bevy/crates/bevy_ecs/src/query/access.rs
François Mockers 4e694aea53
ECS: put strings only used for debug behind a feature (#19558)
# Objective

- Many strings in bevy_ecs are created but only used for debug: system
name, component name, ...
- Those strings make a significant part of the final binary and are no
use in a released game

## Solution

- Use [`strings`](https://linux.die.net/man/1/strings) to find ...
strings in a binary
- Try to find where they come from
- Many are made from `type_name::<T>()` and only used in error / debug
messages
- Add a new structure `DebugName` that holds no value if `debug` feature
is disabled
- Replace `core::any::type_name::<T>()` by `DebugName::type_name::<T>()`

## Testing

Measurements were taken without the new feature being enabled by
default, to help with commands

### File Size

I tried building the `breakout` example with `cargo run --release
--example breakout`

|`debug` enabled|`debug` disabled|
|-|-|
|81621776 B|77735728B|
|77.84MB|74.13MB|

### Compilation time

`hyperfine --min-runs 15 --prepare "cargo clean && sleep 5"
'RUSTC_WRAPPER="" cargo build --release --example breakout'
'RUSTC_WRAPPER="" cargo build --release --example breakout --features
debug'`

```
breakout' 'RUSTC_WRAPPER="" cargo build --release --example breakout --features debug'
Benchmark 1: RUSTC_WRAPPER="" cargo build --release --example breakout
  Time (mean ± σ):     84.856 s ±  3.565 s    [User: 1093.817 s, System: 32.547 s]
  Range (min … max):   78.038 s … 89.214 s    15 runs

Benchmark 2: RUSTC_WRAPPER="" cargo build --release --example breakout --features debug
  Time (mean ± σ):     92.303 s ±  2.466 s    [User: 1193.443 s, System: 33.803 s]
  Range (min … max):   90.619 s … 99.684 s    15 runs

Summary
  RUSTC_WRAPPER="" cargo build --release --example breakout ran
    1.09 ± 0.05 times faster than RUSTC_WRAPPER="" cargo build --release --example breakout --features debug
```
2025-06-18 20:15:25 +00:00

1897 lines
69 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::component::ComponentId;
use crate::storage::SparseSetIndex;
use crate::world::World;
use alloc::{format, string::String, vec, vec::Vec};
use core::{fmt, fmt::Debug, marker::PhantomData};
use derive_more::From;
use fixedbitset::FixedBitSet;
use thiserror::Error;
/// A wrapper struct to make Debug representations of [`FixedBitSet`] easier
/// to read, when used to store [`SparseSetIndex`].
///
/// Instead of the raw integer representation of the `FixedBitSet`, the list of
/// `T` valid for [`SparseSetIndex`] is shown.
///
/// Normal `FixedBitSet` `Debug` output:
/// ```text
/// read_and_writes: FixedBitSet { data: [ 160 ], length: 8 }
/// ```
///
/// Which, unless you are a computer, doesn't help much understand what's in
/// the set. With `FormattedBitSet`, we convert the present set entries into
/// what they stand for, it is much clearer what is going on:
/// ```text
/// read_and_writes: [ ComponentId(5), ComponentId(7) ]
/// ```
struct FormattedBitSet<'a, T: SparseSetIndex> {
bit_set: &'a FixedBitSet,
_marker: PhantomData<T>,
}
impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> {
fn new(bit_set: &'a FixedBitSet) -> Self {
Self {
bit_set,
_marker: PhantomData,
}
}
}
impl<'a, T: SparseSetIndex + Debug> Debug for FormattedBitSet<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list()
.entries(self.bit_set.ones().map(T::get_sparse_set_index))
.finish()
}
}
/// Tracks read and write access to specific elements in a collection.
///
/// Used internally to ensure soundness during system initialization and execution.
/// See the [`is_compatible`](Access::is_compatible) and [`get_conflicts`](Access::get_conflicts) functions.
#[derive(Eq, PartialEq)]
pub struct Access<T: SparseSetIndex> {
/// All accessed components, or forbidden components if
/// `Self::component_read_and_writes_inverted` is set.
component_read_and_writes: FixedBitSet,
/// All exclusively-accessed components, or components that may not be
/// exclusively accessed if `Self::component_writes_inverted` is set.
component_writes: FixedBitSet,
/// All accessed resources.
resource_read_and_writes: FixedBitSet,
/// The exclusively-accessed resources.
resource_writes: FixedBitSet,
/// Is `true` if this component can read all components *except* those
/// present in `Self::component_read_and_writes`.
component_read_and_writes_inverted: bool,
/// Is `true` if this component can write to all components *except* those
/// present in `Self::component_writes`.
component_writes_inverted: bool,
/// Is `true` if this has access to all resources.
/// This field is a performance optimization for `&World` (also harder to mess up for soundness).
reads_all_resources: bool,
/// Is `true` if this has mutable access to all resources.
/// If this is true, then `reads_all` must also be true.
writes_all_resources: bool,
// Components that are not accessed, but whose presence in an archetype affect query results.
archetypal: FixedBitSet,
marker: PhantomData<T>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl<T: SparseSetIndex> Clone for Access<T> {
fn clone(&self) -> Self {
Self {
component_read_and_writes: self.component_read_and_writes.clone(),
component_writes: self.component_writes.clone(),
resource_read_and_writes: self.resource_read_and_writes.clone(),
resource_writes: self.resource_writes.clone(),
component_read_and_writes_inverted: self.component_read_and_writes_inverted,
component_writes_inverted: self.component_writes_inverted,
reads_all_resources: self.reads_all_resources,
writes_all_resources: self.writes_all_resources,
archetypal: self.archetypal.clone(),
marker: PhantomData,
}
}
fn clone_from(&mut self, source: &Self) {
self.component_read_and_writes
.clone_from(&source.component_read_and_writes);
self.component_writes.clone_from(&source.component_writes);
self.resource_read_and_writes
.clone_from(&source.resource_read_and_writes);
self.resource_writes.clone_from(&source.resource_writes);
self.component_read_and_writes_inverted = source.component_read_and_writes_inverted;
self.component_writes_inverted = source.component_writes_inverted;
self.reads_all_resources = source.reads_all_resources;
self.writes_all_resources = source.writes_all_resources;
self.archetypal.clone_from(&source.archetypal);
}
}
impl<T: SparseSetIndex + Debug> Debug for Access<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Access")
.field(
"component_read_and_writes",
&FormattedBitSet::<T>::new(&self.component_read_and_writes),
)
.field(
"component_writes",
&FormattedBitSet::<T>::new(&self.component_writes),
)
.field(
"resource_read_and_writes",
&FormattedBitSet::<T>::new(&self.resource_read_and_writes),
)
.field(
"resource_writes",
&FormattedBitSet::<T>::new(&self.resource_writes),
)
.field(
"component_read_and_writes_inverted",
&self.component_read_and_writes_inverted,
)
.field("component_writes_inverted", &self.component_writes_inverted)
.field("reads_all_resources", &self.reads_all_resources)
.field("writes_all_resources", &self.writes_all_resources)
.field("archetypal", &FormattedBitSet::<T>::new(&self.archetypal))
.finish()
}
}
impl<T: SparseSetIndex> Default for Access<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: SparseSetIndex> Access<T> {
/// Creates an empty [`Access`] collection.
pub const fn new() -> Self {
Self {
reads_all_resources: false,
writes_all_resources: false,
component_read_and_writes_inverted: false,
component_writes_inverted: false,
component_read_and_writes: FixedBitSet::new(),
component_writes: FixedBitSet::new(),
resource_read_and_writes: FixedBitSet::new(),
resource_writes: FixedBitSet::new(),
archetypal: FixedBitSet::new(),
marker: PhantomData,
}
}
fn add_component_sparse_set_index_read(&mut self, index: usize) {
if !self.component_read_and_writes_inverted {
self.component_read_and_writes.grow_and_insert(index);
} else if index < self.component_read_and_writes.len() {
self.component_read_and_writes.remove(index);
}
}
fn add_component_sparse_set_index_write(&mut self, index: usize) {
if !self.component_writes_inverted {
self.component_writes.grow_and_insert(index);
} else if index < self.component_writes.len() {
self.component_writes.remove(index);
}
}
/// Adds access to the component given by `index`.
pub fn add_component_read(&mut self, index: T) {
let sparse_set_index = index.sparse_set_index();
self.add_component_sparse_set_index_read(sparse_set_index);
}
/// Adds exclusive access to the component given by `index`.
pub fn add_component_write(&mut self, index: T) {
let sparse_set_index = index.sparse_set_index();
self.add_component_sparse_set_index_read(sparse_set_index);
self.add_component_sparse_set_index_write(sparse_set_index);
}
/// Adds access to the resource given by `index`.
pub fn add_resource_read(&mut self, index: T) {
self.resource_read_and_writes
.grow_and_insert(index.sparse_set_index());
}
/// Adds exclusive access to the resource given by `index`.
pub fn add_resource_write(&mut self, index: T) {
self.resource_read_and_writes
.grow_and_insert(index.sparse_set_index());
self.resource_writes
.grow_and_insert(index.sparse_set_index());
}
fn remove_component_sparse_set_index_read(&mut self, index: usize) {
if self.component_read_and_writes_inverted {
self.component_read_and_writes.grow_and_insert(index);
} else if index < self.component_read_and_writes.len() {
self.component_read_and_writes.remove(index);
}
}
fn remove_component_sparse_set_index_write(&mut self, index: usize) {
if self.component_writes_inverted {
self.component_writes.grow_and_insert(index);
} else if index < self.component_writes.len() {
self.component_writes.remove(index);
}
}
/// Removes both read and write access to the component given by `index`.
///
/// Because this method corresponds to the set difference operator , it can
/// create complicated logical formulas that you should verify correctness
/// of. For example, A (B A) isn't equivalent to (A B) A, so you
/// can't replace a call to `remove_component_read` followed by a call to
/// `extend` with a call to `extend` followed by a call to
/// `remove_component_read`.
pub fn remove_component_read(&mut self, index: T) {
let sparse_set_index = index.sparse_set_index();
self.remove_component_sparse_set_index_write(sparse_set_index);
self.remove_component_sparse_set_index_read(sparse_set_index);
}
/// Removes write access to the component given by `index`.
///
/// Because this method corresponds to the set difference operator , it can
/// create complicated logical formulas that you should verify correctness
/// of. For example, A (B A) isn't equivalent to (A B) A, so you
/// can't replace a call to `remove_component_write` followed by a call to
/// `extend` with a call to `extend` followed by a call to
/// `remove_component_write`.
pub fn remove_component_write(&mut self, index: T) {
let sparse_set_index = index.sparse_set_index();
self.remove_component_sparse_set_index_write(sparse_set_index);
}
/// Adds an archetypal (indirect) access to the component given by `index`.
///
/// This is for components whose values are not accessed (and thus will never cause conflicts),
/// but whose presence in an archetype may affect query results.
///
/// Currently, this is only used for [`Has<T>`] and [`Allows<T>`].
///
/// [`Has<T>`]: crate::query::Has
/// [`Allows<T>`]: crate::query::filter::Allows
pub fn add_archetypal(&mut self, index: T) {
self.archetypal.grow_and_insert(index.sparse_set_index());
}
/// Returns `true` if this can access the component given by `index`.
pub fn has_component_read(&self, index: T) -> bool {
self.component_read_and_writes_inverted
^ self
.component_read_and_writes
.contains(index.sparse_set_index())
}
/// Returns `true` if this can access any component.
pub fn has_any_component_read(&self) -> bool {
self.component_read_and_writes_inverted || !self.component_read_and_writes.is_clear()
}
/// Returns `true` if this can exclusively access the component given by `index`.
pub fn has_component_write(&self, index: T) -> bool {
self.component_writes_inverted ^ self.component_writes.contains(index.sparse_set_index())
}
/// Returns `true` if this accesses any component mutably.
pub fn has_any_component_write(&self) -> bool {
self.component_writes_inverted || !self.component_writes.is_clear()
}
/// Returns `true` if this can access the resource given by `index`.
pub fn has_resource_read(&self, index: T) -> bool {
self.reads_all_resources
|| self
.resource_read_and_writes
.contains(index.sparse_set_index())
}
/// Returns `true` if this can access any resource.
pub fn has_any_resource_read(&self) -> bool {
self.reads_all_resources || !self.resource_read_and_writes.is_clear()
}
/// Returns `true` if this can exclusively access the resource given by `index`.
pub fn has_resource_write(&self, index: T) -> bool {
self.writes_all_resources || self.resource_writes.contains(index.sparse_set_index())
}
/// Returns `true` if this accesses any resource mutably.
pub fn has_any_resource_write(&self) -> bool {
self.writes_all_resources || !self.resource_writes.is_clear()
}
/// Returns `true` if this accesses any resources or components.
pub fn has_any_read(&self) -> bool {
self.has_any_component_read() || self.has_any_resource_read()
}
/// Returns `true` if this accesses any resources or components mutably.
pub fn has_any_write(&self) -> bool {
self.has_any_component_write() || self.has_any_resource_write()
}
/// Returns true if this has an archetypal (indirect) access to the component given by `index`.
///
/// This is a component whose value is not accessed (and thus will never cause conflicts),
/// but whose presence in an archetype may affect query results.
///
/// Currently, this is only used for [`Has<T>`].
///
/// [`Has<T>`]: crate::query::Has
pub fn has_archetypal(&self, index: T) -> bool {
self.archetypal.contains(index.sparse_set_index())
}
/// Sets this as having access to all components (i.e. `EntityRef`).
#[inline]
pub fn read_all_components(&mut self) {
self.component_read_and_writes_inverted = true;
self.component_read_and_writes.clear();
}
/// Sets this as having mutable access to all components (i.e. `EntityMut`).
#[inline]
pub fn write_all_components(&mut self) {
self.read_all_components();
self.component_writes_inverted = true;
self.component_writes.clear();
}
/// Sets this as having access to all resources (i.e. `&World`).
#[inline]
pub const fn read_all_resources(&mut self) {
self.reads_all_resources = true;
}
/// Sets this as having mutable access to all resources (i.e. `&mut World`).
#[inline]
pub const fn write_all_resources(&mut self) {
self.reads_all_resources = true;
self.writes_all_resources = true;
}
/// Sets this as having access to all indexed elements (i.e. `&World`).
#[inline]
pub fn read_all(&mut self) {
self.read_all_components();
self.read_all_resources();
}
/// Sets this as having mutable access to all indexed elements (i.e. `&mut World`).
#[inline]
pub fn write_all(&mut self) {
self.write_all_components();
self.write_all_resources();
}
/// Returns `true` if this has access to all components (i.e. `EntityRef`).
#[inline]
pub fn has_read_all_components(&self) -> bool {
self.component_read_and_writes_inverted && self.component_read_and_writes.is_clear()
}
/// Returns `true` if this has write access to all components (i.e. `EntityMut`).
#[inline]
pub fn has_write_all_components(&self) -> bool {
self.component_writes_inverted && self.component_writes.is_clear()
}
/// Returns `true` if this has access to all resources (i.e. `EntityRef`).
#[inline]
pub fn has_read_all_resources(&self) -> bool {
self.reads_all_resources
}
/// Returns `true` if this has write access to all resources (i.e. `EntityMut`).
#[inline]
pub fn has_write_all_resources(&self) -> bool {
self.writes_all_resources
}
/// Returns `true` if this has access to all indexed elements (i.e. `&World`).
pub fn has_read_all(&self) -> bool {
self.has_read_all_components() && self.has_read_all_resources()
}
/// Returns `true` if this has write access to all indexed elements (i.e. `&mut World`).
pub fn has_write_all(&self) -> bool {
self.has_write_all_components() && self.has_write_all_resources()
}
/// Removes all writes.
pub fn clear_writes(&mut self) {
self.writes_all_resources = false;
self.component_writes_inverted = false;
self.component_writes.clear();
self.resource_writes.clear();
}
/// Removes all accesses.
pub fn clear(&mut self) {
self.reads_all_resources = false;
self.writes_all_resources = false;
self.component_read_and_writes_inverted = false;
self.component_writes_inverted = false;
self.component_read_and_writes.clear();
self.component_writes.clear();
self.resource_read_and_writes.clear();
self.resource_writes.clear();
}
/// Adds all access from `other`.
pub fn extend(&mut self, other: &Access<T>) {
invertible_union_with(
&mut self.component_read_and_writes,
&mut self.component_read_and_writes_inverted,
&other.component_read_and_writes,
other.component_read_and_writes_inverted,
);
invertible_union_with(
&mut self.component_writes,
&mut self.component_writes_inverted,
&other.component_writes,
other.component_writes_inverted,
);
self.reads_all_resources = self.reads_all_resources || other.reads_all_resources;
self.writes_all_resources = self.writes_all_resources || other.writes_all_resources;
self.resource_read_and_writes
.union_with(&other.resource_read_and_writes);
self.resource_writes.union_with(&other.resource_writes);
self.archetypal.union_with(&other.archetypal);
}
/// Removes any access from `self` that would conflict with `other`.
/// This removes any reads and writes for any component written by `other`,
/// and removes any writes for any component read by `other`.
pub fn remove_conflicting_access(&mut self, other: &Access<T>) {
invertible_difference_with(
&mut self.component_read_and_writes,
&mut self.component_read_and_writes_inverted,
&other.component_writes,
other.component_writes_inverted,
);
invertible_difference_with(
&mut self.component_writes,
&mut self.component_writes_inverted,
&other.component_read_and_writes,
other.component_read_and_writes_inverted,
);
if other.reads_all_resources {
self.writes_all_resources = false;
self.resource_writes.clear();
}
if other.writes_all_resources {
self.reads_all_resources = false;
self.resource_read_and_writes.clear();
}
self.resource_read_and_writes
.difference_with(&other.resource_writes);
self.resource_writes
.difference_with(&other.resource_read_and_writes);
}
/// Returns `true` if the access and `other` can be active at the same time,
/// only looking at their component access.
///
/// [`Access`] instances are incompatible if one can write
/// an element that the other can read or write.
pub fn is_components_compatible(&self, other: &Access<T>) -> bool {
// We have a conflict if we write and they read or write, or if they
// write and we read or write.
for (
lhs_writes,
rhs_reads_and_writes,
lhs_writes_inverted,
rhs_reads_and_writes_inverted,
) in [
(
&self.component_writes,
&other.component_read_and_writes,
self.component_writes_inverted,
other.component_read_and_writes_inverted,
),
(
&other.component_writes,
&self.component_read_and_writes,
other.component_writes_inverted,
self.component_read_and_writes_inverted,
),
] {
match (lhs_writes_inverted, rhs_reads_and_writes_inverted) {
(true, true) => return false,
(false, true) => {
if !lhs_writes.is_subset(rhs_reads_and_writes) {
return false;
}
}
(true, false) => {
if !rhs_reads_and_writes.is_subset(lhs_writes) {
return false;
}
}
(false, false) => {
if !lhs_writes.is_disjoint(rhs_reads_and_writes) {
return false;
}
}
}
}
true
}
/// Returns `true` if the access and `other` can be active at the same time,
/// only looking at their resource access.
///
/// [`Access`] instances are incompatible if one can write
/// an element that the other can read or write.
pub fn is_resources_compatible(&self, other: &Access<T>) -> bool {
if self.writes_all_resources {
return !other.has_any_resource_read();
}
if other.writes_all_resources {
return !self.has_any_resource_read();
}
if self.reads_all_resources {
return !other.has_any_resource_write();
}
if other.reads_all_resources {
return !self.has_any_resource_write();
}
self.resource_writes
.is_disjoint(&other.resource_read_and_writes)
&& other
.resource_writes
.is_disjoint(&self.resource_read_and_writes)
}
/// Returns `true` if the access and `other` can be active at the same time.
///
/// [`Access`] instances are incompatible if one can write
/// an element that the other can read or write.
pub fn is_compatible(&self, other: &Access<T>) -> bool {
self.is_components_compatible(other) && self.is_resources_compatible(other)
}
/// Returns `true` if the set's component access is a subset of another, i.e. `other`'s component access
/// contains at least all the values in `self`.
pub fn is_subset_components(&self, other: &Access<T>) -> bool {
for (
our_components,
their_components,
our_components_inverted,
their_components_inverted,
) in [
(
&self.component_read_and_writes,
&other.component_read_and_writes,
self.component_read_and_writes_inverted,
other.component_read_and_writes_inverted,
),
(
&self.component_writes,
&other.component_writes,
self.component_writes_inverted,
other.component_writes_inverted,
),
] {
match (our_components_inverted, their_components_inverted) {
(true, true) => {
if !their_components.is_subset(our_components) {
return false;
}
}
(true, false) => {
return false;
}
(false, true) => {
if !our_components.is_disjoint(their_components) {
return false;
}
}
(false, false) => {
if !our_components.is_subset(their_components) {
return false;
}
}
}
}
true
}
/// Returns `true` if the set's resource access is a subset of another, i.e. `other`'s resource access
/// contains at least all the values in `self`.
pub fn is_subset_resources(&self, other: &Access<T>) -> bool {
if self.writes_all_resources {
return other.writes_all_resources;
}
if other.writes_all_resources {
return true;
}
if self.reads_all_resources {
return other.reads_all_resources;
}
if other.reads_all_resources {
return self.resource_writes.is_subset(&other.resource_writes);
}
self.resource_read_and_writes
.is_subset(&other.resource_read_and_writes)
&& self.resource_writes.is_subset(&other.resource_writes)
}
/// Returns `true` if the set is a subset of another, i.e. `other` contains
/// at least all the values in `self`.
pub fn is_subset(&self, other: &Access<T>) -> bool {
self.is_subset_components(other) && self.is_subset_resources(other)
}
fn get_component_conflicts(&self, other: &Access<T>) -> AccessConflicts {
let mut conflicts = FixedBitSet::new();
// We have a conflict if we write and they read or write, or if they
// write and we read or write.
for (
lhs_writes,
rhs_reads_and_writes,
lhs_writes_inverted,
rhs_reads_and_writes_inverted,
) in [
(
&self.component_writes,
&other.component_read_and_writes,
self.component_writes_inverted,
other.component_read_and_writes_inverted,
),
(
&other.component_writes,
&self.component_read_and_writes,
other.component_writes_inverted,
self.component_read_and_writes_inverted,
),
] {
// There's no way that I can see to do this without a temporary.
// Neither CNF nor DNF allows us to avoid one.
let temp_conflicts: FixedBitSet =
match (lhs_writes_inverted, rhs_reads_and_writes_inverted) {
(true, true) => return AccessConflicts::All,
(false, true) => lhs_writes.difference(rhs_reads_and_writes).collect(),
(true, false) => rhs_reads_and_writes.difference(lhs_writes).collect(),
(false, false) => lhs_writes.intersection(rhs_reads_and_writes).collect(),
};
conflicts.union_with(&temp_conflicts);
}
AccessConflicts::Individual(conflicts)
}
/// Returns a vector of elements that the access and `other` cannot access at the same time.
pub fn get_conflicts(&self, other: &Access<T>) -> AccessConflicts {
let mut conflicts = match self.get_component_conflicts(other) {
AccessConflicts::All => return AccessConflicts::All,
AccessConflicts::Individual(conflicts) => conflicts,
};
if self.reads_all_resources {
if other.writes_all_resources {
return AccessConflicts::All;
}
conflicts.extend(other.resource_writes.ones());
}
if other.reads_all_resources {
if self.writes_all_resources {
return AccessConflicts::All;
}
conflicts.extend(self.resource_writes.ones());
}
if self.writes_all_resources {
conflicts.extend(other.resource_read_and_writes.ones());
}
if other.writes_all_resources {
conflicts.extend(self.resource_read_and_writes.ones());
}
conflicts.extend(
self.resource_writes
.intersection(&other.resource_read_and_writes),
);
conflicts.extend(
self.resource_read_and_writes
.intersection(&other.resource_writes),
);
AccessConflicts::Individual(conflicts)
}
/// Returns the indices of the resources this has access to.
pub fn resource_reads_and_writes(&self) -> impl Iterator<Item = T> + '_ {
self.resource_read_and_writes
.ones()
.map(T::get_sparse_set_index)
}
/// Returns the indices of the resources this has non-exclusive access to.
pub fn resource_reads(&self) -> impl Iterator<Item = T> + '_ {
self.resource_read_and_writes
.difference(&self.resource_writes)
.map(T::get_sparse_set_index)
}
/// Returns the indices of the resources this has exclusive access to.
pub fn resource_writes(&self) -> impl Iterator<Item = T> + '_ {
self.resource_writes.ones().map(T::get_sparse_set_index)
}
/// Returns the indices of the components that this has an archetypal access to.
///
/// These are components whose values are not accessed (and thus will never cause conflicts),
/// but whose presence in an archetype may affect query results.
///
/// Currently, this is only used for [`Has<T>`].
///
/// [`Has<T>`]: crate::query::Has
pub fn archetypal(&self) -> impl Iterator<Item = T> + '_ {
self.archetypal.ones().map(T::get_sparse_set_index)
}
/// Returns an iterator over the component IDs and their [`ComponentAccessKind`].
///
/// Returns `Err(UnboundedAccess)` if the access is unbounded.
/// This typically occurs when an [`Access`] is marked as accessing all
/// components, and then adding exceptions.
///
/// # Examples
///
/// ```rust
/// # use bevy_ecs::query::{Access, ComponentAccessKind};
/// let mut access = Access::<usize>::default();
///
/// access.add_component_read(1);
/// access.add_component_write(2);
/// access.add_archetypal(3);
///
/// let result = access
/// .try_iter_component_access()
/// .map(Iterator::collect::<Vec<_>>);
///
/// assert_eq!(
/// result,
/// Ok(vec![
/// ComponentAccessKind::Shared(1),
/// ComponentAccessKind::Exclusive(2),
/// ComponentAccessKind::Archetypal(3),
/// ]),
/// );
/// ```
pub fn try_iter_component_access(
&self,
) -> Result<impl Iterator<Item = ComponentAccessKind<T>> + '_, UnboundedAccessError> {
// component_writes_inverted is only ever true when component_read_and_writes_inverted is
// also true. Therefore it is sufficient to check just component_read_and_writes_inverted.
if self.component_read_and_writes_inverted {
return Err(UnboundedAccessError {
writes_inverted: self.component_writes_inverted,
read_and_writes_inverted: self.component_read_and_writes_inverted,
});
}
let reads_and_writes = self.component_read_and_writes.ones().map(|index| {
let sparse_index = T::get_sparse_set_index(index);
if self.component_writes.contains(index) {
ComponentAccessKind::Exclusive(sparse_index)
} else {
ComponentAccessKind::Shared(sparse_index)
}
});
let archetypal = self
.archetypal
.ones()
.filter(|&index| {
!self.component_writes.contains(index)
&& !self.component_read_and_writes.contains(index)
})
.map(|index| ComponentAccessKind::Archetypal(T::get_sparse_set_index(index)));
Ok(reads_and_writes.chain(archetypal))
}
}
/// Performs an in-place union of `other` into `self`, where either set may be inverted.
///
/// Each set corresponds to a `FixedBitSet` if `inverted` is `false`,
/// or to the infinite (co-finite) complement of the `FixedBitSet` if `inverted` is `true`.
///
/// This updates the `self` set to include any elements in the `other` set.
/// Note that this may change `self_inverted` to `true` if we add an infinite
/// set to a finite one, resulting in a new infinite set.
fn invertible_union_with(
self_set: &mut FixedBitSet,
self_inverted: &mut bool,
other_set: &FixedBitSet,
other_inverted: bool,
) {
match (*self_inverted, other_inverted) {
(true, true) => self_set.intersect_with(other_set),
(true, false) => self_set.difference_with(other_set),
(false, true) => {
*self_inverted = true;
// We have to grow here because the new bits are going to get flipped to 1.
self_set.grow(other_set.len());
self_set.toggle_range(..);
self_set.intersect_with(other_set);
}
(false, false) => self_set.union_with(other_set),
}
}
/// Performs an in-place set difference of `other` from `self`, where either set may be inverted.
///
/// Each set corresponds to a `FixedBitSet` if `inverted` is `false`,
/// or to the infinite (co-finite) complement of the `FixedBitSet` if `inverted` is `true`.
///
/// This updates the `self` set to remove any elements in the `other` set.
/// Note that this may change `self_inverted` to `false` if we remove an
/// infinite set from another infinite one, resulting in a finite difference.
fn invertible_difference_with(
self_set: &mut FixedBitSet,
self_inverted: &mut bool,
other_set: &FixedBitSet,
other_inverted: bool,
) {
// We can share the implementation of `invertible_union_with` with some algebra:
// A - B = A & !B = !(!A | B)
*self_inverted = !*self_inverted;
invertible_union_with(self_set, self_inverted, other_set, other_inverted);
*self_inverted = !*self_inverted;
}
/// Error returned when attempting to iterate over items included in an [`Access`]
/// if the access excludes items rather than including them.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
#[error("Access is unbounded")]
pub struct UnboundedAccessError {
/// [`Access`] is defined in terms of _excluding_ [exclusive](ComponentAccessKind::Exclusive)
/// access.
pub writes_inverted: bool,
/// [`Access`] is defined in terms of _excluding_ [shared](ComponentAccessKind::Shared) and
/// [exclusive](ComponentAccessKind::Exclusive) access.
pub read_and_writes_inverted: bool,
}
/// Describes the level of access for a particular component as defined in an [`Access`].
#[derive(PartialEq, Eq, Hash, Debug, Clone, Copy)]
pub enum ComponentAccessKind<T> {
/// Archetypical access, such as `Has<Foo>`.
Archetypal(T),
/// Shared access, such as `&Foo`.
Shared(T),
/// Exclusive access, such as `&mut Foo`.
Exclusive(T),
}
impl<T> ComponentAccessKind<T> {
/// Gets the index of this `ComponentAccessKind`.
pub fn index(&self) -> &T {
let (Self::Archetypal(value) | Self::Shared(value) | Self::Exclusive(value)) = self;
value
}
}
/// An [`Access`] that has been filtered to include and exclude certain combinations of elements.
///
/// Used internally to statically check if queries are disjoint.
///
/// Subtle: a `read` or `write` in `access` should not be considered to imply a
/// `with` access.
///
/// For example consider `Query<Option<&T>>` this only has a `read` of `T` as doing
/// otherwise would allow for queries to be considered disjoint when they shouldn't:
/// - `Query<(&mut T, Option<&U>)>` read/write `T`, read `U`, with `U`
/// - `Query<&mut T, Without<U>>` read/write `T`, without `U`
/// from this we could reasonably conclude that the queries are disjoint but they aren't.
///
/// In order to solve this the actual access that `Query<(&mut T, Option<&U>)>` has
/// is read/write `T`, read `U`. It must still have a read `U` access otherwise the following
/// queries would be incorrectly considered disjoint:
/// - `Query<&mut T>` read/write `T`
/// - `Query<Option<&T>>` accesses nothing
///
/// See comments the [`WorldQuery`](super::WorldQuery) impls of [`AnyOf`](super::AnyOf)/`Option`/[`Or`](super::Or) for more information.
#[derive(Debug, Eq, PartialEq)]
pub struct FilteredAccess<T: SparseSetIndex> {
pub(crate) access: Access<T>,
pub(crate) required: FixedBitSet,
// An array of filter sets to express `With` or `Without` clauses in disjunctive normal form, for example: `Or<(With<A>, With<B>)>`.
// Filters like `(With<A>, Or<(With<B>, Without<C>)>` are expanded into `Or<((With<A>, With<B>), (With<A>, Without<C>))>`.
pub(crate) filter_sets: Vec<AccessFilters<T>>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl<T: SparseSetIndex> Clone for FilteredAccess<T> {
fn clone(&self) -> Self {
Self {
access: self.access.clone(),
required: self.required.clone(),
filter_sets: self.filter_sets.clone(),
}
}
fn clone_from(&mut self, source: &Self) {
self.access.clone_from(&source.access);
self.required.clone_from(&source.required);
self.filter_sets.clone_from(&source.filter_sets);
}
}
impl<T: SparseSetIndex> Default for FilteredAccess<T> {
fn default() -> Self {
Self::matches_everything()
}
}
impl<T: SparseSetIndex> From<FilteredAccess<T>> for FilteredAccessSet<T> {
fn from(filtered_access: FilteredAccess<T>) -> Self {
let mut base = FilteredAccessSet::<T>::default();
base.add(filtered_access);
base
}
}
/// Records how two accesses conflict with each other
#[derive(Debug, PartialEq, From)]
pub enum AccessConflicts {
/// Conflict is for all indices
All,
/// There is a conflict for a subset of indices
Individual(FixedBitSet),
}
impl AccessConflicts {
fn add(&mut self, other: &Self) {
match (self, other) {
(s, AccessConflicts::All) => {
*s = AccessConflicts::All;
}
(AccessConflicts::Individual(this), AccessConflicts::Individual(other)) => {
this.extend(other.ones());
}
_ => {}
}
}
/// Returns true if there are no conflicts present
pub fn is_empty(&self) -> bool {
match self {
Self::All => false,
Self::Individual(set) => set.is_empty(),
}
}
pub(crate) fn format_conflict_list(&self, world: &World) -> String {
match self {
AccessConflicts::All => String::new(),
AccessConflicts::Individual(indices) => indices
.ones()
.map(|index| {
format!(
"{}",
world
.components
.get_name(ComponentId::get_sparse_set_index(index))
.unwrap()
.shortname()
)
})
.collect::<Vec<_>>()
.join(", "),
}
}
/// An [`AccessConflicts`] which represents the absence of any conflict
pub(crate) fn empty() -> Self {
Self::Individual(FixedBitSet::new())
}
}
impl<T: SparseSetIndex> From<Vec<T>> for AccessConflicts {
fn from(value: Vec<T>) -> Self {
Self::Individual(value.iter().map(T::sparse_set_index).collect())
}
}
impl<T: SparseSetIndex> FilteredAccess<T> {
/// Returns a `FilteredAccess` which has no access and matches everything.
/// This is the equivalent of a `TRUE` logic atom.
pub fn matches_everything() -> Self {
Self {
access: Access::default(),
required: FixedBitSet::default(),
filter_sets: vec![AccessFilters::default()],
}
}
/// Returns a `FilteredAccess` which has no access and matches nothing.
/// This is the equivalent of a `FALSE` logic atom.
pub fn matches_nothing() -> Self {
Self {
access: Access::default(),
required: FixedBitSet::default(),
filter_sets: Vec::new(),
}
}
/// Returns a reference to the underlying unfiltered access.
#[inline]
pub fn access(&self) -> &Access<T> {
&self.access
}
/// Returns a mutable reference to the underlying unfiltered access.
#[inline]
pub fn access_mut(&mut self) -> &mut Access<T> {
&mut self.access
}
/// Adds access to the component given by `index`.
pub fn add_component_read(&mut self, index: T) {
self.access.add_component_read(index.clone());
self.add_required(index.clone());
self.and_with(index);
}
/// Adds exclusive access to the component given by `index`.
pub fn add_component_write(&mut self, index: T) {
self.access.add_component_write(index.clone());
self.add_required(index.clone());
self.and_with(index);
}
/// Adds access to the resource given by `index`.
pub fn add_resource_read(&mut self, index: T) {
self.access.add_resource_read(index.clone());
}
/// Adds exclusive access to the resource given by `index`.
pub fn add_resource_write(&mut self, index: T) {
self.access.add_resource_write(index.clone());
}
fn add_required(&mut self, index: T) {
self.required.grow_and_insert(index.sparse_set_index());
}
/// Adds a `With` filter: corresponds to a conjunction (AND) operation.
///
/// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
/// Adding `AND With<C>` via this method transforms it into the equivalent of `Or<((With<A>, With<C>), (With<B>, With<C>))>`.
pub fn and_with(&mut self, index: T) {
for filter in &mut self.filter_sets {
filter.with.grow_and_insert(index.sparse_set_index());
}
}
/// Adds a `Without` filter: corresponds to a conjunction (AND) operation.
///
/// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
/// Adding `AND Without<C>` via this method transforms it into the equivalent of `Or<((With<A>, Without<C>), (With<B>, Without<C>))>`.
pub fn and_without(&mut self, index: T) {
for filter in &mut self.filter_sets {
filter.without.grow_and_insert(index.sparse_set_index());
}
}
/// Appends an array of filters: corresponds to a disjunction (OR) operation.
///
/// As the underlying array of filters represents a disjunction,
/// where each element (`AccessFilters`) represents a conjunction,
/// we can simply append to the array.
pub fn append_or(&mut self, other: &FilteredAccess<T>) {
self.filter_sets.append(&mut other.filter_sets.clone());
}
/// Adds all of the accesses from `other` to `self`.
pub fn extend_access(&mut self, other: &FilteredAccess<T>) {
self.access.extend(&other.access);
}
/// Returns `true` if this and `other` can be active at the same time.
pub fn is_compatible(&self, other: &FilteredAccess<T>) -> bool {
// Resources are read from the world rather than the filtered archetypes,
// so they must be compatible even if the filters are disjoint.
if !self.access.is_resources_compatible(&other.access) {
return false;
}
if self.access.is_components_compatible(&other.access) {
return true;
}
// If the access instances are incompatible, we want to check that whether filters can
// guarantee that queries are disjoint.
// Since the `filter_sets` array represents a Disjunctive Normal Form formula ("ORs of ANDs"),
// we need to make sure that each filter set (ANDs) rule out every filter set from the `other` instance.
//
// For example, `Query<&mut C, Or<(With<A>, Without<B>)>>` is compatible `Query<&mut C, (With<B>, Without<A>)>`,
// but `Query<&mut C, Or<(Without<A>, Without<B>)>>` isn't compatible with `Query<&mut C, Or<(With<A>, With<B>)>>`.
self.filter_sets.iter().all(|filter| {
other
.filter_sets
.iter()
.all(|other_filter| filter.is_ruled_out_by(other_filter))
})
}
/// Returns a vector of elements that this and `other` cannot access at the same time.
pub fn get_conflicts(&self, other: &FilteredAccess<T>) -> AccessConflicts {
if !self.is_compatible(other) {
// filters are disjoint, so we can just look at the unfiltered intersection
return self.access.get_conflicts(&other.access);
}
AccessConflicts::empty()
}
/// Adds all access and filters from `other`.
///
/// Corresponds to a conjunction operation (AND) for filters.
///
/// Extending `Or<(With<A>, Without<B>)>` with `Or<(With<C>, Without<D>)>` will result in
/// `Or<((With<A>, With<C>), (With<A>, Without<D>), (Without<B>, With<C>), (Without<B>, Without<D>))>`.
pub fn extend(&mut self, other: &FilteredAccess<T>) {
self.access.extend(&other.access);
self.required.union_with(&other.required);
// We can avoid allocating a new array of bitsets if `other` contains just a single set of filters:
// in this case we can short-circuit by performing an in-place union for each bitset.
if other.filter_sets.len() == 1 {
for filter in &mut self.filter_sets {
filter.with.union_with(&other.filter_sets[0].with);
filter.without.union_with(&other.filter_sets[0].without);
}
return;
}
let mut new_filters = Vec::with_capacity(self.filter_sets.len() * other.filter_sets.len());
for filter in &self.filter_sets {
for other_filter in &other.filter_sets {
let mut new_filter = filter.clone();
new_filter.with.union_with(&other_filter.with);
new_filter.without.union_with(&other_filter.without);
new_filters.push(new_filter);
}
}
self.filter_sets = new_filters;
}
/// Sets the underlying unfiltered access as having access to all indexed elements.
pub fn read_all(&mut self) {
self.access.read_all();
}
/// Sets the underlying unfiltered access as having mutable access to all indexed elements.
pub fn write_all(&mut self) {
self.access.write_all();
}
/// Sets the underlying unfiltered access as having access to all components.
pub fn read_all_components(&mut self) {
self.access.read_all_components();
}
/// Sets the underlying unfiltered access as having mutable access to all components.
pub fn write_all_components(&mut self) {
self.access.write_all_components();
}
/// Returns `true` if the set is a subset of another, i.e. `other` contains
/// at least all the values in `self`.
pub fn is_subset(&self, other: &FilteredAccess<T>) -> bool {
self.required.is_subset(&other.required) && self.access().is_subset(other.access())
}
/// Returns the indices of the elements that this access filters for.
pub fn with_filters(&self) -> impl Iterator<Item = T> + '_ {
self.filter_sets
.iter()
.flat_map(|f| f.with.ones().map(T::get_sparse_set_index))
}
/// Returns the indices of the elements that this access filters out.
pub fn without_filters(&self) -> impl Iterator<Item = T> + '_ {
self.filter_sets
.iter()
.flat_map(|f| f.without.ones().map(T::get_sparse_set_index))
}
/// Returns true if the index is used by this `FilteredAccess` in any way
pub fn contains(&self, index: T) -> bool {
self.access().has_component_read(index.clone())
|| self.access().has_archetypal(index.clone())
|| self.filter_sets.iter().any(|f| {
f.with.contains(index.sparse_set_index())
|| f.without.contains(index.sparse_set_index())
})
}
}
#[derive(Eq, PartialEq)]
pub(crate) struct AccessFilters<T> {
pub(crate) with: FixedBitSet,
pub(crate) without: FixedBitSet,
_index_type: PhantomData<T>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl<T: SparseSetIndex> Clone for AccessFilters<T> {
fn clone(&self) -> Self {
Self {
with: self.with.clone(),
without: self.without.clone(),
_index_type: PhantomData,
}
}
fn clone_from(&mut self, source: &Self) {
self.with.clone_from(&source.with);
self.without.clone_from(&source.without);
}
}
impl<T: SparseSetIndex + Debug> Debug for AccessFilters<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AccessFilters")
.field("with", &FormattedBitSet::<T>::new(&self.with))
.field("without", &FormattedBitSet::<T>::new(&self.without))
.finish()
}
}
impl<T: SparseSetIndex> Default for AccessFilters<T> {
fn default() -> Self {
Self {
with: FixedBitSet::default(),
without: FixedBitSet::default(),
_index_type: PhantomData,
}
}
}
impl<T: SparseSetIndex> AccessFilters<T> {
fn is_ruled_out_by(&self, other: &Self) -> bool {
// Although not technically complete, we don't consider the case when `AccessFilters`'s
// `without` bitset contradicts its own `with` bitset (e.g. `(With<A>, Without<A>)`).
// Such query would be considered compatible with any other query, but as it's almost
// always an error, we ignore this case instead of treating such query as compatible
// with others.
!self.with.is_disjoint(&other.without) || !self.without.is_disjoint(&other.with)
}
}
/// A collection of [`FilteredAccess`] instances.
///
/// Used internally to statically check if systems have conflicting access.
///
/// It stores multiple sets of accesses.
/// - A "combined" set, which is the access of all filters in this set combined.
/// - The set of access of each individual filters in this set.
#[derive(Debug, PartialEq, Eq)]
pub struct FilteredAccessSet<T: SparseSetIndex> {
combined_access: Access<T>,
filtered_accesses: Vec<FilteredAccess<T>>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl<T: SparseSetIndex> Clone for FilteredAccessSet<T> {
fn clone(&self) -> Self {
Self {
combined_access: self.combined_access.clone(),
filtered_accesses: self.filtered_accesses.clone(),
}
}
fn clone_from(&mut self, source: &Self) {
self.combined_access.clone_from(&source.combined_access);
self.filtered_accesses.clone_from(&source.filtered_accesses);
}
}
impl<T: SparseSetIndex> FilteredAccessSet<T> {
/// Creates an empty [`FilteredAccessSet`].
pub const fn new() -> Self {
Self {
combined_access: Access::new(),
filtered_accesses: Vec::new(),
}
}
/// Returns a reference to the unfiltered access of the entire set.
#[inline]
pub fn combined_access(&self) -> &Access<T> {
&self.combined_access
}
/// Returns `true` if this and `other` can be active at the same time.
///
/// Access conflict resolution happen in two steps:
/// 1. A "coarse" check, if there is no mutual unfiltered conflict between
/// `self` and `other`, we already know that the two access sets are
/// compatible.
/// 2. A "fine grained" check, it kicks in when the "coarse" check fails.
/// the two access sets might still be compatible if some of the accesses
/// are restricted with the [`With`](super::With) or [`Without`](super::Without) filters so that access is
/// mutually exclusive. The fine grained phase iterates over all filters in
/// the `self` set and compares it to all the filters in the `other` set,
/// making sure they are all mutually compatible.
pub fn is_compatible(&self, other: &FilteredAccessSet<T>) -> bool {
if self.combined_access.is_compatible(other.combined_access()) {
return true;
}
for filtered in &self.filtered_accesses {
for other_filtered in &other.filtered_accesses {
if !filtered.is_compatible(other_filtered) {
return false;
}
}
}
true
}
/// Returns a vector of elements that this set and `other` cannot access at the same time.
pub fn get_conflicts(&self, other: &FilteredAccessSet<T>) -> AccessConflicts {
// if the unfiltered access is incompatible, must check each pair
let mut conflicts = AccessConflicts::empty();
if !self.combined_access.is_compatible(other.combined_access()) {
for filtered in &self.filtered_accesses {
for other_filtered in &other.filtered_accesses {
conflicts.add(&filtered.get_conflicts(other_filtered));
}
}
}
conflicts
}
/// Returns a vector of elements that this set and `other` cannot access at the same time.
pub fn get_conflicts_single(&self, filtered_access: &FilteredAccess<T>) -> AccessConflicts {
// if the unfiltered access is incompatible, must check each pair
let mut conflicts = AccessConflicts::empty();
if !self.combined_access.is_compatible(filtered_access.access()) {
for filtered in &self.filtered_accesses {
conflicts.add(&filtered.get_conflicts(filtered_access));
}
}
conflicts
}
/// Adds the filtered access to the set.
pub fn add(&mut self, filtered_access: FilteredAccess<T>) {
self.combined_access.extend(&filtered_access.access);
self.filtered_accesses.push(filtered_access);
}
/// Adds a read access to a resource to the set.
pub fn add_unfiltered_resource_read(&mut self, index: T) {
let mut filter = FilteredAccess::default();
filter.add_resource_read(index);
self.add(filter);
}
/// Adds a write access to a resource to the set.
pub fn add_unfiltered_resource_write(&mut self, index: T) {
let mut filter = FilteredAccess::default();
filter.add_resource_write(index);
self.add(filter);
}
/// Adds read access to all resources to the set.
pub fn add_unfiltered_read_all_resources(&mut self) {
let mut filter = FilteredAccess::default();
filter.access.read_all_resources();
self.add(filter);
}
/// Adds write access to all resources to the set.
pub fn add_unfiltered_write_all_resources(&mut self) {
let mut filter = FilteredAccess::default();
filter.access.write_all_resources();
self.add(filter);
}
/// Adds all of the accesses from the passed set to `self`.
pub fn extend(&mut self, filtered_access_set: FilteredAccessSet<T>) {
self.combined_access
.extend(&filtered_access_set.combined_access);
self.filtered_accesses
.extend(filtered_access_set.filtered_accesses);
}
/// Marks the set as reading all possible indices of type T.
pub fn read_all(&mut self) {
let mut filter = FilteredAccess::matches_everything();
filter.read_all();
self.add(filter);
}
/// Marks the set as writing all T.
pub fn write_all(&mut self) {
let mut filter = FilteredAccess::matches_everything();
filter.write_all();
self.add(filter);
}
/// Removes all accesses stored in this set.
pub fn clear(&mut self) {
self.combined_access.clear();
self.filtered_accesses.clear();
}
}
impl<T: SparseSetIndex> Default for FilteredAccessSet<T> {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod tests {
use super::{invertible_difference_with, invertible_union_with};
use crate::query::{
access::AccessFilters, Access, AccessConflicts, ComponentAccessKind, FilteredAccess,
FilteredAccessSet, UnboundedAccessError,
};
use alloc::{vec, vec::Vec};
use core::marker::PhantomData;
use fixedbitset::FixedBitSet;
fn create_sample_access() -> Access<usize> {
let mut access = Access::<usize>::default();
access.add_component_read(1);
access.add_component_read(2);
access.add_component_write(3);
access.add_archetypal(5);
access.read_all();
access
}
fn create_sample_filtered_access() -> FilteredAccess<usize> {
let mut filtered_access = FilteredAccess::<usize>::default();
filtered_access.add_component_write(1);
filtered_access.add_component_read(2);
filtered_access.add_required(3);
filtered_access.and_with(4);
filtered_access
}
fn create_sample_access_filters() -> AccessFilters<usize> {
let mut access_filters = AccessFilters::<usize>::default();
access_filters.with.grow_and_insert(3);
access_filters.without.grow_and_insert(5);
access_filters
}
fn create_sample_filtered_access_set() -> FilteredAccessSet<usize> {
let mut filtered_access_set = FilteredAccessSet::<usize>::default();
filtered_access_set.add_unfiltered_resource_read(2);
filtered_access_set.add_unfiltered_resource_write(4);
filtered_access_set.read_all();
filtered_access_set
}
#[test]
fn test_access_clone() {
let original: Access<usize> = create_sample_access();
let cloned = original.clone();
assert_eq!(original, cloned);
}
#[test]
fn test_access_clone_from() {
let original: Access<usize> = create_sample_access();
let mut cloned = Access::<usize>::default();
cloned.add_component_write(7);
cloned.add_component_read(4);
cloned.add_archetypal(8);
cloned.write_all();
cloned.clone_from(&original);
assert_eq!(original, cloned);
}
#[test]
fn test_filtered_access_clone() {
let original: FilteredAccess<usize> = create_sample_filtered_access();
let cloned = original.clone();
assert_eq!(original, cloned);
}
#[test]
fn test_filtered_access_clone_from() {
let original: FilteredAccess<usize> = create_sample_filtered_access();
let mut cloned = FilteredAccess::<usize>::default();
cloned.add_component_write(7);
cloned.add_component_read(4);
cloned.append_or(&FilteredAccess::default());
cloned.clone_from(&original);
assert_eq!(original, cloned);
}
#[test]
fn test_access_filters_clone() {
let original: AccessFilters<usize> = create_sample_access_filters();
let cloned = original.clone();
assert_eq!(original, cloned);
}
#[test]
fn test_access_filters_clone_from() {
let original: AccessFilters<usize> = create_sample_access_filters();
let mut cloned = AccessFilters::<usize>::default();
cloned.with.grow_and_insert(1);
cloned.without.grow_and_insert(2);
cloned.clone_from(&original);
assert_eq!(original, cloned);
}
#[test]
fn test_filtered_access_set_clone() {
let original: FilteredAccessSet<usize> = create_sample_filtered_access_set();
let cloned = original.clone();
assert_eq!(original, cloned);
}
#[test]
fn test_filtered_access_set_from() {
let original: FilteredAccessSet<usize> = create_sample_filtered_access_set();
let mut cloned = FilteredAccessSet::<usize>::default();
cloned.add_unfiltered_resource_read(7);
cloned.add_unfiltered_resource_write(9);
cloned.write_all();
cloned.clone_from(&original);
assert_eq!(original, cloned);
}
#[test]
fn read_all_access_conflicts() {
// read_all / single write
let mut access_a = Access::<usize>::default();
access_a.add_component_write(0);
let mut access_b = Access::<usize>::default();
access_b.read_all();
assert!(!access_b.is_compatible(&access_a));
// read_all / read_all
let mut access_a = Access::<usize>::default();
access_a.read_all();
let mut access_b = Access::<usize>::default();
access_b.read_all();
assert!(access_b.is_compatible(&access_a));
}
#[test]
fn access_get_conflicts() {
let mut access_a = Access::<usize>::default();
access_a.add_component_read(0);
access_a.add_component_read(1);
let mut access_b = Access::<usize>::default();
access_b.add_component_read(0);
access_b.add_component_write(1);
assert_eq!(access_a.get_conflicts(&access_b), vec![1_usize].into());
let mut access_c = Access::<usize>::default();
access_c.add_component_write(0);
access_c.add_component_write(1);
assert_eq!(
access_a.get_conflicts(&access_c),
vec![0_usize, 1_usize].into()
);
assert_eq!(
access_b.get_conflicts(&access_c),
vec![0_usize, 1_usize].into()
);
let mut access_d = Access::<usize>::default();
access_d.add_component_read(0);
assert_eq!(access_d.get_conflicts(&access_a), AccessConflicts::empty());
assert_eq!(access_d.get_conflicts(&access_b), AccessConflicts::empty());
assert_eq!(access_d.get_conflicts(&access_c), vec![0_usize].into());
}
#[test]
fn filtered_combined_access() {
let mut access_a = FilteredAccessSet::<usize>::default();
access_a.add_unfiltered_resource_read(1);
let mut filter_b = FilteredAccess::<usize>::default();
filter_b.add_resource_write(1);
let conflicts = access_a.get_conflicts_single(&filter_b);
assert_eq!(
&conflicts,
&AccessConflicts::from(vec![1_usize]),
"access_a: {access_a:?}, filter_b: {filter_b:?}"
);
}
#[test]
fn filtered_access_extend() {
let mut access_a = FilteredAccess::<usize>::default();
access_a.add_component_read(0);
access_a.add_component_read(1);
access_a.and_with(2);
let mut access_b = FilteredAccess::<usize>::default();
access_b.add_component_read(0);
access_b.add_component_write(3);
access_b.and_without(4);
access_a.extend(&access_b);
let mut expected = FilteredAccess::<usize>::default();
expected.add_component_read(0);
expected.add_component_read(1);
expected.and_with(2);
expected.add_component_write(3);
expected.and_without(4);
assert!(access_a.eq(&expected));
}
#[test]
fn filtered_access_extend_or() {
let mut access_a = FilteredAccess::<usize>::default();
// Exclusive access to `(&mut A, &mut B)`.
access_a.add_component_write(0);
access_a.add_component_write(1);
// Filter by `With<C>`.
let mut access_b = FilteredAccess::<usize>::default();
access_b.and_with(2);
// Filter by `(With<D>, Without<E>)`.
let mut access_c = FilteredAccess::<usize>::default();
access_c.and_with(3);
access_c.and_without(4);
// Turns `access_b` into `Or<(With<C>, (With<D>, Without<D>))>`.
access_b.append_or(&access_c);
// Applies the filters to the initial query, which corresponds to the FilteredAccess'
// representation of `Query<(&mut A, &mut B), Or<(With<C>, (With<D>, Without<E>))>>`.
access_a.extend(&access_b);
// Construct the expected `FilteredAccess` struct.
// The intention here is to test that exclusive access implied by `add_write`
// forms correct normalized access structs when extended with `Or` filters.
let mut expected = FilteredAccess::<usize>::default();
expected.add_component_write(0);
expected.add_component_write(1);
// The resulted access is expected to represent `Or<((With<A>, With<B>, With<C>), (With<A>, With<B>, With<D>, Without<E>))>`.
expected.filter_sets = vec![
AccessFilters {
with: FixedBitSet::with_capacity_and_blocks(3, [0b111]),
without: FixedBitSet::default(),
_index_type: PhantomData,
},
AccessFilters {
with: FixedBitSet::with_capacity_and_blocks(4, [0b1011]),
without: FixedBitSet::with_capacity_and_blocks(5, [0b10000]),
_index_type: PhantomData,
},
];
assert_eq!(access_a, expected);
}
#[test]
fn try_iter_component_access_simple() {
let mut access = Access::<usize>::default();
access.add_component_read(1);
access.add_component_read(2);
access.add_component_write(3);
access.add_archetypal(5);
let result = access
.try_iter_component_access()
.map(Iterator::collect::<Vec<_>>);
assert_eq!(
result,
Ok(vec![
ComponentAccessKind::Shared(1),
ComponentAccessKind::Shared(2),
ComponentAccessKind::Exclusive(3),
ComponentAccessKind::Archetypal(5),
]),
);
}
#[test]
fn try_iter_component_access_unbounded_write_all() {
let mut access = Access::<usize>::default();
access.add_component_read(1);
access.add_component_read(2);
access.write_all();
let result = access
.try_iter_component_access()
.map(Iterator::collect::<Vec<_>>);
assert_eq!(
result,
Err(UnboundedAccessError {
writes_inverted: true,
read_and_writes_inverted: true
}),
);
}
#[test]
fn try_iter_component_access_unbounded_read_all() {
let mut access = Access::<usize>::default();
access.add_component_read(1);
access.add_component_read(2);
access.read_all();
let result = access
.try_iter_component_access()
.map(Iterator::collect::<Vec<_>>);
assert_eq!(
result,
Err(UnboundedAccessError {
writes_inverted: false,
read_and_writes_inverted: true
}),
);
}
/// Create a `FixedBitSet` with a given number of total bits and a given list of bits to set.
/// Setting the number of bits is important in tests since the `PartialEq` impl checks that the length matches.
fn bit_set(bits: usize, iter: impl IntoIterator<Item = usize>) -> FixedBitSet {
let mut result = FixedBitSet::with_capacity(bits);
result.extend(iter);
result
}
#[test]
fn invertible_union_with_tests() {
let invertible_union = |mut self_inverted: bool, other_inverted: bool| {
// Check all four possible bit states: In both sets, the first, the second, or neither
let mut self_set = bit_set(4, [0, 1]);
let other_set = bit_set(4, [0, 2]);
invertible_union_with(
&mut self_set,
&mut self_inverted,
&other_set,
other_inverted,
);
(self_set, self_inverted)
};
// Check each combination of `inverted` flags
let (s, i) = invertible_union(false, false);
// [0, 1] | [0, 2] = [0, 1, 2]
assert_eq!((s, i), (bit_set(4, [0, 1, 2]), false));
let (s, i) = invertible_union(false, true);
// [0, 1] | [1, 3, ...] = [0, 1, 3, ...]
assert_eq!((s, i), (bit_set(4, [2]), true));
let (s, i) = invertible_union(true, false);
// [2, 3, ...] | [0, 2] = [0, 2, 3, ...]
assert_eq!((s, i), (bit_set(4, [1]), true));
let (s, i) = invertible_union(true, true);
// [2, 3, ...] | [1, 3, ...] = [1, 2, 3, ...]
assert_eq!((s, i), (bit_set(4, [0]), true));
}
#[test]
fn invertible_union_with_different_lengths() {
// When adding a large inverted set to a small normal set,
// make sure we invert the bits beyond the original length.
// Failing to call `grow` before `toggle_range` would cause bit 1 to be zero,
// which would incorrectly treat it as included in the output set.
let mut self_set = bit_set(1, [0]);
let mut self_inverted = false;
let other_set = bit_set(3, [0, 1]);
let other_inverted = true;
invertible_union_with(
&mut self_set,
&mut self_inverted,
&other_set,
other_inverted,
);
// [0] | [2, ...] = [0, 2, ...]
assert_eq!((self_set, self_inverted), (bit_set(3, [1]), true));
}
#[test]
fn invertible_difference_with_tests() {
let invertible_difference = |mut self_inverted: bool, other_inverted: bool| {
// Check all four possible bit states: In both sets, the first, the second, or neither
let mut self_set = bit_set(4, [0, 1]);
let other_set = bit_set(4, [0, 2]);
invertible_difference_with(
&mut self_set,
&mut self_inverted,
&other_set,
other_inverted,
);
(self_set, self_inverted)
};
// Check each combination of `inverted` flags
let (s, i) = invertible_difference(false, false);
// [0, 1] - [0, 2] = [1]
assert_eq!((s, i), (bit_set(4, [1]), false));
let (s, i) = invertible_difference(false, true);
// [0, 1] - [1, 3, ...] = [0]
assert_eq!((s, i), (bit_set(4, [0]), false));
let (s, i) = invertible_difference(true, false);
// [2, 3, ...] - [0, 2] = [3, ...]
assert_eq!((s, i), (bit_set(4, [0, 1, 2]), true));
let (s, i) = invertible_difference(true, true);
// [2, 3, ...] - [1, 3, ...] = [2]
assert_eq!((s, i), (bit_set(4, [2]), false));
}
}