bevy/examples/shader/texture_binding_array.rs
charlotte 🌸 96dcbc5f8c
Ugrade to wgpu version 25.0 (#19563)
# Objective

Upgrade to `wgpu` version `25.0`.

Depends on https://github.com/bevyengine/naga_oil/pull/121

## Solution

### Problem

The biggest issue we face upgrading is the following requirement:
> To facilitate this change, there was an additional validation rule put
in place: if there is a binding array in a bind group, you may not use
dynamic offset buffers or uniform buffers in that bind group. This
requirement comes from vulkan rules on UpdateAfterBind descriptors.

This is a major difficulty for us, as there are a number of binding
arrays that are used in the view bind group. Note, this requirement does
not affect merely uniform buffors that use dynamic offset but the use of
*any* uniform in a bind group that also has a binding array.

### Attempted fixes

The easiest fix would be to change uniforms to be storage buffers
whenever binding arrays are in use:
```wgsl
#ifdef BINDING_ARRAYS_ARE_USED
@group(0) @binding(0) var<uniform> view: View;
@group(0) @binding(1) var<uniform> lights: types::Lights;
#else
@group(0) @binding(0) var<storage> view: array<View>;
@group(0) @binding(1) var<storage> lights: array<types::Lights>;
#endif
```

This requires passing the view index to the shader so that we know where
to index into the buffer:

```wgsl
struct PushConstants {
    view_index: u32,
}

var<push_constant> push_constants: PushConstants;
```

Using push constants is no problem because binding arrays are only
usable on native anyway.

However, this greatly complicates the ability to access `view` in
shaders. For example:
```wgsl
#ifdef BINDING_ARRAYS_ARE_USED
mesh_view_bindings::view.view_from_world[0].z
#else
mesh_view_bindings::view[mesh_view_bindings::view_index].view_from_world[0].z
#endif
```

Using this approach would work but would have the effect of polluting
our shaders with ifdef spam basically *everywhere*.

Why not use a function? Unfortunately, the following is not valid wgsl
as it returns a binding directly from a function in the uniform path.

```wgsl
fn get_view() -> View {
#if BINDING_ARRAYS_ARE_USED
    let view_index = push_constants.view_index;
    let view = views[view_index];
#endif
    return view;
}
```

This also poses problems for things like lights where we want to return
a ptr to the light data. Returning ptrs from wgsl functions isn't
allowed even if both bindings were buffers.

The next attempt was to simply use indexed buffers everywhere, in both
the binding array and non binding array path. This would be viable if
push constants were available everywhere to pass the view index, but
unfortunately they are not available on webgpu. This means either
passing the view index in a storage buffer (not ideal for such a small
amount of state) or using push constants sometimes and uniform buffers
only on webgpu. However, this kind of conditional layout infects
absolutely everything.

Even if we were to accept just using storage buffer for the view index,
there's also the additional problem that some dynamic offsets aren't
actually per-view but per-use of a setting on a camera, which would
require passing that uniform data on *every* camera regardless of
whether that rendering feature is being used, which is also gross.

As such, although it's gross, the simplest solution just to bump binding
arrays into `@group(1)` and all other bindings up one bind group. This
should still bring us under the device limit of 4 for most users.

### Next steps / looking towards the future

I'd like to avoid needing split our view bind group into multiple parts.
In the future, if `wgpu` were to add `@builtin(draw_index)`, we could
build a list of draw state in gpu processing and avoid the need for any
kind of state change at all (see
https://github.com/gfx-rs/wgpu/issues/6823). This would also provide
significantly more flexibility to handle things like offsets into other
arrays that may not be per-view.

### Testing

Tested a number of examples, there are probably more that are still
broken.

---------

Co-authored-by: François Mockers <mockersf@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2025-06-26 19:41:47 +00:00

198 lines
6.3 KiB
Rust

//! A shader that binds several textures onto one
//! `binding_array<texture<f32>>` shader binding slot and sample non-uniformly.
use bevy::{
ecs::system::{lifetimeless::SRes, SystemParamItem},
prelude::*,
reflect::TypePath,
render::{
render_asset::RenderAssets,
render_resource::{
binding_types::{sampler, texture_2d},
*,
},
renderer::RenderDevice,
texture::{FallbackImage, GpuImage},
RenderApp,
},
};
use std::{num::NonZero, process::exit};
/// This example uses a shader source file from the assets subdirectory
const SHADER_ASSET_PATH: &str = "shaders/texture_binding_array.wgsl";
fn main() {
let mut app = App::new();
app.add_plugins((
DefaultPlugins.set(ImagePlugin::default_nearest()),
GpuFeatureSupportChecker,
MaterialPlugin::<BindlessMaterial>::default(),
))
.add_systems(Startup, setup)
.run();
}
const MAX_TEXTURE_COUNT: usize = 16;
const TILE_ID: [usize; 16] = [
19, 23, 4, 33, 12, 69, 30, 48, 10, 65, 40, 47, 57, 41, 44, 46,
];
struct GpuFeatureSupportChecker;
impl Plugin for GpuFeatureSupportChecker {
fn build(&self, _app: &mut App) {}
fn finish(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
let render_device = render_app.world().resource::<RenderDevice>();
// Check if the device support the required feature. If not, exit the example.
// In a real application, you should setup a fallback for the missing feature
if !render_device
.features()
.contains(WgpuFeatures::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING)
{
error!(
"Render device doesn't support feature \
SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING, \
which is required for texture binding arrays"
);
exit(1);
}
}
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<BindlessMaterial>>,
asset_server: Res<AssetServer>,
) {
commands.spawn((
Camera3d::default(),
Transform::from_xyz(2.0, 2.0, 2.0).looking_at(Vec3::new(0.0, 0.0, 0.0), Vec3::Y),
));
// load 16 textures
let textures: Vec<_> = TILE_ID
.iter()
.map(|id| asset_server.load(format!("textures/rpg/tiles/generic-rpg-tile{id:0>2}.png")))
.collect();
// a cube with multiple textures
commands.spawn((
Mesh3d(meshes.add(Cuboid::default())),
MeshMaterial3d(materials.add(BindlessMaterial { textures })),
));
}
#[derive(Asset, TypePath, Debug, Clone)]
struct BindlessMaterial {
textures: Vec<Handle<Image>>,
}
impl AsBindGroup for BindlessMaterial {
type Data = ();
type Param = (SRes<RenderAssets<GpuImage>>, SRes<FallbackImage>);
fn as_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
(image_assets, fallback_image): &mut SystemParamItem<'_, '_, Self::Param>,
) -> Result<PreparedBindGroup<Self::Data>, AsBindGroupError> {
// retrieve the render resources from handles
let mut images = vec![];
for handle in self.textures.iter().take(MAX_TEXTURE_COUNT) {
match image_assets.get(handle) {
Some(image) => images.push(image),
None => return Err(AsBindGroupError::RetryNextUpdate),
}
}
let fallback_image = &fallback_image.d2;
let textures = vec![&fallback_image.texture_view; MAX_TEXTURE_COUNT];
// convert bevy's resource types to WGPU's references
let mut textures: Vec<_> = textures.into_iter().map(|texture| &**texture).collect();
// fill in up to the first `MAX_TEXTURE_COUNT` textures and samplers to the arrays
for (id, image) in images.into_iter().enumerate() {
textures[id] = &*image.texture_view;
}
let bind_group = render_device.create_bind_group(
"bindless_material_bind_group",
layout,
&BindGroupEntries::sequential((&textures[..], &fallback_image.sampler)),
);
Ok(PreparedBindGroup {
bindings: BindingResources(vec![]),
bind_group,
data: (),
})
}
fn unprepared_bind_group(
&self,
_layout: &BindGroupLayout,
_render_device: &RenderDevice,
_param: &mut SystemParamItem<'_, '_, Self::Param>,
_force_no_bindless: bool,
) -> Result<UnpreparedBindGroup<Self::Data>, AsBindGroupError> {
// We implement `as_bind_group`` directly because bindless texture
// arrays can't be owned.
// Or rather, they can be owned, but then you can't make a `&'a [&'a
// TextureView]` from a vec of them in `get_binding()`.
Err(AsBindGroupError::CreateBindGroupDirectly)
}
fn bind_group_layout_entries(_: &RenderDevice, _: bool) -> Vec<BindGroupLayoutEntry>
where
Self: Sized,
{
BindGroupLayoutEntries::with_indices(
// The layout entries will only be visible in the fragment stage
ShaderStages::FRAGMENT,
(
// Screen texture
//
// @group(3) @binding(0) var textures: binding_array<texture_2d<f32>>;
(
0,
texture_2d(TextureSampleType::Float { filterable: true })
.count(NonZero::<u32>::new(MAX_TEXTURE_COUNT as u32).unwrap()),
),
// Sampler
//
// @group(3) @binding(1) var nearest_sampler: sampler;
//
// Note: as with textures, multiple samplers can also be bound
// onto one binding slot:
//
// ```
// sampler(SamplerBindingType::Filtering)
// .count(NonZero::<u32>::new(MAX_TEXTURE_COUNT as u32).unwrap()),
// ```
//
// One may need to pay attention to the limit of sampler binding
// amount on some platforms.
(1, sampler(SamplerBindingType::Filtering)),
),
)
.to_vec()
}
}
impl Material for BindlessMaterial {
fn fragment_shader() -> ShaderRef {
SHADER_ASSET_PATH.into()
}
}