bevy/crates/bevy_state/src/lib.rs
UkoeHB adc2cf7dfe
Add state scoped events (#15085)
# Objective

- Improve robustness of state transitions. Currently events that should
be scoped to a specific state can leak between state scopes since events
live for two ticks.
- See https://github.com/bevyengine/bevy/issues/15072

## Solution

- Allow registering state scoped events that will be automatically
cleared when exiting a state. This is *most of the time* not obviously
useful, but enables users to write correct code that will avoid/reduce
edge conditions (such as systems that aren't state scoped polling for a
state scoped event and having unintended side effects outside a specific
state instance).

## Testing

Did not test.

---

## Showcase

Added state scoped events that will be automatically cleared when
exiting a state. Useful when you want to guarantee clean state
transitions.

Normal way to add an event:
```rust
fn setup(app: &mut App) {
    app.add_event::<MyGameEvent>();
}
```

Add a state-scoped event (**NEW**):
```rust
fn setup(app: &mut App) {
    app.add_state_scoped_event::<MyGameEvent>(GameState::Play);
}
```
2024-09-09 16:37:27 +00:00

82 lines
4.7 KiB
Rust

//! In Bevy, states are app-wide interdependent, finite state machines that are generally used to model the large scale structure of your program: whether a game is paused, if the player is in combat, if assets are loaded and so on.
//!
//! This module provides 3 distinct types of state, all of which implement the [`States`](state::States) trait:
//!
//! - Standard [`States`](state::States) can only be changed by manually setting the [`NextState<S>`](state::NextState) resource.
//! These states are the baseline on which the other state types are built, and can be used on
//! their own for many simple patterns. See the [state example](https://github.com/bevyengine/bevy/blob/latest/examples/state/state.rs)
//! for a simple use case.
//! - [`SubStates`](state::SubStates) are children of other states - they can be changed manually using [`NextState<S>`](state::NextState),
//! but are removed from the [`World`](bevy_ecs::prelude::World) if the source states aren't in the right state. See the [sub_states example](https://github.com/bevyengine/bevy/blob/latest/examples/state/sub_states.rs)
//! for a simple use case based on the derive macro, or read the trait docs for more complex scenarios.
//! - [`ComputedStates`](state::ComputedStates) are fully derived from other states - they provide a [`compute`](state::ComputedStates::compute) method
//! that takes in the source states and returns their derived value. They are particularly useful for situations
//! where a simplified view of the source states is necessary - such as having an `InAMenu` computed state, derived
//! from a source state that defines multiple distinct menus. See the [computed state example](https://github.com/bevyengine/bevy/blob/latest/examples/state/computed_states.rs)
//! to see usage samples for these states.
//!
//! Most of the utilities around state involve running systems during transitions between states, or
//! determining whether to run certain systems, though they can be used more directly as well. This
//! makes it easier to transition between menus, add loading screens, pause games, and the more.
//!
//! Specifically, Bevy provides the following utilities:
//!
//! - 3 Transition Schedules - [`OnEnter<S>`](crate::state::OnEnter), [`OnExit<S>`](crate::state::OnExit) and [`OnTransition<S>`](crate::state::OnTransition) - which are used
//! to trigger systems specifically during matching transitions.
//! - A [`StateTransitionEvent<S>`](crate::state::StateTransitionEvent) that gets fired when a given state changes.
//! - The [`in_state<S>`](crate::condition::in_state) and [`state_changed<S>`](crate::condition::state_changed) run conditions - which are used
//! to determine whether a system should run based on the current state.
// `rustdoc_internals` is needed for `#[doc(fake_variadics)]`
#![allow(internal_features)]
#![cfg_attr(any(docsrs, docsrs_dep), feature(rustdoc_internals))]
#[cfg(feature = "bevy_app")]
/// Provides [`App`](bevy_app::App) and [`SubApp`](bevy_app::SubApp) with state installation methods
pub mod app;
/// Provides extension methods for [`Commands`](bevy_ecs::prelude::Commands).
pub mod commands;
/// Provides definitions for the runtime conditions that interact with the state system
pub mod condition;
/// Provides definitions for the basic traits required by the state system
pub mod state;
/// Provides [`StateScoped`](crate::state_scoped::StateScoped) and
/// [`clear_state_scoped_entities`](crate::state_scoped::clear_state_scoped_entities) for managing lifetime of entities.
pub mod state_scoped;
#[cfg(feature = "bevy_app")]
/// Provides [`App`](bevy_app::App) and [`SubApp`](bevy_app::SubApp) with methods for registering
/// state-scoped events.
pub mod state_scoped_events;
#[cfg(feature = "bevy_reflect")]
/// Provides definitions for the basic traits required by the state system
pub mod reflect;
/// The state prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
#[cfg(feature = "bevy_app")]
#[doc(hidden)]
pub use crate::app::AppExtStates;
#[doc(hidden)]
pub use crate::commands::CommandsStatesExt;
#[doc(hidden)]
pub use crate::condition::*;
#[cfg(feature = "bevy_reflect")]
#[doc(hidden)]
pub use crate::reflect::{ReflectFreelyMutableState, ReflectState};
#[doc(hidden)]
pub use crate::state::{
last_transition, ComputedStates, EnterSchedules, ExitSchedules, NextState, OnEnter, OnExit,
OnTransition, State, StateSet, StateTransition, StateTransitionEvent, States, SubStates,
TransitionSchedules,
};
#[doc(hidden)]
pub use crate::state_scoped::StateScoped;
#[cfg(feature = "bevy_app")]
#[doc(hidden)]
pub use crate::state_scoped_events::StateScopedEventsAppExt;
}