bevy/crates/bevy_reflect/src/tuple_struct.rs
Gino Valente 60773e6787
bevy_reflect: Fix ignored/skipped field order (#7575)
# Objective

Fixes #5101
Alternative to #6511

## Solution

Corrected the behavior for ignored fields in `FromReflect`, which was
previously using the incorrect field indexes.

Similarly, fields marked with `#[reflect(skip_serializing)]` no longer
break when using `FromReflect` after deserialization. This was done by
modifying `SerializationData` to store a function pointer that can later
be used to generate a default instance of the skipped field during
deserialization.

The function pointer points to a function generated by the derive macro
using the behavior designated by `#[reflect(default)]` (or just
`Default` if none provided). The entire output of the macro is now
wrapped in an [unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
which keeps this behavior hygienic.

#### Rationale

The biggest downside to this approach is that it requires fields marked
`#[reflect(skip_serializing)]` to provide the ability to create a
default instance— either via a `Default` impl or by specifying a custom
one. While this isn't great, I think it might be justified by the fact
that we really need to create this value when using `FromReflect` on a
deserialized object. And we need to do this _during_ deserialization
because after that (at least for tuples and tuple structs) we lose
information about which field is which: _"is the value at index 1 in
this `DynamicTupleStruct` the actual value for index 1 or is it really
the value for index 2 since index 1 is skippable...?"_

#### Alternatives

An alternative would be to store `Option<Box<dyn Reflect>>` within
`DynamicTuple` and `DynamicTupleStruct` instead of just `Box<dyn
Reflect>`. This would allow us to insert "empty"/"missing" fields during
deserialization, thus saving the positional information of the skipped
fields. However, this may require changing the API of `Tuple` and
`TupleStruct` such that they can account for their dynamic counterparts
returning `None` for a skipped field. In practice this would probably
mean exposing the `Option`-ness of the dynamics onto implementors via
methods like `Tuple::drain` or `TupleStruct::field`.

Personally, I think requiring `Default` would be better than muddying up
the API to account for these special cases. But I'm open to trying out
this other approach if the community feels that it's better.

---

## Changelog

### Public Changes

#### Fixed

- The behaviors of `#[reflect(ignore)]` and
`#[reflect(skip_serializing)]` are no longer dependent on field order

#### Changed

- Fields marked with `#[reflect(skip_serializing)]` now need to either
implement `Default` or specify a custom default function using
`#[reflect(default = "path::to::some_func")]`
- Deserializing a type with fields marked `#[reflect(skip_serializing)]`
will now include that field initialized to its specified default value
- `SerializationData::new` now takes the new `SkippedField` struct along
with the skipped field index
- Renamed `SerializationData::is_ignored_field` to
`SerializationData::is_field_skipped`

#### Added

- Added `SkippedField` struct
- Added methods `SerializationData::generate_default` and
`SerializationData::iter_skipped`

### Internal Changes

#### Changed

- Replaced `members_to_serialization_denylist` and `BitSet<u32>` with
`SerializationDataDef`
- The `Reflect` derive is more hygienic as it now outputs within an
[unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
- `StructField::index` has been split up into
`StructField::declaration_index` and `StructField::reflection_index`

#### Removed

- Removed `bitset` dependency

## Migration Guide

* Fields marked `#[reflect(skip_serializing)]` now must implement
`Default` or specify a custom default function with `#[reflect(default =
"path::to::some_func")]`
    ```rust
    #[derive(Reflect)]
    struct MyStruct {
      #[reflect(skip_serializing)]
      #[reflect(default = "get_foo_default")]
foo: Foo, // <- `Foo` does not impl `Default` so requires a custom
function
      #[reflect(skip_serializing)]
      bar: Bar, // <- `Bar` impls `Default`
    }
    
    #[derive(Reflect)]
    struct Foo(i32);
    
    #[derive(Reflect, Default)]
    struct Bar(i32);
    
    fn get_foo_default() -> Foo {
      Foo(123)
    }
    ```
* `SerializationData::new` has been changed to expect an iterator of
`(usize, SkippedField)` rather than one of just `usize`
    ```rust
    // BEFORE
    SerializationData::new([0, 3].into_iter());
    
    // AFTER
    SerializationData::new([
      (0, SkippedField::new(field_0_default_fn)),
      (3, SkippedField::new(field_3_default_fn)),
    ].into_iter());
    ```
* `Serialization::is_ignored_field` has been renamed to
`Serialization::is_field_skipped`
* Fields marked `#[reflect(skip_serializing)]` are now included in
deserialization output. This may affect logic that expected those fields
to be absent.
2023-10-22 12:43:31 +00:00

462 lines
12 KiB
Rust

use bevy_reflect_derive::impl_type_path;
use crate::{
self as bevy_reflect, DynamicTuple, Reflect, ReflectMut, ReflectOwned, ReflectRef, Tuple,
TypeInfo, TypePath, TypePathTable, UnnamedField,
};
use std::any::{Any, TypeId};
use std::fmt::{Debug, Formatter};
use std::slice::Iter;
/// A trait used to power [tuple struct-like] operations via [reflection].
///
/// This trait uses the [`Reflect`] trait to allow implementors to have their fields
/// be dynamically addressed by index.
///
/// When using [`#[derive(Reflect)]`](derive@crate::Reflect) on a tuple struct,
/// this trait will be automatically implemented.
///
/// # Example
///
/// ```
/// use bevy_reflect::{Reflect, TupleStruct};
///
/// #[derive(Reflect)]
/// struct Foo(u32);
///
/// let foo = Foo(123);
///
/// assert_eq!(foo.field_len(), 1);
///
/// let field: &dyn Reflect = foo.field(0).unwrap();
/// assert_eq!(field.downcast_ref::<u32>(), Some(&123));
/// ```
///
/// [tuple struct-like]: https://doc.rust-lang.org/book/ch05-01-defining-structs.html#using-tuple-structs-without-named-fields-to-create-different-types
/// [reflection]: crate
pub trait TupleStruct: Reflect {
/// Returns a reference to the value of the field with index `index` as a
/// `&dyn Reflect`.
fn field(&self, index: usize) -> Option<&dyn Reflect>;
/// Returns a mutable reference to the value of the field with index `index`
/// as a `&mut dyn Reflect`.
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect>;
/// Returns the number of fields in the tuple struct.
fn field_len(&self) -> usize;
/// Returns an iterator over the values of the tuple struct's fields.
fn iter_fields(&self) -> TupleStructFieldIter;
/// Clones the struct into a [`DynamicTupleStruct`].
fn clone_dynamic(&self) -> DynamicTupleStruct;
}
/// A container for compile-time tuple struct info.
#[derive(Clone, Debug)]
pub struct TupleStructInfo {
type_path: TypePathTable,
type_id: TypeId,
fields: Box<[UnnamedField]>,
#[cfg(feature = "documentation")]
docs: Option<&'static str>,
}
impl TupleStructInfo {
/// Create a new [`TupleStructInfo`].
///
/// # Arguments
///
/// * `fields`: The fields of this struct in the order they are defined
///
pub fn new<T: Reflect + TypePath>(fields: &[UnnamedField]) -> Self {
Self {
type_path: TypePathTable::of::<T>(),
type_id: TypeId::of::<T>(),
fields: fields.to_vec().into_boxed_slice(),
#[cfg(feature = "documentation")]
docs: None,
}
}
/// Sets the docstring for this struct.
#[cfg(feature = "documentation")]
pub fn with_docs(self, docs: Option<&'static str>) -> Self {
Self { docs, ..self }
}
/// Get the field at the given index.
pub fn field_at(&self, index: usize) -> Option<&UnnamedField> {
self.fields.get(index)
}
/// Iterate over the fields of this struct.
pub fn iter(&self) -> Iter<'_, UnnamedField> {
self.fields.iter()
}
/// The total number of fields in this struct.
pub fn field_len(&self) -> usize {
self.fields.len()
}
/// A representation of the type path of the struct.
///
/// Provides dynamic access to all methods on [`TypePath`].
pub fn type_path_table(&self) -> &TypePathTable {
&self.type_path
}
/// The [stable, full type path] of the struct.
///
/// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
///
/// [stable, full type path]: TypePath
/// [`type_path_table`]: Self::type_path_table
pub fn type_path(&self) -> &'static str {
self.type_path_table().path()
}
/// The [`TypeId`] of the tuple struct.
pub fn type_id(&self) -> TypeId {
self.type_id
}
/// Check if the given type matches the tuple struct type.
pub fn is<T: Any>(&self) -> bool {
TypeId::of::<T>() == self.type_id
}
/// The docstring of this struct, if any.
#[cfg(feature = "documentation")]
pub fn docs(&self) -> Option<&'static str> {
self.docs
}
}
/// An iterator over the field values of a tuple struct.
pub struct TupleStructFieldIter<'a> {
pub(crate) tuple_struct: &'a dyn TupleStruct,
pub(crate) index: usize,
}
impl<'a> TupleStructFieldIter<'a> {
pub fn new(value: &'a dyn TupleStruct) -> Self {
TupleStructFieldIter {
tuple_struct: value,
index: 0,
}
}
}
impl<'a> Iterator for TupleStructFieldIter<'a> {
type Item = &'a dyn Reflect;
fn next(&mut self) -> Option<Self::Item> {
let value = self.tuple_struct.field(self.index);
self.index += 1;
value
}
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.tuple_struct.field_len();
(size, Some(size))
}
}
impl<'a> ExactSizeIterator for TupleStructFieldIter<'a> {}
/// A convenience trait which combines fetching and downcasting of tuple
/// struct fields.
///
/// # Example
///
/// ```
/// use bevy_reflect::{GetTupleStructField, Reflect};
///
/// #[derive(Reflect)]
/// struct Foo(String);
///
/// # fn main() {
/// let mut foo = Foo("Hello, world!".to_string());
///
/// foo.get_field_mut::<String>(0).unwrap().truncate(5);
/// assert_eq!(foo.get_field::<String>(0), Some(&"Hello".to_string()));
/// # }
/// ```
pub trait GetTupleStructField {
/// Returns a reference to the value of the field with index `index`,
/// downcast to `T`.
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T>;
/// Returns a mutable reference to the value of the field with index
/// `index`, downcast to `T`.
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T>;
}
impl<S: TupleStruct> GetTupleStructField for S {
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T> {
self.field(index)
.and_then(|value| value.downcast_ref::<T>())
}
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T> {
self.field_mut(index)
.and_then(|value| value.downcast_mut::<T>())
}
}
impl GetTupleStructField for dyn TupleStruct {
fn get_field<T: Reflect>(&self, index: usize) -> Option<&T> {
self.field(index)
.and_then(|value| value.downcast_ref::<T>())
}
fn get_field_mut<T: Reflect>(&mut self, index: usize) -> Option<&mut T> {
self.field_mut(index)
.and_then(|value| value.downcast_mut::<T>())
}
}
/// A tuple struct which allows fields to be added at runtime.
#[derive(Default)]
pub struct DynamicTupleStruct {
represented_type: Option<&'static TypeInfo>,
fields: Vec<Box<dyn Reflect>>,
}
impl DynamicTupleStruct {
/// Sets the [type] to be represented by this `DynamicTupleStruct`.
///
/// # Panics
///
/// Panics if the given [type] is not a [`TypeInfo::TupleStruct`].
///
/// [type]: TypeInfo
pub fn set_represented_type(&mut self, represented_type: Option<&'static TypeInfo>) {
if let Some(represented_type) = represented_type {
assert!(
matches!(represented_type, TypeInfo::TupleStruct(_)),
"expected TypeInfo::TupleStruct but received: {:?}",
represented_type
);
}
self.represented_type = represented_type;
}
/// Appends an element with value `value` to the tuple struct.
pub fn insert_boxed(&mut self, value: Box<dyn Reflect>) {
self.fields.push(value);
}
/// Appends a typed element with value `value` to the tuple struct.
pub fn insert<T: Reflect>(&mut self, value: T) {
self.insert_boxed(Box::new(value));
}
}
impl TupleStruct for DynamicTupleStruct {
#[inline]
fn field(&self, index: usize) -> Option<&dyn Reflect> {
self.fields.get(index).map(|field| &**field)
}
#[inline]
fn field_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {
self.fields.get_mut(index).map(|field| &mut **field)
}
#[inline]
fn field_len(&self) -> usize {
self.fields.len()
}
#[inline]
fn iter_fields(&self) -> TupleStructFieldIter {
TupleStructFieldIter {
tuple_struct: self,
index: 0,
}
}
fn clone_dynamic(&self) -> DynamicTupleStruct {
DynamicTupleStruct {
represented_type: self.represented_type,
fields: self
.fields
.iter()
.map(|value| value.clone_value())
.collect(),
}
}
}
impl Reflect for DynamicTupleStruct {
#[inline]
fn get_represented_type_info(&self) -> Option<&'static TypeInfo> {
self.represented_type
}
#[inline]
fn into_any(self: Box<Self>) -> Box<dyn Any> {
self
}
#[inline]
fn as_any(&self) -> &dyn Any {
self
}
#[inline]
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
#[inline]
fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> {
self
}
#[inline]
fn as_reflect(&self) -> &dyn Reflect {
self
}
#[inline]
fn as_reflect_mut(&mut self) -> &mut dyn Reflect {
self
}
#[inline]
fn clone_value(&self) -> Box<dyn Reflect> {
Box::new(self.clone_dynamic())
}
#[inline]
fn reflect_ref(&self) -> ReflectRef {
ReflectRef::TupleStruct(self)
}
#[inline]
fn reflect_mut(&mut self) -> ReflectMut {
ReflectMut::TupleStruct(self)
}
#[inline]
fn reflect_owned(self: Box<Self>) -> ReflectOwned {
ReflectOwned::TupleStruct(self)
}
fn apply(&mut self, value: &dyn Reflect) {
if let ReflectRef::TupleStruct(tuple_struct) = value.reflect_ref() {
for (i, value) in tuple_struct.iter_fields().enumerate() {
if let Some(v) = self.field_mut(i) {
v.apply(value);
}
}
} else {
panic!("Attempted to apply non-TupleStruct type to TupleStruct type.");
}
}
fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> {
*self = value.take()?;
Ok(())
}
fn reflect_partial_eq(&self, value: &dyn Reflect) -> Option<bool> {
tuple_struct_partial_eq(self, value)
}
fn debug(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "DynamicTupleStruct(")?;
tuple_struct_debug(self, f)?;
write!(f, ")")
}
#[inline]
fn is_dynamic(&self) -> bool {
true
}
}
impl_type_path!((in bevy_reflect) DynamicTupleStruct);
impl Debug for DynamicTupleStruct {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
self.debug(f)
}
}
impl From<DynamicTuple> for DynamicTupleStruct {
fn from(value: DynamicTuple) -> Self {
Self {
represented_type: None,
fields: Box::new(value).drain(),
}
}
}
/// Compares a [`TupleStruct`] with a [`Reflect`] value.
///
/// Returns true if and only if all of the following are true:
/// - `b` is a tuple struct;
/// - `b` has the same number of fields as `a`;
/// - [`Reflect::reflect_partial_eq`] returns `Some(true)` for pairwise fields of `a` and `b`.
///
/// Returns [`None`] if the comparison couldn't even be performed.
#[inline]
pub fn tuple_struct_partial_eq<S: TupleStruct>(a: &S, b: &dyn Reflect) -> Option<bool> {
let ReflectRef::TupleStruct(tuple_struct) = b.reflect_ref() else {
return Some(false);
};
if a.field_len() != tuple_struct.field_len() {
return Some(false);
}
for (i, value) in tuple_struct.iter_fields().enumerate() {
if let Some(field_value) = a.field(i) {
let eq_result = field_value.reflect_partial_eq(value);
if let failed @ (Some(false) | None) = eq_result {
return failed;
}
} else {
return Some(false);
}
}
Some(true)
}
/// The default debug formatter for [`TupleStruct`] types.
///
/// # Example
/// ```
/// use bevy_reflect::Reflect;
/// #[derive(Reflect)]
/// struct MyTupleStruct(usize);
///
/// let my_tuple_struct: &dyn Reflect = &MyTupleStruct(123);
/// println!("{:#?}", my_tuple_struct);
///
/// // Output:
///
/// // MyTupleStruct (
/// // 123,
/// // )
/// ```
#[inline]
pub fn tuple_struct_debug(
dyn_tuple_struct: &dyn TupleStruct,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
let mut debug = f.debug_tuple(dyn_tuple_struct.reflect_type_path());
for field in dyn_tuple_struct.iter_fields() {
debug.field(&field as &dyn Debug);
}
debug.finish()
}