bevy/crates/bevy_pbr/src/material.rs
charlotte 495798c00b Make sure the mesh actually exists before we try to specialize. (#18836)
Fixes #18809
Fixes #18823

Meshes despawned in `Last` can still be in visisible entities if they
were visible as of `PostUpdate`. Sanity check that the mesh actually
exists before we specialize. We still want to unconditionally assume
that the entity is in `EntitySpecializationTicks` as its absence from
that cache would likely suggest another bug.
2025-04-14 22:45:49 +02:00

1610 lines
64 KiB
Rust

use crate::material_bind_groups::{
FallbackBindlessResources, MaterialBindGroupAllocator, MaterialBindingId,
};
#[cfg(feature = "meshlet")]
use crate::meshlet::{
prepare_material_meshlet_meshes_main_opaque_pass, queue_material_meshlet_meshes,
InstanceManager,
};
use crate::*;
use bevy_asset::prelude::AssetChanged;
use bevy_asset::{Asset, AssetEvents, AssetId, AssetServer, UntypedAssetId};
use bevy_core_pipeline::deferred::{AlphaMask3dDeferred, Opaque3dDeferred};
use bevy_core_pipeline::prepass::{AlphaMask3dPrepass, Opaque3dPrepass};
use bevy_core_pipeline::{
core_3d::{
AlphaMask3d, Opaque3d, Opaque3dBatchSetKey, Opaque3dBinKey, ScreenSpaceTransmissionQuality,
Transmissive3d, Transparent3d,
},
prepass::{OpaqueNoLightmap3dBatchSetKey, OpaqueNoLightmap3dBinKey},
tonemapping::Tonemapping,
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::component::Tick;
use bevy_ecs::system::SystemChangeTick;
use bevy_ecs::{
prelude::*,
system::{
lifetimeless::{SRes, SResMut},
SystemParamItem,
},
};
use bevy_platform::collections::hash_map::Entry;
use bevy_platform::collections::{HashMap, HashSet};
use bevy_platform::hash::FixedHasher;
use bevy_reflect::std_traits::ReflectDefault;
use bevy_reflect::Reflect;
use bevy_render::camera::extract_cameras;
use bevy_render::mesh::mark_3d_meshes_as_changed_if_their_assets_changed;
use bevy_render::render_asset::prepare_assets;
use bevy_render::renderer::RenderQueue;
use bevy_render::{
batching::gpu_preprocessing::GpuPreprocessingSupport,
extract_resource::ExtractResource,
mesh::{Mesh3d, MeshVertexBufferLayoutRef, RenderMesh},
render_asset::{PrepareAssetError, RenderAsset, RenderAssetPlugin, RenderAssets},
render_phase::*,
render_resource::*,
renderer::RenderDevice,
sync_world::MainEntity,
view::{ExtractedView, Msaa, RenderVisibilityRanges, RetainedViewEntity, ViewVisibility},
Extract,
};
use bevy_render::{mesh::allocator::MeshAllocator, sync_world::MainEntityHashMap};
use bevy_render::{texture::FallbackImage, view::RenderVisibleEntities};
use bevy_utils::Parallel;
use core::{hash::Hash, marker::PhantomData};
use tracing::error;
/// Materials are used alongside [`MaterialPlugin`], [`Mesh3d`], and [`MeshMaterial3d`]
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
/// way to render [`Mesh3d`] entities with custom shader logic.
///
/// Materials must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
///
/// # Example
///
/// Here is a simple [`Material`] implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
/// check out the [`AsBindGroup`] documentation.
///
/// ```
/// # use bevy_pbr::{Material, MeshMaterial3d};
/// # use bevy_ecs::prelude::*;
/// # use bevy_image::Image;
/// # use bevy_reflect::TypePath;
/// # use bevy_render::{mesh::{Mesh, Mesh3d}, render_resource::{AsBindGroup, ShaderRef}};
/// # use bevy_color::LinearRgba;
/// # use bevy_color::palettes::basic::RED;
/// # use bevy_asset::{Handle, AssetServer, Assets, Asset};
/// # use bevy_math::primitives::Capsule3d;
/// #
/// #[derive(AsBindGroup, Debug, Clone, Asset, TypePath)]
/// pub struct CustomMaterial {
/// // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
/// // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
/// #[uniform(0)]
/// color: LinearRgba,
/// // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
/// // add the sampler attribute with a different binding index.
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// }
///
/// // All functions on `Material` have default impls. You only need to implement the
/// // functions that are relevant for your material.
/// impl Material for CustomMaterial {
/// fn fragment_shader() -> ShaderRef {
/// "shaders/custom_material.wgsl".into()
/// }
/// }
///
/// // Spawn an entity with a mesh using `CustomMaterial`.
/// fn setup(
/// mut commands: Commands,
/// mut meshes: ResMut<Assets<Mesh>>,
/// mut materials: ResMut<Assets<CustomMaterial>>,
/// asset_server: Res<AssetServer>
/// ) {
/// commands.spawn((
/// Mesh3d(meshes.add(Capsule3d::default())),
/// MeshMaterial3d(materials.add(CustomMaterial {
/// color: RED.into(),
/// color_texture: asset_server.load("some_image.png"),
/// })),
/// ));
/// }
/// ```
///
/// In WGSL shaders, the material's binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// ```
pub trait Material: Asset + AsBindGroup + Clone + Sized {
/// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
/// will be used.
fn vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
/// will be used.
fn fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
#[inline]
fn alpha_mode(&self) -> AlphaMode {
AlphaMode::Opaque
}
/// Returns if this material should be rendered by the deferred or forward renderer.
/// for `AlphaMode::Opaque` or `AlphaMode::Mask` materials.
/// If `OpaqueRendererMethod::Auto`, it will default to what is selected in the `DefaultOpaqueRendererMethod` resource.
#[inline]
fn opaque_render_method(&self) -> OpaqueRendererMethod {
OpaqueRendererMethod::Forward
}
#[inline]
/// Add a bias to the view depth of the mesh which can be used to force a specific render order.
/// for meshes with similar depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
fn depth_bias(&self) -> f32 {
0.0
}
#[inline]
/// Returns whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
fn reads_view_transmission_texture(&self) -> bool {
false
}
/// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the default prepass vertex shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
fn prepass_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the default prepass fragment shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
fn prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred vertex shader. If [`ShaderRef::Default`] is returned, the default deferred vertex shader
/// will be used.
fn deferred_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred fragment shader. If [`ShaderRef::Default`] is returned, the default deferred fragment shader
/// will be used.
fn deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
///
/// See [`crate::meshlet::MeshletMesh`] for limitations.
#[cfg(feature = "meshlet")]
fn meshlet_mesh_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] prepass fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh prepass fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
///
/// See [`crate::meshlet::MeshletMesh`] for limitations.
#[cfg(feature = "meshlet")]
fn meshlet_mesh_prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] deferred fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh deferred fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
///
/// See [`crate::meshlet::MeshletMesh`] for limitations.
#[cfg(feature = "meshlet")]
fn meshlet_mesh_deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's
/// [`MaterialPipelineKey`] and [`MeshVertexBufferLayoutRef`] as input.
#[expect(
unused_variables,
reason = "The parameters here are intentionally unused by the default implementation; however, putting underscores here will result in the underscores being copied by rust-analyzer's tab completion."
)]
#[inline]
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayoutRef,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
Ok(())
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material`]
/// asset type.
pub struct MaterialPlugin<M: Material> {
/// Controls if the prepass is enabled for the Material.
/// For more information about what a prepass is, see the [`bevy_core_pipeline::prepass`] docs.
///
/// When it is enabled, it will automatically add the [`PrepassPlugin`]
/// required to make the prepass work on this Material.
pub prepass_enabled: bool,
/// Controls if shadows are enabled for the Material.
pub shadows_enabled: bool,
/// Debugging flags that can optionally be set when constructing the renderer.
pub debug_flags: RenderDebugFlags,
pub _marker: PhantomData<M>,
}
impl<M: Material> Default for MaterialPlugin<M> {
fn default() -> Self {
Self {
prepass_enabled: true,
shadows_enabled: true,
debug_flags: RenderDebugFlags::default(),
_marker: Default::default(),
}
}
}
impl<M: Material> Plugin for MaterialPlugin<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
fn build(&self, app: &mut App) {
app.init_asset::<M>()
.register_type::<MeshMaterial3d<M>>()
.init_resource::<EntitiesNeedingSpecialization<M>>()
.add_plugins((RenderAssetPlugin::<PreparedMaterial<M>>::default(),))
.add_systems(
PostUpdate,
(
mark_meshes_as_changed_if_their_materials_changed::<M>.ambiguous_with_all(),
check_entities_needing_specialization::<M>.after(AssetEvents),
)
.after(mark_3d_meshes_as_changed_if_their_assets_changed),
);
if self.shadows_enabled {
app.add_systems(
PostUpdate,
check_light_entities_needing_specialization::<M>
.after(check_entities_needing_specialization::<M>),
);
}
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<EntitySpecializationTicks<M>>()
.init_resource::<SpecializedMaterialPipelineCache<M>>()
.init_resource::<DrawFunctions<Shadow>>()
.init_resource::<RenderMaterialInstances>()
.add_render_command::<Shadow, DrawPrepass<M>>()
.add_render_command::<Transmissive3d, DrawMaterial<M>>()
.add_render_command::<Transparent3d, DrawMaterial<M>>()
.add_render_command::<Opaque3d, DrawMaterial<M>>()
.add_render_command::<AlphaMask3d, DrawMaterial<M>>()
.init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
.add_systems(
ExtractSchedule,
(
(
extract_mesh_materials::<M>,
early_sweep_material_instances::<M>,
)
.chain()
.before(late_sweep_material_instances)
.before(ExtractMeshesSet),
extract_entities_needs_specialization::<M>.after(extract_cameras),
),
)
.add_systems(
Render,
(
specialize_material_meshes::<M>
.in_set(RenderSet::PrepareMeshes)
.after(prepare_assets::<PreparedMaterial<M>>)
.after(prepare_assets::<RenderMesh>)
.after(collect_meshes_for_gpu_building)
.after(set_mesh_motion_vector_flags),
queue_material_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>),
),
)
.add_systems(
Render,
(
prepare_material_bind_groups::<M>,
write_material_bind_group_buffers::<M>,
)
.chain()
.in_set(RenderSet::PrepareBindGroups)
.after(prepare_assets::<PreparedMaterial<M>>),
);
if self.shadows_enabled {
render_app
.init_resource::<LightKeyCache>()
.init_resource::<LightSpecializationTicks>()
.init_resource::<SpecializedShadowMaterialPipelineCache<M>>()
.add_systems(
Render,
(
check_views_lights_need_specialization.in_set(RenderSet::PrepareAssets),
// specialize_shadows::<M> also needs to run after prepare_assets::<PreparedMaterial<M>>,
// which is fine since ManageViews is after PrepareAssets
specialize_shadows::<M>
.in_set(RenderSet::ManageViews)
.after(prepare_lights),
queue_shadows::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>),
),
);
}
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
queue_material_meshlet_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.run_if(resource_exists::<InstanceManager>),
);
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
prepare_material_meshlet_meshes_main_opaque_pass::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>)
.before(queue_material_meshlet_meshes::<M>)
.run_if(resource_exists::<InstanceManager>),
);
}
if self.shadows_enabled || self.prepass_enabled {
// PrepassPipelinePlugin is required for shadow mapping and the optional PrepassPlugin
app.add_plugins(PrepassPipelinePlugin::<M>::default());
}
if self.prepass_enabled {
app.add_plugins(PrepassPlugin::<M>::new(self.debug_flags));
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<MaterialPipeline<M>>()
.init_resource::<MaterialBindGroupAllocator<M>>();
}
}
}
/// A dummy [`AssetId`] that we use as a placeholder whenever a mesh doesn't
/// have a material.
///
/// See the comments in [`RenderMaterialInstances::mesh_material`] for more
/// information.
static DUMMY_MESH_MATERIAL: AssetId<StandardMaterial> = AssetId::<StandardMaterial>::invalid();
/// A key uniquely identifying a specialized [`MaterialPipeline`].
pub struct MaterialPipelineKey<M: Material> {
pub mesh_key: MeshPipelineKey,
pub bind_group_data: M::Data,
}
impl<M: Material> Eq for MaterialPipelineKey<M> where M::Data: PartialEq {}
impl<M: Material> PartialEq for MaterialPipelineKey<M>
where
M::Data: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
}
}
impl<M: Material> Clone for MaterialPipelineKey<M>
where
M::Data: Clone,
{
fn clone(&self) -> Self {
Self {
mesh_key: self.mesh_key,
bind_group_data: self.bind_group_data.clone(),
}
}
}
impl<M: Material> Hash for MaterialPipelineKey<M>
where
M::Data: Hash,
{
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
self.mesh_key.hash(state);
self.bind_group_data.hash(state);
}
}
/// Render pipeline data for a given [`Material`].
#[derive(Resource)]
pub struct MaterialPipeline<M: Material> {
pub mesh_pipeline: MeshPipeline,
pub material_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
/// Whether this material *actually* uses bindless resources, taking the
/// platform support (or lack thereof) of bindless resources into account.
pub bindless: bool,
pub marker: PhantomData<M>,
}
impl<M: Material> Clone for MaterialPipeline<M> {
fn clone(&self) -> Self {
Self {
mesh_pipeline: self.mesh_pipeline.clone(),
material_layout: self.material_layout.clone(),
vertex_shader: self.vertex_shader.clone(),
fragment_shader: self.fragment_shader.clone(),
bindless: self.bindless,
marker: PhantomData,
}
}
}
impl<M: Material> SpecializedMeshPipeline for MaterialPipeline<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
type Key = MaterialPipelineKey<M>;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout.insert(2, self.material_layout.clone());
M::specialize(self, &mut descriptor, layout, key)?;
// If bindless mode is on, add a `BINDLESS` define.
if self.bindless {
descriptor.vertex.shader_defs.push("BINDLESS".into());
if let Some(ref mut fragment) = descriptor.fragment {
fragment.shader_defs.push("BINDLESS".into());
}
}
Ok(descriptor)
}
}
impl<M: Material> FromWorld for MaterialPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
MaterialPipeline {
mesh_pipeline: world.resource::<MeshPipeline>().clone(),
material_layout: M::bind_group_layout(render_device),
vertex_shader: match M::vertex_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
fragment_shader: match M::fragment_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
bindless: material_uses_bindless_resources::<M>(render_device),
marker: PhantomData,
}
}
}
type DrawMaterial<M> = (
SetItemPipeline,
SetMeshViewBindGroup<0>,
SetMeshBindGroup<1>,
SetMaterialBindGroup<M, 2>,
DrawMesh,
);
/// Sets the bind group for a given [`Material`] at the configured `I` index.
pub struct SetMaterialBindGroup<M: Material, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: Material, const I: usize> RenderCommand<P> for SetMaterialBindGroup<M, I> {
type Param = (
SRes<RenderAssets<PreparedMaterial<M>>>,
SRes<RenderMaterialInstances>,
SRes<MaterialBindGroupAllocator<M>>,
);
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
(materials, material_instances, material_bind_group_allocator): SystemParamItem<
'w,
'_,
Self::Param,
>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let materials = materials.into_inner();
let material_instances = material_instances.into_inner();
let material_bind_group_allocator = material_bind_group_allocator.into_inner();
let Some(material_instance) = material_instances.instances.get(&item.main_entity()) else {
return RenderCommandResult::Skip;
};
let Ok(material_asset_id) = material_instance.asset_id.try_typed::<M>() else {
return RenderCommandResult::Skip;
};
let Some(material) = materials.get(material_asset_id) else {
return RenderCommandResult::Skip;
};
let Some(material_bind_group) = material_bind_group_allocator.get(material.binding.group)
else {
return RenderCommandResult::Skip;
};
let Some(bind_group) = material_bind_group.bind_group() else {
return RenderCommandResult::Skip;
};
pass.set_bind_group(I, bind_group, &[]);
RenderCommandResult::Success
}
}
/// Stores all extracted instances of all [`Material`]s in the render world.
#[derive(Resource, Default)]
pub struct RenderMaterialInstances {
/// Maps from each entity in the main world to the
/// [`RenderMaterialInstance`] associated with it.
pub instances: MainEntityHashMap<RenderMaterialInstance>,
/// A monotonically-increasing counter, which we use to sweep
/// [`RenderMaterialInstances::instances`] when the entities and/or required
/// components are removed.
current_change_tick: Tick,
}
impl RenderMaterialInstances {
/// Returns the mesh material ID for the entity with the given mesh, or a
/// dummy mesh material ID if the mesh has no material ID.
///
/// Meshes almost always have materials, but in very specific circumstances
/// involving custom pipelines they won't. (See the
/// `specialized_mesh_pipelines` example.)
pub(crate) fn mesh_material(&self, entity: MainEntity) -> UntypedAssetId {
match self.instances.get(&entity) {
Some(render_instance) => render_instance.asset_id,
None => DUMMY_MESH_MATERIAL.into(),
}
}
}
/// The material associated with a single mesh instance in the main world.
///
/// Note that this uses an [`UntypedAssetId`] and isn't generic over the
/// material type, for simplicity.
pub struct RenderMaterialInstance {
/// The material asset.
pub(crate) asset_id: UntypedAssetId,
/// The [`RenderMaterialInstances::current_change_tick`] at which this
/// material instance was last modified.
last_change_tick: Tick,
}
pub const fn alpha_mode_pipeline_key(alpha_mode: AlphaMode, msaa: &Msaa) -> MeshPipelineKey {
match alpha_mode {
// Premultiplied and Add share the same pipeline key
// They're made distinct in the PBR shader, via `premultiply_alpha()`
AlphaMode::Premultiplied | AlphaMode::Add => MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA,
AlphaMode::Blend => MeshPipelineKey::BLEND_ALPHA,
AlphaMode::Multiply => MeshPipelineKey::BLEND_MULTIPLY,
AlphaMode::Mask(_) => MeshPipelineKey::MAY_DISCARD,
AlphaMode::AlphaToCoverage => match *msaa {
Msaa::Off => MeshPipelineKey::MAY_DISCARD,
_ => MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE,
},
_ => MeshPipelineKey::NONE,
}
}
pub const fn tonemapping_pipeline_key(tonemapping: Tonemapping) -> MeshPipelineKey {
match tonemapping {
Tonemapping::None => MeshPipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => MeshPipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE,
Tonemapping::AcesFitted => MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => MeshPipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
}
}
pub const fn screen_space_specular_transmission_pipeline_key(
screen_space_transmissive_blur_quality: ScreenSpaceTransmissionQuality,
) -> MeshPipelineKey {
match screen_space_transmissive_blur_quality {
ScreenSpaceTransmissionQuality::Low => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW
}
ScreenSpaceTransmissionQuality::Medium => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM
}
ScreenSpaceTransmissionQuality::High => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH
}
ScreenSpaceTransmissionQuality::Ultra => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA
}
}
}
/// A system that ensures that
/// [`crate::render::mesh::extract_meshes_for_gpu_building`] re-extracts meshes
/// whose materials changed.
///
/// As [`crate::render::mesh::collect_meshes_for_gpu_building`] only considers
/// meshes that were newly extracted, and it writes information from the
/// [`RenderMaterialInstances`] into the
/// [`crate::render::mesh::MeshInputUniform`], we must tell
/// [`crate::render::mesh::extract_meshes_for_gpu_building`] to re-extract a
/// mesh if its material changed. Otherwise, the material binding information in
/// the [`crate::render::mesh::MeshInputUniform`] might not be updated properly.
/// The easiest way to ensure that
/// [`crate::render::mesh::extract_meshes_for_gpu_building`] re-extracts a mesh
/// is to mark its [`Mesh3d`] as changed, so that's what this system does.
fn mark_meshes_as_changed_if_their_materials_changed<M>(
mut changed_meshes_query: Query<
&mut Mesh3d,
Or<(Changed<MeshMaterial3d<M>>, AssetChanged<MeshMaterial3d<M>>)>,
>,
) where
M: Material,
{
for mut mesh in &mut changed_meshes_query {
mesh.set_changed();
}
}
/// Fills the [`RenderMaterialInstances`] resources from the meshes in the
/// scene.
fn extract_mesh_materials<M: Material>(
mut material_instances: ResMut<RenderMaterialInstances>,
changed_meshes_query: Extract<
Query<
(Entity, &ViewVisibility, &MeshMaterial3d<M>),
Or<(Changed<ViewVisibility>, Changed<MeshMaterial3d<M>>)>,
>,
>,
) {
let last_change_tick = material_instances.current_change_tick;
for (entity, view_visibility, material) in &changed_meshes_query {
if view_visibility.get() {
material_instances.instances.insert(
entity.into(),
RenderMaterialInstance {
asset_id: material.id().untyped(),
last_change_tick,
},
);
} else {
material_instances
.instances
.remove(&MainEntity::from(entity));
}
}
}
/// Removes mesh materials from [`RenderMaterialInstances`] when their
/// [`MeshMaterial3d`] components are removed.
///
/// This is tricky because we have to deal with the case in which a material of
/// type A was removed and replaced with a material of type B in the same frame
/// (which is actually somewhat common of an operation). In this case, even
/// though an entry will be present in `RemovedComponents<MeshMaterial3d<A>>`,
/// we must not remove the entry in `RenderMaterialInstances` which corresponds
/// to material B. To handle this case, we use change ticks to avoid removing
/// the entry if it was updated this frame.
///
/// This is the first of two sweep phases. Because this phase runs once per
/// material type, we need a second phase in order to guarantee that we only
/// bump [`RenderMaterialInstances::current_change_tick`] once.
fn early_sweep_material_instances<M>(
mut material_instances: ResMut<RenderMaterialInstances>,
mut removed_materials_query: Extract<RemovedComponents<MeshMaterial3d<M>>>,
) where
M: Material,
{
let last_change_tick = material_instances.current_change_tick;
for entity in removed_materials_query.read() {
if let Entry::Occupied(occupied_entry) = material_instances.instances.entry(entity.into()) {
// Only sweep the entry if it wasn't updated this frame.
if occupied_entry.get().last_change_tick != last_change_tick {
occupied_entry.remove();
}
}
}
}
/// Removes mesh materials from [`RenderMaterialInstances`] when their
/// [`ViewVisibility`] components are removed.
///
/// This runs after all invocations of [`early_sweep_material_instances`] and is
/// responsible for bumping [`RenderMaterialInstances::current_change_tick`] in
/// preparation for a new frame.
fn late_sweep_material_instances(
mut material_instances: ResMut<RenderMaterialInstances>,
mut removed_visibilities_query: Extract<RemovedComponents<ViewVisibility>>,
) {
let last_change_tick = material_instances.current_change_tick;
for entity in removed_visibilities_query.read() {
if let Entry::Occupied(occupied_entry) = material_instances.instances.entry(entity.into()) {
// Only sweep the entry if it wasn't updated this frame. It's
// possible that a `ViewVisibility` component was removed and
// re-added in the same frame.
if occupied_entry.get().last_change_tick != last_change_tick {
occupied_entry.remove();
}
}
}
material_instances
.current_change_tick
.set(last_change_tick.get() + 1);
}
pub fn extract_entities_needs_specialization<M>(
entities_needing_specialization: Extract<Res<EntitiesNeedingSpecialization<M>>>,
mut entity_specialization_ticks: ResMut<EntitySpecializationTicks<M>>,
mut removed_mesh_material_components: Extract<RemovedComponents<MeshMaterial3d<M>>>,
mut specialized_material_pipeline_cache: ResMut<SpecializedMaterialPipelineCache<M>>,
mut specialized_prepass_material_pipeline_cache: Option<
ResMut<SpecializedPrepassMaterialPipelineCache<M>>,
>,
mut specialized_shadow_material_pipeline_cache: Option<
ResMut<SpecializedShadowMaterialPipelineCache<M>>,
>,
views: Query<&ExtractedView>,
ticks: SystemChangeTick,
) where
M: Material,
{
for entity in entities_needing_specialization.iter() {
// Update the entity's specialization tick with this run's tick
entity_specialization_ticks.insert((*entity).into(), ticks.this_run());
}
// Clean up any despawned entities
for entity in removed_mesh_material_components.read() {
entity_specialization_ticks.remove(&MainEntity::from(entity));
for view in views {
if let Some(cache) =
specialized_material_pipeline_cache.get_mut(&view.retained_view_entity)
{
cache.remove(&MainEntity::from(entity));
}
if let Some(cache) = specialized_prepass_material_pipeline_cache
.as_mut()
.and_then(|c| c.get_mut(&view.retained_view_entity))
{
cache.remove(&MainEntity::from(entity));
}
if let Some(cache) = specialized_shadow_material_pipeline_cache
.as_mut()
.and_then(|c| c.get_mut(&view.retained_view_entity))
{
cache.remove(&MainEntity::from(entity));
}
}
}
}
#[derive(Resource, Deref, DerefMut, Clone, Debug)]
pub struct EntitiesNeedingSpecialization<M> {
#[deref]
pub entities: Vec<Entity>,
_marker: PhantomData<M>,
}
impl<M> Default for EntitiesNeedingSpecialization<M> {
fn default() -> Self {
Self {
entities: Default::default(),
_marker: Default::default(),
}
}
}
#[derive(Resource, Deref, DerefMut, Clone, Debug)]
pub struct EntitySpecializationTicks<M> {
#[deref]
pub entities: MainEntityHashMap<Tick>,
_marker: PhantomData<M>,
}
impl<M> Default for EntitySpecializationTicks<M> {
fn default() -> Self {
Self {
entities: MainEntityHashMap::default(),
_marker: Default::default(),
}
}
}
/// Stores the [`SpecializedMaterialViewPipelineCache`] for each view.
#[derive(Resource, Deref, DerefMut)]
pub struct SpecializedMaterialPipelineCache<M> {
// view entity -> view pipeline cache
#[deref]
map: HashMap<RetainedViewEntity, SpecializedMaterialViewPipelineCache<M>>,
marker: PhantomData<M>,
}
/// Stores the cached render pipeline ID for each entity in a single view, as
/// well as the last time it was changed.
#[derive(Deref, DerefMut)]
pub struct SpecializedMaterialViewPipelineCache<M> {
// material entity -> (tick, pipeline_id)
#[deref]
map: MainEntityHashMap<(Tick, CachedRenderPipelineId)>,
marker: PhantomData<M>,
}
impl<M> Default for SpecializedMaterialPipelineCache<M> {
fn default() -> Self {
Self {
map: HashMap::default(),
marker: PhantomData,
}
}
}
impl<M> Default for SpecializedMaterialViewPipelineCache<M> {
fn default() -> Self {
Self {
map: MainEntityHashMap::default(),
marker: PhantomData,
}
}
}
pub fn check_entities_needing_specialization<M>(
needs_specialization: Query<
Entity,
(
Or<(
Changed<Mesh3d>,
AssetChanged<Mesh3d>,
Changed<MeshMaterial3d<M>>,
AssetChanged<MeshMaterial3d<M>>,
)>,
With<MeshMaterial3d<M>>,
),
>,
mut par_local: Local<Parallel<Vec<Entity>>>,
mut entities_needing_specialization: ResMut<EntitiesNeedingSpecialization<M>>,
) where
M: Material,
{
entities_needing_specialization.clear();
needs_specialization
.par_iter()
.for_each(|entity| par_local.borrow_local_mut().push(entity));
par_local.drain_into(&mut entities_needing_specialization);
}
pub fn specialize_material_meshes<M: Material>(
render_meshes: Res<RenderAssets<RenderMesh>>,
render_materials: Res<RenderAssets<PreparedMaterial<M>>>,
render_mesh_instances: Res<RenderMeshInstances>,
render_material_instances: Res<RenderMaterialInstances>,
render_lightmaps: Res<RenderLightmaps>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
(
material_bind_group_allocator,
opaque_render_phases,
alpha_mask_render_phases,
transmissive_render_phases,
transparent_render_phases,
): (
Res<MaterialBindGroupAllocator<M>>,
Res<ViewBinnedRenderPhases<Opaque3d>>,
Res<ViewBinnedRenderPhases<AlphaMask3d>>,
Res<ViewSortedRenderPhases<Transmissive3d>>,
Res<ViewSortedRenderPhases<Transparent3d>>,
),
views: Query<(&ExtractedView, &RenderVisibleEntities)>,
view_key_cache: Res<ViewKeyCache>,
entity_specialization_ticks: Res<EntitySpecializationTicks<M>>,
view_specialization_ticks: Res<ViewSpecializationTicks>,
mut specialized_material_pipeline_cache: ResMut<SpecializedMaterialPipelineCache<M>>,
mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
pipeline: Res<MaterialPipeline<M>>,
pipeline_cache: Res<PipelineCache>,
ticks: SystemChangeTick,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
// Record the retained IDs of all shadow views so that we can expire old
// pipeline IDs.
let mut all_views: HashSet<RetainedViewEntity, FixedHasher> = HashSet::default();
for (view, visible_entities) in &views {
all_views.insert(view.retained_view_entity);
if !transparent_render_phases.contains_key(&view.retained_view_entity)
&& !opaque_render_phases.contains_key(&view.retained_view_entity)
&& !alpha_mask_render_phases.contains_key(&view.retained_view_entity)
&& !transmissive_render_phases.contains_key(&view.retained_view_entity)
{
continue;
}
let Some(view_key) = view_key_cache.get(&view.retained_view_entity) else {
continue;
};
let view_tick = view_specialization_ticks
.get(&view.retained_view_entity)
.unwrap();
let view_specialized_material_pipeline_cache = specialized_material_pipeline_cache
.entry(view.retained_view_entity)
.or_default();
for (_, visible_entity) in visible_entities.iter::<Mesh3d>() {
let Some(material_instance) = render_material_instances.instances.get(visible_entity)
else {
continue;
};
let Ok(material_asset_id) = material_instance.asset_id.try_typed::<M>() else {
continue;
};
let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*visible_entity)
else {
continue;
};
let entity_tick = entity_specialization_ticks.get(visible_entity).unwrap();
let last_specialized_tick = view_specialized_material_pipeline_cache
.get(visible_entity)
.map(|(tick, _)| *tick);
let needs_specialization = last_specialized_tick.is_none_or(|tick| {
view_tick.is_newer_than(tick, ticks.this_run())
|| entity_tick.is_newer_than(tick, ticks.this_run())
});
if !needs_specialization {
continue;
}
let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
continue;
};
let Some(material) = render_materials.get(material_asset_id) else {
continue;
};
let Some(material_bind_group) =
material_bind_group_allocator.get(material.binding.group)
else {
continue;
};
let mut mesh_pipeline_key_bits = material.properties.mesh_pipeline_key_bits;
mesh_pipeline_key_bits.insert(alpha_mode_pipeline_key(
material.properties.alpha_mode,
&Msaa::from_samples(view_key.msaa_samples()),
));
let mut mesh_key = *view_key
| MeshPipelineKey::from_bits_retain(mesh.key_bits.bits())
| mesh_pipeline_key_bits;
if let Some(lightmap) = render_lightmaps.render_lightmaps.get(visible_entity) {
mesh_key |= MeshPipelineKey::LIGHTMAPPED;
if lightmap.bicubic_sampling {
mesh_key |= MeshPipelineKey::LIGHTMAP_BICUBIC_SAMPLING;
}
}
if render_visibility_ranges.entity_has_crossfading_visibility_ranges(*visible_entity) {
mesh_key |= MeshPipelineKey::VISIBILITY_RANGE_DITHER;
}
if view_key.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
// If the previous frame have skins or morph targets, note that.
if mesh_instance
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN)
{
mesh_key |= MeshPipelineKey::HAS_PREVIOUS_SKIN;
}
if mesh_instance
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_MORPH)
{
mesh_key |= MeshPipelineKey::HAS_PREVIOUS_MORPH;
}
}
let key = MaterialPipelineKey {
mesh_key,
bind_group_data: material_bind_group
.get_extra_data(material.binding.slot)
.clone(),
};
let pipeline_id = pipelines.specialize(&pipeline_cache, &pipeline, key, &mesh.layout);
let pipeline_id = match pipeline_id {
Ok(id) => id,
Err(err) => {
error!("{}", err);
continue;
}
};
view_specialized_material_pipeline_cache
.insert(*visible_entity, (ticks.this_run(), pipeline_id));
}
}
// Delete specialized pipelines belonging to views that have expired.
specialized_material_pipeline_cache
.retain(|retained_view_entity, _| all_views.contains(retained_view_entity));
}
/// For each view, iterates over all the meshes visible from that view and adds
/// them to [`BinnedRenderPhase`]s or [`SortedRenderPhase`]s as appropriate.
pub fn queue_material_meshes<M: Material>(
render_materials: Res<RenderAssets<PreparedMaterial<M>>>,
render_mesh_instances: Res<RenderMeshInstances>,
render_material_instances: Res<RenderMaterialInstances>,
mesh_allocator: Res<MeshAllocator>,
gpu_preprocessing_support: Res<GpuPreprocessingSupport>,
mut opaque_render_phases: ResMut<ViewBinnedRenderPhases<Opaque3d>>,
mut alpha_mask_render_phases: ResMut<ViewBinnedRenderPhases<AlphaMask3d>>,
mut transmissive_render_phases: ResMut<ViewSortedRenderPhases<Transmissive3d>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent3d>>,
views: Query<(&ExtractedView, &RenderVisibleEntities)>,
specialized_material_pipeline_cache: ResMut<SpecializedMaterialPipelineCache<M>>,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
for (view, visible_entities) in &views {
let (
Some(opaque_phase),
Some(alpha_mask_phase),
Some(transmissive_phase),
Some(transparent_phase),
) = (
opaque_render_phases.get_mut(&view.retained_view_entity),
alpha_mask_render_phases.get_mut(&view.retained_view_entity),
transmissive_render_phases.get_mut(&view.retained_view_entity),
transparent_render_phases.get_mut(&view.retained_view_entity),
)
else {
continue;
};
let Some(view_specialized_material_pipeline_cache) =
specialized_material_pipeline_cache.get(&view.retained_view_entity)
else {
continue;
};
let rangefinder = view.rangefinder3d();
for (render_entity, visible_entity) in visible_entities.iter::<Mesh3d>() {
let Some((current_change_tick, pipeline_id)) = view_specialized_material_pipeline_cache
.get(visible_entity)
.map(|(current_change_tick, pipeline_id)| (*current_change_tick, *pipeline_id))
else {
continue;
};
// Skip the entity if it's cached in a bin and up to date.
if opaque_phase.validate_cached_entity(*visible_entity, current_change_tick)
|| alpha_mask_phase.validate_cached_entity(*visible_entity, current_change_tick)
{
continue;
}
let Some(material_instance) = render_material_instances.instances.get(visible_entity)
else {
continue;
};
let Ok(material_asset_id) = material_instance.asset_id.try_typed::<M>() else {
continue;
};
let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*visible_entity)
else {
continue;
};
let Some(material) = render_materials.get(material_asset_id) else {
continue;
};
// Fetch the slabs that this mesh resides in.
let (vertex_slab, index_slab) = mesh_allocator.mesh_slabs(&mesh_instance.mesh_asset_id);
match material.properties.render_phase_type {
RenderPhaseType::Transmissive => {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: (*render_entity, *visible_entity),
draw_function: material.properties.draw_function_id,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::None,
indexed: index_slab.is_some(),
});
}
RenderPhaseType::Opaque => {
if material.properties.render_method == OpaqueRendererMethod::Deferred {
// Even though we aren't going to insert the entity into
// a bin, we still want to update its cache entry. That
// way, we know we don't need to re-examine it in future
// frames.
opaque_phase.update_cache(*visible_entity, None, current_change_tick);
continue;
}
let batch_set_key = Opaque3dBatchSetKey {
pipeline: pipeline_id,
draw_function: material.properties.draw_function_id,
material_bind_group_index: Some(material.binding.group.0),
vertex_slab: vertex_slab.unwrap_or_default(),
index_slab,
lightmap_slab: mesh_instance.shared.lightmap_slab_index.map(|index| *index),
};
let bin_key = Opaque3dBinKey {
asset_id: mesh_instance.mesh_asset_id.into(),
};
opaque_phase.add(
batch_set_key,
bin_key,
(*render_entity, *visible_entity),
mesh_instance.current_uniform_index,
BinnedRenderPhaseType::mesh(
mesh_instance.should_batch(),
&gpu_preprocessing_support,
),
current_change_tick,
);
}
// Alpha mask
RenderPhaseType::AlphaMask => {
let batch_set_key = OpaqueNoLightmap3dBatchSetKey {
draw_function: material.properties.draw_function_id,
pipeline: pipeline_id,
material_bind_group_index: Some(material.binding.group.0),
vertex_slab: vertex_slab.unwrap_or_default(),
index_slab,
};
let bin_key = OpaqueNoLightmap3dBinKey {
asset_id: mesh_instance.mesh_asset_id.into(),
};
alpha_mask_phase.add(
batch_set_key,
bin_key,
(*render_entity, *visible_entity),
mesh_instance.current_uniform_index,
BinnedRenderPhaseType::mesh(
mesh_instance.should_batch(),
&gpu_preprocessing_support,
),
current_change_tick,
);
}
RenderPhaseType::Transparent => {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transparent_phase.add(Transparent3d {
entity: (*render_entity, *visible_entity),
draw_function: material.properties.draw_function_id,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::None,
indexed: index_slab.is_some(),
});
}
}
}
}
}
/// Default render method used for opaque materials.
#[derive(Default, Resource, Clone, Debug, ExtractResource, Reflect)]
#[reflect(Resource, Default, Debug, Clone)]
pub struct DefaultOpaqueRendererMethod(OpaqueRendererMethod);
impl DefaultOpaqueRendererMethod {
pub fn forward() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Forward)
}
pub fn deferred() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Deferred)
}
pub fn set_to_forward(&mut self) {
self.0 = OpaqueRendererMethod::Forward;
}
pub fn set_to_deferred(&mut self) {
self.0 = OpaqueRendererMethod::Deferred;
}
}
/// Render method used for opaque materials.
///
/// The forward rendering main pass draws each mesh entity and shades it according to its
/// corresponding material and the lights that affect it. Some render features like Screen Space
/// Ambient Occlusion require running depth and normal prepasses, that are 'deferred'-like
/// prepasses over all mesh entities to populate depth and normal textures. This means that when
/// using render features that require running prepasses, multiple passes over all visible geometry
/// are required. This can be slow if there is a lot of geometry that cannot be batched into few
/// draws.
///
/// Deferred rendering runs a prepass to gather not only geometric information like depth and
/// normals, but also all the material properties like base color, emissive color, reflectance,
/// metalness, etc, and writes them into a deferred 'g-buffer' texture. The deferred main pass is
/// then a fullscreen pass that reads data from these textures and executes shading. This allows
/// for one pass over geometry, but is at the cost of not being able to use MSAA, and has heavier
/// bandwidth usage which can be unsuitable for low end mobile or other bandwidth-constrained devices.
///
/// If a material indicates `OpaqueRendererMethod::Auto`, `DefaultOpaqueRendererMethod` will be used.
#[derive(Default, Clone, Copy, Debug, PartialEq, Reflect)]
#[reflect(Default, Clone, PartialEq)]
pub enum OpaqueRendererMethod {
#[default]
Forward,
Deferred,
Auto,
}
/// Common [`Material`] properties, calculated for a specific material instance.
pub struct MaterialProperties {
/// Is this material should be rendered by the deferred renderer when.
/// [`AlphaMode::Opaque`] or [`AlphaMode::Mask`]
pub render_method: OpaqueRendererMethod,
/// The [`AlphaMode`] of this material.
pub alpha_mode: AlphaMode,
/// The bits in the [`MeshPipelineKey`] for this material.
///
/// These are precalculated so that we can just "or" them together in
/// [`queue_material_meshes`].
pub mesh_pipeline_key_bits: MeshPipelineKey,
/// Add a bias to the view depth of the mesh which can be used to force a specific render order
/// for meshes with equal depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
pub depth_bias: f32,
/// Whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
pub reads_view_transmission_texture: bool,
pub render_phase_type: RenderPhaseType,
pub draw_function_id: DrawFunctionId,
pub prepass_draw_function_id: Option<DrawFunctionId>,
pub deferred_draw_function_id: Option<DrawFunctionId>,
}
#[derive(Clone, Copy)]
pub enum RenderPhaseType {
Opaque,
AlphaMask,
Transmissive,
Transparent,
}
/// A resource that maps each untyped material ID to its binding.
///
/// This duplicates information in `RenderAssets<M>`, but it doesn't have the
/// `M` type parameter, so it can be used in untyped contexts like
/// [`crate::render::mesh::collect_meshes_for_gpu_building`].
#[derive(Resource, Default, Deref, DerefMut)]
pub struct RenderMaterialBindings(HashMap<UntypedAssetId, MaterialBindingId>);
/// Data prepared for a [`Material`] instance.
pub struct PreparedMaterial<M: Material> {
pub binding: MaterialBindingId,
pub properties: MaterialProperties,
pub phantom: PhantomData<M>,
}
impl<M: Material> RenderAsset for PreparedMaterial<M> {
type SourceAsset = M;
type Param = (
SRes<RenderDevice>,
SRes<MaterialPipeline<M>>,
SRes<DefaultOpaqueRendererMethod>,
SResMut<MaterialBindGroupAllocator<M>>,
SResMut<RenderMaterialBindings>,
SRes<DrawFunctions<Opaque3d>>,
SRes<DrawFunctions<AlphaMask3d>>,
SRes<DrawFunctions<Transmissive3d>>,
SRes<DrawFunctions<Transparent3d>>,
SRes<DrawFunctions<Opaque3dPrepass>>,
SRes<DrawFunctions<AlphaMask3dPrepass>>,
SRes<DrawFunctions<Opaque3dDeferred>>,
SRes<DrawFunctions<AlphaMask3dDeferred>>,
M::Param,
);
fn prepare_asset(
material: Self::SourceAsset,
material_id: AssetId<Self::SourceAsset>,
(
render_device,
pipeline,
default_opaque_render_method,
bind_group_allocator,
render_material_bindings,
opaque_draw_functions,
alpha_mask_draw_functions,
transmissive_draw_functions,
transparent_draw_functions,
opaque_prepass_draw_functions,
alpha_mask_prepass_draw_functions,
opaque_deferred_draw_functions,
alpha_mask_deferred_draw_functions,
material_param,
): &mut SystemParamItem<Self::Param>,
) -> Result<Self, PrepareAssetError<Self::SourceAsset>> {
let draw_opaque_pbr = opaque_draw_functions.read().id::<DrawMaterial<M>>();
let draw_alpha_mask_pbr = alpha_mask_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transmissive_pbr = transmissive_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial<M>>();
let draw_opaque_prepass = opaque_prepass_draw_functions
.read()
.get_id::<DrawPrepass<M>>();
let draw_alpha_mask_prepass = alpha_mask_prepass_draw_functions
.read()
.get_id::<DrawPrepass<M>>();
let draw_opaque_deferred = opaque_deferred_draw_functions
.read()
.get_id::<DrawPrepass<M>>();
let draw_alpha_mask_deferred = alpha_mask_deferred_draw_functions
.read()
.get_id::<DrawPrepass<M>>();
let render_method = match material.opaque_render_method() {
OpaqueRendererMethod::Forward => OpaqueRendererMethod::Forward,
OpaqueRendererMethod::Deferred => OpaqueRendererMethod::Deferred,
OpaqueRendererMethod::Auto => default_opaque_render_method.0,
};
let mut mesh_pipeline_key_bits = MeshPipelineKey::empty();
mesh_pipeline_key_bits.set(
MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE,
material.reads_view_transmission_texture(),
);
let reads_view_transmission_texture =
mesh_pipeline_key_bits.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
let render_phase_type = match material.alpha_mode() {
AlphaMode::Blend | AlphaMode::Premultiplied | AlphaMode::Add | AlphaMode::Multiply => {
RenderPhaseType::Transparent
}
_ if reads_view_transmission_texture => RenderPhaseType::Transmissive,
AlphaMode::Opaque | AlphaMode::AlphaToCoverage => RenderPhaseType::Opaque,
AlphaMode::Mask(_) => RenderPhaseType::AlphaMask,
};
let draw_function_id = match render_phase_type {
RenderPhaseType::Opaque => draw_opaque_pbr,
RenderPhaseType::AlphaMask => draw_alpha_mask_pbr,
RenderPhaseType::Transmissive => draw_transmissive_pbr,
RenderPhaseType::Transparent => draw_transparent_pbr,
};
let prepass_draw_function_id = match render_phase_type {
RenderPhaseType::Opaque => draw_opaque_prepass,
RenderPhaseType::AlphaMask => draw_alpha_mask_prepass,
_ => None,
};
let deferred_draw_function_id = match render_phase_type {
RenderPhaseType::Opaque => draw_opaque_deferred,
RenderPhaseType::AlphaMask => draw_alpha_mask_deferred,
_ => None,
};
match material.unprepared_bind_group(
&pipeline.material_layout,
render_device,
material_param,
false,
) {
Ok(unprepared) => {
// Allocate or update the material.
let binding = match render_material_bindings.entry(material_id.into()) {
Entry::Occupied(mut occupied_entry) => {
// TODO: Have a fast path that doesn't require
// recreating the bind group if only buffer contents
// change. For now, we just delete and recreate the bind
// group.
bind_group_allocator.free(*occupied_entry.get());
let new_binding = bind_group_allocator
.allocate_unprepared(unprepared, &pipeline.material_layout);
*occupied_entry.get_mut() = new_binding;
new_binding
}
Entry::Vacant(vacant_entry) => *vacant_entry.insert(
bind_group_allocator
.allocate_unprepared(unprepared, &pipeline.material_layout),
),
};
Ok(PreparedMaterial {
binding,
properties: MaterialProperties {
alpha_mode: material.alpha_mode(),
depth_bias: material.depth_bias(),
reads_view_transmission_texture,
render_phase_type,
draw_function_id,
prepass_draw_function_id,
render_method,
mesh_pipeline_key_bits,
deferred_draw_function_id,
},
phantom: PhantomData,
})
}
Err(AsBindGroupError::RetryNextUpdate) => {
Err(PrepareAssetError::RetryNextUpdate(material))
}
Err(AsBindGroupError::CreateBindGroupDirectly) => {
// This material has opted out of automatic bind group creation
// and is requesting a fully-custom bind group. Invoke
// `as_bind_group` as requested, and store the resulting bind
// group in the slot.
match material.as_bind_group(
&pipeline.material_layout,
render_device,
material_param,
) {
Ok(prepared_bind_group) => {
// Store the resulting bind group directly in the slot.
let material_binding_id =
bind_group_allocator.allocate_prepared(prepared_bind_group);
render_material_bindings.insert(material_id.into(), material_binding_id);
Ok(PreparedMaterial {
binding: material_binding_id,
properties: MaterialProperties {
alpha_mode: material.alpha_mode(),
depth_bias: material.depth_bias(),
reads_view_transmission_texture,
render_phase_type,
draw_function_id,
prepass_draw_function_id,
render_method,
mesh_pipeline_key_bits,
deferred_draw_function_id,
},
phantom: PhantomData,
})
}
Err(AsBindGroupError::RetryNextUpdate) => {
Err(PrepareAssetError::RetryNextUpdate(material))
}
Err(other) => Err(PrepareAssetError::AsBindGroupError(other)),
}
}
Err(other) => Err(PrepareAssetError::AsBindGroupError(other)),
}
}
fn unload_asset(
source_asset: AssetId<Self::SourceAsset>,
(_, _, _, bind_group_allocator, render_material_bindings, ..): &mut SystemParamItem<
Self::Param,
>,
) {
let Some(material_binding_id) = render_material_bindings.remove(&source_asset.untyped())
else {
return;
};
bind_group_allocator.free(material_binding_id);
}
}
#[derive(Component, Clone, Copy, Default, PartialEq, Eq, Deref, DerefMut)]
pub struct MaterialBindGroupId(pub Option<BindGroupId>);
impl MaterialBindGroupId {
pub fn new(id: BindGroupId) -> Self {
Self(Some(id))
}
}
impl From<BindGroup> for MaterialBindGroupId {
fn from(value: BindGroup) -> Self {
Self::new(value.id())
}
}
/// Creates and/or recreates any bind groups that contain materials that were
/// modified this frame.
pub fn prepare_material_bind_groups<M>(
mut allocator: ResMut<MaterialBindGroupAllocator<M>>,
render_device: Res<RenderDevice>,
fallback_image: Res<FallbackImage>,
fallback_resources: Res<FallbackBindlessResources>,
) where
M: Material,
{
allocator.prepare_bind_groups(&render_device, &fallback_resources, &fallback_image);
}
/// Uploads the contents of all buffers that the [`MaterialBindGroupAllocator`]
/// manages to the GPU.
///
/// Non-bindless allocators don't currently manage any buffers, so this method
/// only has an effect for bindless allocators.
pub fn write_material_bind_group_buffers<M>(
mut allocator: ResMut<MaterialBindGroupAllocator<M>>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
) where
M: Material,
{
allocator.write_buffers(&render_device, &render_queue);
}