub const fn scroll_y() -> Self {
Self {
x: OverflowAxis::Visible,
y: OverflowAxis::Scroll,
}
}
}
impl Default for Overflow {
fn default() -> Self {
Self::DEFAULT
}
}
/// Whether to show or hide overflowing items
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum OverflowAxis {
/// Show overflowing items.
Visible,
/// Hide overflowing items by clipping.
Clip,
/// Hide overflowing items by influencing layout and then clipping.
Hidden,
/// Scroll overflowing items.
Scroll,
}
impl OverflowAxis {
pub const DEFAULT: Self = Self::Visible;
/// Overflow is visible on this axis
pub const fn is_visible(&self) -> bool {
matches!(self, Self::Visible)
}
}
impl Default for OverflowAxis {
fn default() -> Self {
Self::DEFAULT
}
}
/// The bounds of the visible area when a UI node is clipped.
#[derive(Default, Copy, Clone, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct OverflowClipMargin {
/// Visible unclipped area
pub visual_box: OverflowClipBox,
/// Width of the margin on each edge of the visual box in logical pixels.
/// The width of the margin will be zero if a negative value is set.
pub margin: f32,
}
impl OverflowClipMargin {
pub const DEFAULT: Self = Self {
visual_box: OverflowClipBox::PaddingBox,
margin: 0.,
};
/// Clip any content that overflows outside the content box
pub const fn content_box() -> Self {
Self {
visual_box: OverflowClipBox::ContentBox,
..Self::DEFAULT
}
}
/// Clip any content that overflows outside the padding box
pub const fn padding_box() -> Self {
Self {
visual_box: OverflowClipBox::PaddingBox,
..Self::DEFAULT
}
}
/// Clip any content that overflows outside the border box
pub const fn border_box() -> Self {
Self {
visual_box: OverflowClipBox::BorderBox,
..Self::DEFAULT
}
}
/// Add a margin on each edge of the visual box in logical pixels.
/// The width of the margin will be zero if a negative value is set.
pub const fn with_margin(mut self, margin: f32) -> Self {
self.margin = margin;
self
}
}
/// Used to determine the bounds of the visible area when a UI node is clipped.
#[derive(Default, Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum OverflowClipBox {
/// Clip any content that overflows outside the content box
ContentBox,
/// Clip any content that overflows outside the padding box
#[default]
PaddingBox,
/// Clip any content that overflows outside the border box
BorderBox,
}
/// The strategy used to position this node
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum PositionType {
/// Relative to all other nodes with the [`PositionType::Relative`] value.
Relative,
/// Independent of all other nodes, but relative to its parent node.
Absolute,
}
impl PositionType {
pub const DEFAULT: Self = Self::Relative;
}
impl Default for PositionType {
fn default() -> Self {
Self::DEFAULT
}
}
/// Defines if flexbox items appear on a single line or on multiple lines
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum FlexWrap {
/// Single line, will overflow if needed.
NoWrap,
/// Multiple lines, if needed.
Wrap,
/// Same as [`FlexWrap::Wrap`] but new lines will appear before the previous one.
WrapReverse,
}
impl FlexWrap {
pub const DEFAULT: Self = Self::NoWrap;
}
impl Default for FlexWrap {
fn default() -> Self {
Self::DEFAULT
}
}
/// Controls whether grid items are placed row-wise or column-wise as well as whether the sparse or dense packing algorithm is used.
///
/// The "dense" packing algorithm attempts to fill in holes earlier in the grid, if smaller items come up later.
/// This may cause items to appear out-of-order when doing so would fill in holes left by larger items.
///
/// Defaults to [`GridAutoFlow::Row`].
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-flow>
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum GridAutoFlow {
/// Items are placed by filling each row in turn, adding new rows as necessary.
Row,
/// Items are placed by filling each column in turn, adding new columns as necessary.
Column,
/// Combines `Row` with the dense packing algorithm.
RowDense,
/// Combines `Column` with the dense packing algorithm.
ColumnDense,
}
impl GridAutoFlow {
pub const DEFAULT: Self = Self::Row;
}
impl Default for GridAutoFlow {
fn default() -> Self {
Self::DEFAULT
}
}
#[derive(Default, Copy, Clone, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum MinTrackSizingFunction {
/// Track minimum size should be a fixed pixel value
Px(f32),
/// Track minimum size should be a percentage value
Percent(f32),
/// Track minimum size should be content sized under a min-content constraint
MinContent,
/// Track minimum size should be content sized under a max-content constraint
MaxContent,
/// Track minimum size should be automatically sized
#[default]
Auto,
/// Track minimum size should be a percent of the viewport's smaller dimension.
VMin(f32),
/// Track minimum size should be a percent of the viewport's larger dimension.
VMax(f32),
/// Track minimum size should be a percent of the viewport's height dimension.
Vh(f32),
/// Track minimum size should be a percent of the viewport's width dimension.
Vw(f32),
}
#[derive(Default, Copy, Clone, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub enum MaxTrackSizingFunction {
/// Track maximum size should be a fixed pixel value
Px(f32),
/// Track maximum size should be a percentage value
Percent(f32),
/// Track maximum size should be content sized under a min-content constraint
MinContent,
/// Track maximum size should be content sized under a max-content constraint
MaxContent,
/// Track maximum size should be sized according to the fit-content formula with a fixed pixel limit
FitContentPx(f32),
/// Track maximum size should be sized according to the fit-content formula with a percentage limit
FitContentPercent(f32),
/// Track maximum size should be automatically sized
#[default]
Auto,
/// The dimension as a fraction of the total available grid space (`fr` units in CSS)
/// Specified value is the numerator of the fraction. Denominator is the sum of all fractions specified in that grid dimension.
///
/// Spec: <https://www.w3.org/TR/css3-grid-layout/#fr-unit>
Fraction(f32),
/// Track maximum size should be a percent of the viewport's smaller dimension.
VMin(f32),
/// Track maximum size should be a percent of the viewport's smaller dimension.
VMax(f32),
/// Track maximum size should be a percent of the viewport's height dimension.
Vh(f32),
/// Track maximum size should be a percent of the viewport's width dimension.
Vw(f32),
}
/// A [`GridTrack`] is a Row or Column of a CSS Grid. This struct specifies what size the track should be.
/// See below for the different "track sizing functions" you can specify.
#[derive(Copy, Clone, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct GridTrack {
pub(crate) min_sizing_function: MinTrackSizingFunction,
pub(crate) max_sizing_function: MaxTrackSizingFunction,
}
impl GridTrack {
pub const DEFAULT: Self = Self {
min_sizing_function: MinTrackSizingFunction::Auto,
max_sizing_function: MaxTrackSizingFunction::Auto,
};
/// Create a grid track with a fixed pixel size
pub fn px<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Px(value),
max_sizing_function: MaxTrackSizingFunction::Px(value),
}
.into()
}
/// Create a grid track with a percentage size
pub fn percent<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Percent(value),
max_sizing_function: MaxTrackSizingFunction::Percent(value),
}
.into()
}
/// Create a grid track with an `fr` size.
/// Note that this will give the track a content-based minimum size.
/// Usually you are best off using `GridTrack::flex` instead which uses a zero minimum size.
pub fn fr<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Auto,
max_sizing_function: MaxTrackSizingFunction::Fraction(value),
}
.into()
}
/// Create a grid track with a `minmax(0, Nfr)` size.
pub fn flex<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Px(0.0),
max_sizing_function: MaxTrackSizingFunction::Fraction(value),
}
.into()
}
/// Create a grid track which is automatically sized to fit its contents.
pub fn auto<T: From<Self>>() -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Auto,
max_sizing_function: MaxTrackSizingFunction::Auto,
}
.into()
}
/// Create a grid track which is automatically sized to fit its contents when sized at their "min-content" sizes
pub fn min_content<T: From<Self>>() -> T {
Self {
min_sizing_function: MinTrackSizingFunction::MinContent,
max_sizing_function: MaxTrackSizingFunction::MinContent,
}
.into()
}
/// Create a grid track which is automatically sized to fit its contents when sized at their "max-content" sizes
pub fn max_content<T: From<Self>>() -> T {
Self {
min_sizing_function: MinTrackSizingFunction::MaxContent,
max_sizing_function: MaxTrackSizingFunction::MaxContent,
}
.into()
}
/// Create a `fit-content()` grid track with fixed pixel limit.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/fit-content_function>
pub fn fit_content_px<T: From<Self>>(limit: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Auto,
max_sizing_function: MaxTrackSizingFunction::FitContentPx(limit),
}
.into()
}
/// Create a `fit-content()` grid track with percentage limit.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/fit-content_function>
pub fn fit_content_percent<T: From<Self>>(limit: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Auto,
max_sizing_function: MaxTrackSizingFunction::FitContentPercent(limit),
}
.into()
}
/// Create a `minmax()` grid track.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/minmax>
pub fn minmax<T: From<Self>>(min: MinTrackSizingFunction, max: MaxTrackSizingFunction) -> T {
Self {
min_sizing_function: min,
max_sizing_function: max,
}
.into()
}
/// Create a grid track with a percentage of the viewport's smaller dimension
pub fn vmin<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::VMin(value),
max_sizing_function: MaxTrackSizingFunction::VMin(value),
}
.into()
}
/// Create a grid track with a percentage of the viewport's larger dimension
pub fn vmax<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::VMax(value),
max_sizing_function: MaxTrackSizingFunction::VMax(value),
}
.into()
}
/// Create a grid track with a percentage of the viewport's height dimension
pub fn vh<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Vh(value),
max_sizing_function: MaxTrackSizingFunction::Vh(value),
}
.into()
}
/// Create a grid track with a percentage of the viewport's width dimension
pub fn vw<T: From<Self>>(value: f32) -> T {
Self {
min_sizing_function: MinTrackSizingFunction::Vw(value),
max_sizing_function: MaxTrackSizingFunction::Vw(value),
}
.into()
}
}
impl Default for GridTrack {
fn default() -> Self {
Self::DEFAULT
}
}
#[derive(Copy, Clone, PartialEq, Debug, Reflect, From)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
/// How many times to repeat a repeated grid track
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/repeat>
pub enum GridTrackRepetition {
/// Repeat the track fixed number of times
Count(u16),
/// Repeat the track to fill available space
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/repeat#auto-fill>
AutoFill,
/// Repeat the track to fill available space but collapse any tracks that do not end up with
/// an item placed in them.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/repeat#auto-fit>
AutoFit,
}
impl Default for GridTrackRepetition {
fn default() -> Self {
Self::Count(1)
}
}
impl From<i32> for GridTrackRepetition {
fn from(count: i32) -> Self {
Self::Count(count as u16)
}
}
impl From<usize> for GridTrackRepetition {
fn from(count: usize) -> Self {
Self::Count(count as u16)
}
}
/// Represents a *possibly* repeated [`GridTrack`].
///
/// The repetition parameter can either be:
/// - The integer `1`, in which case the track is non-repeated.
/// - a `u16` count to repeat the track N times.
/// - A `GridTrackRepetition::AutoFit` or `GridTrackRepetition::AutoFill`.
///
/// Note: that in the common case you want a non-repeating track (repetition count 1), you may use the constructor methods on [`GridTrack`]
/// to create a `RepeatedGridTrack`. i.e. `GridTrack::px(10.0)` is equivalent to `RepeatedGridTrack::px(1, 10.0)`.
///
/// You may only use one auto-repetition per track list. And if your track list contains an auto repetition
/// then all tracks (in and outside of the repetition) must be fixed size (px or percent). Integer repetitions are just shorthand for writing out
/// N tracks longhand and are not subject to the same limitations.
#[derive(Clone, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct RepeatedGridTrack {
pub(crate) repetition: GridTrackRepetition,
pub(crate) tracks: SmallVec<[GridTrack; 1]>,
}
impl RepeatedGridTrack {
/// Create a repeating set of grid tracks with a fixed pixel size
pub fn px<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::px(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with a percentage size
pub fn percent<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::percent(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with automatic size
pub fn auto<T: From<Self>>(repetition: u16) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::auto()]),
}
.into()
}
/// Create a repeating set of grid tracks with an `fr` size.
/// Note that this will give the track a content-based minimum size.
/// Usually you are best off using `GridTrack::flex` instead which uses a zero minimum size.
pub fn fr<T: From<Self>>(repetition: u16, value: f32) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::fr(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with a `minmax(0, Nfr)` size.
pub fn flex<T: From<Self>>(repetition: u16, value: f32) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::flex(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with min-content size
pub fn min_content<T: From<Self>>(repetition: u16) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::min_content()]),
}
.into()
}
/// Create a repeating set of grid tracks with max-content size
pub fn max_content<T: From<Self>>(repetition: u16) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::max_content()]),
}
.into()
}
/// Create a repeating set of `fit-content()` grid tracks with fixed pixel limit
pub fn fit_content_px<T: From<Self>>(repetition: u16, limit: f32) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::fit_content_px(limit)]),
}
.into()
}
/// Create a repeating set of `fit-content()` grid tracks with percentage limit
pub fn fit_content_percent<T: From<Self>>(repetition: u16, limit: f32) -> T {
Self {
repetition: GridTrackRepetition::Count(repetition),
tracks: SmallVec::from_buf([GridTrack::fit_content_percent(limit)]),
}
.into()
}
/// Create a repeating set of `minmax()` grid track
pub fn minmax<T: From<Self>>(
repetition: impl Into<GridTrackRepetition>,
min: MinTrackSizingFunction,
max: MaxTrackSizingFunction,
) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::minmax(min, max)]),
}
.into()
}
/// Create a repeating set of grid tracks with the percentage size of the viewport's smaller dimension
pub fn vmin<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::vmin(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with the percentage size of the viewport's larger dimension
pub fn vmax<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::vmax(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with the percentage size of the viewport's height dimension
pub fn vh<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::vh(value)]),
}
.into()
}
/// Create a repeating set of grid tracks with the percentage size of the viewport's width dimension
pub fn vw<T: From<Self>>(repetition: impl Into<GridTrackRepetition>, value: f32) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_buf([GridTrack::vw(value)]),
}
.into()
}
/// Create a repetition of a set of tracks
pub fn repeat_many<T: From<Self>>(
repetition: impl Into<GridTrackRepetition>,
tracks: impl Into<Vec<GridTrack>>,
) -> T {
Self {
repetition: repetition.into(),
tracks: SmallVec::from_vec(tracks.into()),
}
.into()
}
}
impl Default for RepeatedGridTrack {
fn default() -> Self {
Self {
repetition: Default::default(),
tracks: SmallVec::from_buf([GridTrack::default()]),
}
}
}
impl From<GridTrack> for RepeatedGridTrack {
fn from(track: GridTrack) -> Self {
Self {
repetition: GridTrackRepetition::Count(1),
tracks: SmallVec::from_buf([track]),
}
}
}
impl From<GridTrack> for Vec<GridTrack> {
fn from(track: GridTrack) -> Self {
vec![track]
}
}
impl From<GridTrack> for Vec<RepeatedGridTrack> {
fn from(track: GridTrack) -> Self {
vec![RepeatedGridTrack {
repetition: GridTrackRepetition::Count(1),
tracks: SmallVec::from_buf([track]),
}]
}
}
impl From<RepeatedGridTrack> for Vec<RepeatedGridTrack> {
fn from(track: RepeatedGridTrack) -> Self {
vec![track]
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[reflect(Default, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
/// Represents the position of a grid item in a single axis.
///
/// There are 3 fields which may be set:
/// - `start`: which grid line the item should start at
/// - `end`: which grid line the item should end at
/// - `span`: how many tracks the item should span
///
/// The default `span` is 1. If neither `start` or `end` is set then the item will be placed automatically.
///
/// Generally, at most two fields should be set. If all three fields are specified then `span` will be ignored. If `end` specifies an earlier
/// grid line than `start` then `end` will be ignored and the item will have a span of 1.
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Line-based_Placement_with_CSS_Grid>
pub struct GridPlacement {
/// The grid line at which the item should start.
/// Lines are 1-indexed.
/// Negative indexes count backwards from the end of the grid.
/// Zero is not a valid index.
pub(crate) start: Option<NonZero<i16>>,
/// How many grid tracks the item should span.
/// Defaults to 1.
pub(crate) span: Option<NonZero<u16>>,
/// The grid line at which the item should end.
/// Lines are 1-indexed.
/// Negative indexes count backwards from the end of the grid.
/// Zero is not a valid index.
pub(crate) end: Option<NonZero<i16>>,
}
impl GridPlacement {
pub const DEFAULT: Self = Self {
start: None,
span: NonZero::<u16>::new(1),
end: None,
};
/// Place the grid item automatically (letting the `span` default to `1`).
pub fn auto() -> Self {
Self::DEFAULT
}
/// Place the grid item automatically, specifying how many tracks it should `span`.
///
/// # Panics
///
/// Panics if `span` is `0`.
pub fn span(span: u16) -> Self {
Self {
start: None,
end: None,
span: try_into_grid_span(span).expect("Invalid span value of 0."),
}
}
/// Place the grid item specifying the `start` grid line (letting the `span` default to `1`).
///
/// # Panics
///
/// Panics if `start` is `0`.
pub fn start(start: i16) -> Self {
Self {
start: try_into_grid_index(start).expect("Invalid start value of 0."),
..Self::DEFAULT
}
}
/// Place the grid item specifying the `end` grid line (letting the `span` default to `1`).
///
/// # Panics
///
/// Panics if `end` is `0`.
pub fn end(end: i16) -> Self {
Self {
end: try_into_grid_index(end).expect("Invalid end value of 0."),
..Self::DEFAULT
}
}
/// Place the grid item specifying the `start` grid line and how many tracks it should `span`.
///
/// # Panics
///
/// Panics if `start` or `span` is `0`.
pub fn start_span(start: i16, span: u16) -> Self {
Self {
start: try_into_grid_index(start).expect("Invalid start value of 0."),
end: None,
span: try_into_grid_span(span).expect("Invalid span value of 0."),
}
}
/// Place the grid item specifying `start` and `end` grid lines (`span` will be inferred)
///
/// # Panics
///
/// Panics if `start` or `end` is `0`.
pub fn start_end(start: i16, end: i16) -> Self {
Self {
start: try_into_grid_index(start).expect("Invalid start value of 0."),
end: try_into_grid_index(end).expect("Invalid end value of 0."),
span: None,
}
}
/// Place the grid item specifying the `end` grid line and how many tracks it should `span`.
///
/// # Panics
///
/// Panics if `end` or `span` is `0`.
pub fn end_span(end: i16, span: u16) -> Self {
Self {
start: None,
end: try_into_grid_index(end).expect("Invalid end value of 0."),
span: try_into_grid_span(span).expect("Invalid span value of 0."),
}
}
/// Mutate the item, setting the `start` grid line
///
/// # Panics
///
/// Panics if `start` is `0`.
pub fn set_start(mut self, start: i16) -> Self {
self.start = try_into_grid_index(start).expect("Invalid start value of 0.");
self
}
/// Mutate the item, setting the `end` grid line
///
/// # Panics
///
/// Panics if `end` is `0`.
pub fn set_end(mut self, end: i16) -> Self {
self.end = try_into_grid_index(end).expect("Invalid end value of 0.");
self
}
/// Mutate the item, setting the number of tracks the item should `span`
///
/// # Panics
///
/// Panics if `span` is `0`.
pub fn set_span(mut self, span: u16) -> Self {
self.span = try_into_grid_span(span).expect("Invalid span value of 0.");
self
}
/// Returns the grid line at which the item should start, or `None` if not set.
pub fn get_start(self) -> Option<i16> {
self.start.map(NonZero::<i16>::get)
}
/// Returns the grid line at which the item should end, or `None` if not set.
pub fn get_end(self) -> Option<i16> {
self.end.map(NonZero::<i16>::get)
}
/// Returns span for this grid item, or `None` if not set.
pub fn get_span(self) -> Option<u16> {
self.span.map(NonZero::<u16>::get)
}
}
impl Default for GridPlacement {
fn default() -> Self {
Self::DEFAULT
}
}
/// Convert an `i16` to `NonZero<i16>`, fails on `0` and returns the `InvalidZeroIndex` error.
fn try_into_grid_index(index: i16) -> Result<Option<NonZero<i16>>, GridPlacementError> {
Ok(Some(
NonZero::<i16>::new(index).ok_or(GridPlacementError::InvalidZeroIndex)?,
))
}
/// Convert a `u16` to `NonZero<u16>`, fails on `0` and returns the `InvalidZeroSpan` error.
fn try_into_grid_span(span: u16) -> Result<Option<NonZero<u16>>, GridPlacementError> {
Ok(Some(
NonZero::<u16>::new(span).ok_or(GridPlacementError::InvalidZeroSpan)?,
))
}
/// Errors that occur when setting constraints for a `GridPlacement`
#[derive(Debug, Eq, PartialEq, Clone, Copy, Error)]
pub enum GridPlacementError {
#[error("Zero is not a valid grid position")]
InvalidZeroIndex,
#[error("Spans cannot be zero length")]
InvalidZeroSpan,
}
/// The background color of the node
///
/// This serves as the "fill" color.
#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct BackgroundColor(pub Color);
impl BackgroundColor {
/// Background color is transparent by default.
pub const DEFAULT: Self = Self(Color::NONE);
}
impl Default for BackgroundColor {
fn default() -> Self {
Self::DEFAULT
}
}
impl<T: Into<Color>> From<T> for BackgroundColor {
fn from(color: T) -> Self {
Self(color.into())
}
}
/// The border color of the UI node.
#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct BorderColor {
pub top: Color,
pub right: Color,
pub bottom: Color,
pub left: Color,
}
impl<T: Into<Color>> From<T> for BorderColor {
fn from(color: T) -> Self {
Self::all(color.into())
}
}
impl BorderColor {
/// Border color is transparent by default.
pub const DEFAULT: Self = BorderColor::all(Color::NONE);
/// Helper to create a `BorderColor` struct with all borders set to the given color
pub const fn all(color: Color) -> Self {
Self {
top: color,
bottom: color,
left: color,
right: color,
}
}
/// Check if all contained border colors are transparent
pub fn is_fully_transparent(&self) -> bool {
self.top.is_fully_transparent()
&& self.bottom.is_fully_transparent()
&& self.left.is_fully_transparent()
&& self.right.is_fully_transparent()
}
}
impl Default for BorderColor {
fn default() -> Self {
Self::DEFAULT
}
}
#[derive(Component, Copy, Clone, Default, Debug, PartialEq, Reflect)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
/// The [`Outline`] component adds an outline outside the edge of a UI node.
/// Outlines do not take up space in the layout.
///
/// To add an [`Outline`] to a ui node you can spawn a `(Node, Outline)` tuple bundle:
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ui::prelude::*;
/// # use bevy_color::palettes::basic::{RED, BLUE};
/// fn setup_ui(mut commands: Commands) {
/// commands.spawn((
/// Node {
/// width: Val::Px(100.),
/// height: Val::Px(100.),
/// ..Default::default()
/// },
/// BackgroundColor(BLUE.into()),
/// Outline::new(Val::Px(10.), Val::ZERO, RED.into())
/// ));
/// }
/// ```
///
/// [`Outline`] components can also be added later to existing UI nodes:
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ui::prelude::*;
/// # use bevy_color::Color;
/// fn outline_hovered_button_system(
/// mut commands: Commands,
/// mut node_query: Query<(Entity, &Interaction, Option<&mut Outline>), Changed<Interaction>>,
/// ) {
/// for (entity, interaction, mut maybe_outline) in node_query.iter_mut() {
/// let outline_color =
/// if matches!(*interaction, Interaction::Hovered) {
/// Color::WHITE
/// } else {
/// Color::NONE
/// };
/// if let Some(mut outline) = maybe_outline {
/// outline.color = outline_color;
/// } else {
/// commands.entity(entity).insert(Outline::new(Val::Px(10.), Val::ZERO, outline_color));
/// }
/// }
/// }
/// ```
/// Inserting and removing an [`Outline`] component repeatedly will result in table moves, so it is generally preferable to
/// set `Outline::color` to [`Color::NONE`] to hide an outline.
pub struct Outline {
/// The width of the outline.
///
/// Percentage `Val` values are resolved based on the width of the outlined [`Node`].
pub width: Val,
/// The amount of space between a node's outline the edge of the node.
///
/// Percentage `Val` values are resolved based on the width of the outlined [`Node`].
pub offset: Val,
/// The color of the outline.
///
/// If you are frequently toggling outlines for a UI node on and off it is recommended to set [`Color::NONE`] to hide the outline.
/// This avoids the table moves that would occur from the repeated insertion and removal of the `Outline` component.
pub color: Color,
}
impl Outline {
/// Create a new outline
pub const fn new(width: Val, offset: Val, color: Color) -> Self {
Self {
width,
offset,
color,
}
}
}
/// The calculated clip of the node
#[derive(Component, Default, Copy, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CalculatedClip {
/// The rect of the clip
pub clip: Rect,
}
/// Indicates that this [`Node`] entity's front-to-back ordering is not controlled solely
/// by its location in the UI hierarchy. A node with a higher z-index will appear on top
/// of sibling nodes with a lower z-index.
///
/// UI nodes that have the same z-index will appear according to the order in which they
/// appear in the UI hierarchy. In such a case, the last node to be added to its parent
/// will appear in front of its siblings.
///
/// Nodes without this component will be treated as if they had a value of [`ZIndex(0)`].
///
/// Use [`GlobalZIndex`] if you need to order separate UI hierarchies or nodes that are
/// not siblings in a given UI hierarchy.
#[derive(Component, Copy, Clone, Debug, Default, PartialEq, Eq, Reflect)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
pub struct ZIndex(pub i32);
/// `GlobalZIndex` allows a [`Node`] entity anywhere in the UI hierarchy to escape the implicit draw ordering of the UI's layout tree and
/// be rendered above or below other UI nodes.
/// Nodes with a `GlobalZIndex` of greater than 0 will be drawn on top of nodes without a `GlobalZIndex` or nodes with a lower `GlobalZIndex`.
/// Nodes with a `GlobalZIndex` of less than 0 will be drawn below nodes without a `GlobalZIndex` or nodes with a greater `GlobalZIndex`.
///
/// If two Nodes have the same `GlobalZIndex`, the node with the greater [`ZIndex`] will be drawn on top.
#[derive(Component, Copy, Clone, Debug, Default, PartialEq, Eq, Reflect)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
pub struct GlobalZIndex(pub i32);
/// Used to add rounded corners to a UI node. You can set a UI node to have uniformly
/// rounded corners or specify different radii for each corner. If a given radius exceeds half
/// the length of the smallest dimension between the node's height or width, the radius will
/// calculated as half the smallest dimension.
///
/// Elliptical nodes are not supported yet. Percentage values are based on the node's smallest
/// dimension, either width or height.
///
/// # Example
/// ```rust
/// # use bevy_ecs::prelude::*;
/// # use bevy_ui::prelude::*;
/// # use bevy_color::palettes::basic::{BLUE};
/// fn setup_ui(mut commands: Commands) {
/// commands.spawn((
/// Node {
/// width: Val::Px(100.),
/// height: Val::Px(100.),
/// border: UiRect::all(Val::Px(2.)),
/// ..Default::default()
/// },
/// BackgroundColor(BLUE.into()),
/// BorderRadius::new(
/// // top left
/// Val::Px(10.),
/// // top right
/// Val::Px(20.),
/// // bottom right
/// Val::Px(30.),
/// // bottom left
/// Val::Px(40.),
/// ),
/// ));
/// }
/// ```
///
/// <https://developer.mozilla.org/en-US/docs/Web/CSS/border-radius>
#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
#[reflect(Component, PartialEq, Default, Debug, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct BorderRadius {
pub top_left: Val,
pub top_right: Val,
pub bottom_right: Val,
pub bottom_left: Val,
}
impl Default for BorderRadius {
fn default() -> Self {
Self::DEFAULT
}
}
impl BorderRadius {
pub const DEFAULT: Self = Self::ZERO;
/// Zero curvature. All the corners will be right-angled.
pub const ZERO: Self = Self::all(Val::Px(0.));
/// Maximum curvature. The UI Node will take a capsule shape or circular if width and height are equal.
pub const MAX: Self = Self::all(Val::Px(f32::MAX));
#[inline]
/// Set all four corners to the same curvature.
pub const fn all(radius: Val) -> Self {
Self {
top_left: radius,
top_right: radius,
bottom_left: radius,
bottom_right: radius,
}
}
#[inline]
pub const fn new(top_left: Val, top_right: Val, bottom_right: Val, bottom_left: Val) -> Self {
Self {
top_left,
top_right,
bottom_right,
bottom_left,
}
}
#[inline]
/// Sets the radii to logical pixel values.
pub const fn px(top_left: f32, top_right: f32, bottom_right: f32, bottom_left: f32) -> Self {
Self {
top_left: Val::Px(top_left),
top_right: Val::Px(top_right),
bottom_right: Val::Px(bottom_right),
bottom_left: Val::Px(bottom_left),
}
}
#[inline]
/// Sets the radii to percentage values.
pub const fn percent(
top_left: f32,
top_right: f32,
bottom_right: f32,
bottom_left: f32,
) -> Self {
Self {
top_left: Val::Percent(top_left),
top_right: Val::Percent(top_right),
bottom_right: Val::Percent(bottom_right),
bottom_left: Val::Percent(bottom_left),
}
}
#[inline]
/// Sets the radius for the top left corner.
/// Remaining corners will be right-angled.
pub const fn top_left(radius: Val) -> Self {
Self {
top_left: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radius for the top right corner.
/// Remaining corners will be right-angled.
pub const fn top_right(radius: Val) -> Self {
Self {
top_right: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radius for the bottom right corner.
/// Remaining corners will be right-angled.
pub const fn bottom_right(radius: Val) -> Self {
Self {
bottom_right: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radius for the bottom left corner.
/// Remaining corners will be right-angled.
pub const fn bottom_left(radius: Val) -> Self {
Self {
bottom_left: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radii for the top left and bottom left corners.
/// Remaining corners will be right-angled.
pub const fn left(radius: Val) -> Self {
Self {
top_left: radius,
bottom_left: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radii for the top right and bottom right corners.
/// Remaining corners will be right-angled.
pub const fn right(radius: Val) -> Self {
Self {
top_right: radius,
bottom_right: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radii for the top left and top right corners.
/// Remaining corners will be right-angled.
pub const fn top(radius: Val) -> Self {
Self {
top_left: radius,
top_right: radius,
..Self::DEFAULT
}
}
#[inline]
/// Sets the radii for the bottom left and bottom right corners.
/// Remaining corners will be right-angled.
pub const fn bottom(radius: Val) -> Self {
Self {
bottom_left: radius,
bottom_right: radius,
..Self::DEFAULT
}
}
/// Returns the [`BorderRadius`] with its `top_left` field set to the given value.
#[inline]
pub const fn with_top_left(mut self, radius: Val) -> Self {
self.top_left = radius;
self
}
/// Returns the [`BorderRadius`] with its `top_right` field set to the given value.
#[inline]
pub const fn with_top_right(mut self, radius: Val) -> Self {
self.top_right = radius;
self
}
/// Returns the [`BorderRadius`] with its `bottom_right` field set to the given value.
#[inline]
pub const fn with_bottom_right(mut self, radius: Val) -> Self {
self.bottom_right = radius;
self
}
/// Returns the [`BorderRadius`] with its `bottom_left` field set to the given value.
#[inline]
pub const fn with_bottom_left(mut self, radius: Val) -> Self {
self.bottom_left = radius;
self
}
/// Returns the [`BorderRadius`] with its `top_left` and `bottom_left` fields set to the given value.
#[inline]
pub const fn with_left(mut self, radius: Val) -> Self {
self.top_left = radius;
self.bottom_left = radius;
self
}
/// Returns the [`BorderRadius`] with its `top_right` and `bottom_right` fields set to the given value.
#[inline]
pub const fn with_right(mut self, radius: Val) -> Self {
self.top_right = radius;
self.bottom_right = radius;
self
}
/// Returns the [`BorderRadius`] with its `top_left` and `top_right` fields set to the given value.
#[inline]
pub const fn with_top(mut self, radius: Val) -> Self {
self.top_left = radius;
self.top_right = radius;
self
}
/// Returns the [`BorderRadius`] with its `bottom_left` and `bottom_right` fields set to the given value.
#[inline]
pub const fn with_bottom(mut self, radius: Val) -> Self {
self.bottom_left = radius;
self.bottom_right = radius;
self
}
/// Resolve the border radius for a single corner from the given context values.
/// Returns the radius of the corner in physical pixels.
pub const fn resolve_single_corner(
radius: Val,
scale_factor: f32,
min_length: f32,
viewport_size: Vec2,
) -> f32 {
if let Ok(radius) = radius.resolve(scale_factor, min_length, viewport_size) {
radius.clamp(0., 0.5 * min_length)
} else {
0.
}
}
/// Resolve the border radii for the corners from the given context values.
/// Returns the radii of the each corner in physical pixels.
pub const fn resolve(
&self,
scale_factor: f32,
node_size: Vec2,
viewport_size: Vec2,
) -> ResolvedBorderRadius {
let length = node_size.x.min(node_size.y);
ResolvedBorderRadius {
top_left: Self::resolve_single_corner(
self.top_left,
scale_factor,
length,
viewport_size,
),
top_right: Self::resolve_single_corner(
self.top_right,
scale_factor,
length,
viewport_size,
),
bottom_left: Self::resolve_single_corner(
self.bottom_left,
scale_factor,
length,
viewport_size,
),
bottom_right: Self::resolve_single_corner(
self.bottom_right,
scale_factor,
length,
viewport_size,
),
}
}
}
/// Represents the resolved border radius values for a UI node.
///
/// The values are in physical pixels.
#[derive(Copy, Clone, Debug, Default, PartialEq, Reflect)]
#[reflect(Clone, PartialEq, Default)]
pub struct ResolvedBorderRadius {
pub top_left: f32,
pub top_right: f32,
pub bottom_right: f32,
pub bottom_left: f32,
}
impl ResolvedBorderRadius {
pub const ZERO: Self = Self {
top_left: 0.,
top_right: 0.,
bottom_right: 0.,
bottom_left: 0.,
};
}
#[derive(Component, Clone, Debug, Default, PartialEq, Reflect, Deref, DerefMut)]
#[reflect(Component, PartialEq, Default, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
/// List of shadows to draw for a [`Node`].
///
/// Draw order is determined implicitly from the vector of [`ShadowStyle`]s, back-to-front.
pub struct BoxShadow(pub Vec<ShadowStyle>);
impl BoxShadow {
/// A single drop shadow
pub fn new(
color: Color,
x_offset: Val,
y_offset: Val,
spread_radius: Val,
blur_radius: Val,
) -> Self {
Self(vec![ShadowStyle {
color,
x_offset,
y_offset,
spread_radius,
blur_radius,
}])
}
}
impl From<ShadowStyle> for BoxShadow {
fn from(value: ShadowStyle) -> Self {
Self(vec![value])
}
}
#[derive(Copy, Clone, Debug, PartialEq, Reflect)]
#[reflect(PartialEq, Default, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct ShadowStyle {
/// The shadow's color
pub color: Color,
/// Horizontal offset
pub x_offset: Val,
/// Vertical offset
pub y_offset: Val,
/// How much the shadow should spread outward.
///
/// Negative values will make the shadow shrink inwards.
/// Percentage values are based on the width of the UI node.
pub spread_radius: Val,
/// Blurriness of the shadow
pub blur_radius: Val,
}
impl Default for ShadowStyle {
fn default() -> Self {
Self {
color: Color::BLACK,
x_offset: Val::Percent(20.),
y_offset: Val::Percent(20.),
spread_radius: Val::ZERO,
blur_radius: Val::Percent(10.),
}
}
}
#[derive(Component, Copy, Clone, Debug, PartialEq, Reflect)]
#[reflect(Component, Debug, PartialEq, Default, Clone)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
/// This component can be added to any UI node to modify its layout behavior.
pub struct LayoutConfig {
/// If set to true the coordinates for this node and its descendents will be rounded to the nearest physical pixel.
/// This can help prevent visual artifacts like blurry images or semi-transparent edges that can occur with sub-pixel positioning.
///
/// Defaults to true.
pub use_rounding: bool,
}
impl Default for LayoutConfig {
fn default() -> Self {
Self { use_rounding: true }
}
}
/// Indicates that this root [`Node`] entity should be rendered to a specific camera.
///
/// UI then will be laid out respecting the camera's viewport and scale factor, and
/// rendered to this camera's [`bevy_render::camera::RenderTarget`].
///
/// Setting this component on a non-root node will have no effect. It will be overridden
/// by the root node's component.
///
/// Root node's without an explicit [`UiTargetCamera`] will be rendered to the default UI camera,
/// which is either a single camera with the [`IsDefaultUiCamera`] marker component or the highest
/// order camera targeting the primary window.
#[derive(Component, Clone, Debug, Reflect, Eq, PartialEq)]
#[reflect(Component, Debug, PartialEq, Clone)]
pub struct UiTargetCamera(pub Entity);
impl UiTargetCamera {
pub fn entity(&self) -> Entity {
self.0
}
}
/// Marker used to identify default cameras, they will have priority over the [`PrimaryWindow`] camera.
///
/// This is useful if the [`PrimaryWindow`] has two cameras, one of them used
/// just for debug purposes and the user wants a way to choose the default [`Camera`]
/// without having to add a [`UiTargetCamera`] to the root node.
///
/// Another use is when the user wants the Ui to be in another window by default,
/// all that is needed is to place this component on the camera
///
/// ```
/// # use bevy_ui::prelude::*;
/// # use bevy_ecs::prelude::Commands;
/// # use bevy_render::camera::{Camera, RenderTarget};
/// # use bevy_core_pipeline::prelude::Camera2d;
/// # use bevy_window::{Window, WindowRef};
///
/// fn spawn_camera(mut commands: Commands) {
/// let another_window = commands.spawn(Window {
/// title: String::from("Another window"),
/// ..Default::default()
/// }).id();
/// commands.spawn((
/// Camera2d,
/// Camera {
/// target: RenderTarget::Window(WindowRef::Entity(another_window)),
/// ..Default::default()
/// },
/// // We add the Marker here so all Ui will spawn in
/// // another window if no UiTargetCamera is specified
/// IsDefaultUiCamera
/// ));
/// }
/// ```
#[derive(Component, Default)]
pub struct IsDefaultUiCamera;
#[derive(SystemParam)]
pub struct DefaultUiCamera<'w, 's> {
cameras: Query<'w, 's, (Entity, &'static Camera)>,
default_cameras: Query<'w, 's, Entity, (With<Camera>, With<IsDefaultUiCamera>)>,
primary_window: Query<'w, 's, Entity, With<PrimaryWindow>>,
}
impl<'w, 's> DefaultUiCamera<'w, 's> {
pub fn get(&self) -> Option<Entity> {
self.default_cameras.single().ok().or_else(|| {
// If there isn't a single camera and the query isn't empty, there is two or more cameras queried.
if !self.default_cameras.is_empty() {
once!(warn!("Two or more Entities with IsDefaultUiCamera found when only one Camera with this marker is allowed."));
}
self.cameras
.iter()
.filter(|(_, c)| match c.target {
RenderTarget::Window(WindowRef::Primary) => true,
RenderTarget::Window(WindowRef::Entity(w)) => {
self.primary_window.get(w).is_ok()
}
_ => false,
})
.max_by_key(|(e, c)| (c.order, *e))
.map(|(e, _)| e)
})
}
}
/// Marker for controlling whether Ui is rendered with or without anti-aliasing
/// in a camera. By default, Ui is always anti-aliased.
///
/// **Note:** This does not affect text anti-aliasing. For that, use the `font_smoothing` property of the [`TextFont`](bevy_text::TextFont) component.
///
/// ```
/// use bevy_core_pipeline::prelude::*;
/// use bevy_ecs::prelude::*;
/// use bevy_ui::prelude::*;
///
/// fn spawn_camera(mut commands: Commands) {
/// commands.spawn((
/// Camera2d,
/// // This will cause all Ui in this camera to be rendered without
/// // anti-aliasing
/// UiAntiAlias::Off,
/// ));
/// }
/// ```
#[derive(Component, Clone, Copy, Default, Debug, Reflect, Eq, PartialEq)]
#[reflect(Component, Default, PartialEq, Clone)]
pub enum UiAntiAlias {
/// UI will render with anti-aliasing
#[default]
On,
/// UI will render without anti-aliasing
Off,
}
/// Number of shadow samples.
/// A larger value will result in higher quality shadows.
/// Default is 4, values higher than ~10 offer diminishing returns.
///
/// ```
/// use bevy_core_pipeline::prelude::*;
/// use bevy_ecs::prelude::*;
/// use bevy_ui::prelude::*;
///
/// fn spawn_camera(mut commands: Commands) {
/// commands.spawn((
/// Camera2d,
/// BoxShadowSamples(6),
/// ));
/// }
/// ```
#[derive(Component, Clone, Copy, Debug, Reflect, Eq, PartialEq)]
#[reflect(Component, Default, PartialEq, Clone)]
pub struct BoxShadowSamples(pub u32);
impl Default for BoxShadowSamples {
fn default() -> Self {
Self(4)
}
}
/// Derived information about the camera target for this UI node.
#[derive(Component, Clone, Copy, Debug, Reflect, PartialEq)]
#[reflect(Component, Default, PartialEq, Clone)]
pub struct ComputedNodeTarget {
pub(crate) camera: Entity,
pub(crate) scale_factor: f32,
pub(crate) physical_size: UVec2,
}
impl Default for ComputedNodeTarget {
fn default() -> Self {
Self {
camera: Entity::PLACEHOLDER,
scale_factor: 1.,
physical_size: UVec2::ZERO,
}
}
}
impl ComputedNodeTarget {
pub fn camera(&self) -> Option<Entity> {
Some(self.camera).filter(|&entity| entity != Entity::PLACEHOLDER)
}
pub const fn scale_factor(&self) -> f32 {
self.scale_factor
}
pub const fn physical_size(&self) -> UVec2 {
self.physical_size
}
pub fn logical_size(&self) -> Vec2 {
self.physical_size.as_vec2() / self.scale_factor
}
}
/// Adds a shadow behind text
#[derive(Component, Copy, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct TextShadow {
/// Shadow displacement in logical pixels
/// With a value of zero the shadow will be hidden directly behind the text
pub offset: Vec2,
/// Color of the shadow
pub color: Color,
}
impl Default for TextShadow {
fn default() -> Self {
Self {
offset: Vec2::splat(4.),
color: Color::linear_rgba(0., 0., 0., 0.75),
}
}
}
#[cfg(test)]
mod tests {
use crate::GridPlacement;
#[test]
fn invalid_grid_placement_values() {
assert!(std::panic::catch_unwind(|| GridPlacement::span(0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::start(0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::end(0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::start_end(0, 1)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::start_end(-1, 0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::start_span(1, 0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::start_span(0, 1)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::end_span(0, 1)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::end_span(1, 0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::default().set_start(0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::default().set_end(0)).is_err());
assert!(std::panic::catch_unwind(|| GridPlacement::default().set_span(0)).is_err());
}
#[test]
fn grid_placement_accessors() {
assert_eq!(GridPlacement::start(5).get_start(), Some(5));
assert_eq!(GridPlacement::end(-4).get_end(), Some(-4));
assert_eq!(GridPlacement::span(2).get_span(), Some(2));
assert_eq!(GridPlacement::start_end(11, 21).get_span(), None);
assert_eq!(GridPlacement::start_span(3, 5).get_end(), None);
assert_eq!(GridPlacement::end_span(-4, 12).get_start(), None);
}
}