bevy/crates/bevy_transform/src/systems.rs
Carter Anderson d8fa57bd7b
Switch ChildOf back to tuple struct (#18672)
# Objective

In #17905 we swapped to a named field on `ChildOf` to help resolve
variable naming ambiguity of child vs parent (ex: `child_of.parent`
clearly reads as "I am accessing the parent of the child_of
relationship", whereas `child_of.0` is less clear).

Unfortunately this has the side effect of making initialization less
ideal. `ChildOf { parent }` reads just as well as `ChildOf(parent)`, but
`ChildOf { parent: root }` doesn't read nearly as well as
`ChildOf(root)`.

## Solution

Move back to `ChildOf(pub Entity)` but add a `child_of.parent()`
function and use it for all accesses. The downside here is that users
are no longer "forced" to access the parent field with `parent`
nomenclature, but I think this strikes the right balance.

Take a look at the diff. I think the results provide strong evidence for
this change. Initialization has the benefit of reading much better _and_
of taking up significantly less space, as many lines go from 3 to 1, and
we're cutting out a bunch of syntax in some cases.

Sadly I do think this should land in 0.16 as the cost of doing this
_after_ the relationships migration is high.
2025-04-02 00:10:10 +00:00

957 lines
38 KiB
Rust

use crate::components::{GlobalTransform, Transform, TransformTreeChanged};
use bevy_ecs::prelude::*;
#[cfg(feature = "std")]
pub use parallel::propagate_parent_transforms;
#[cfg(not(feature = "std"))]
pub use serial::propagate_parent_transforms;
/// Update [`GlobalTransform`] component of entities that aren't in the hierarchy
///
/// Third party plugins should ensure that this is used in concert with
/// [`propagate_parent_transforms`] and [`mark_dirty_trees`].
pub fn sync_simple_transforms(
mut query: ParamSet<(
Query<
(&Transform, &mut GlobalTransform),
(
Or<(Changed<Transform>, Added<GlobalTransform>)>,
Without<ChildOf>,
Without<Children>,
),
>,
Query<(Ref<Transform>, &mut GlobalTransform), (Without<ChildOf>, Without<Children>)>,
)>,
mut orphaned: RemovedComponents<ChildOf>,
) {
// Update changed entities.
query
.p0()
.par_iter_mut()
.for_each(|(transform, mut global_transform)| {
*global_transform = GlobalTransform::from(*transform);
});
// Update orphaned entities.
let mut query = query.p1();
let mut iter = query.iter_many_mut(orphaned.read());
while let Some((transform, mut global_transform)) = iter.fetch_next() {
if !transform.is_changed() && !global_transform.is_added() {
*global_transform = GlobalTransform::from(*transform);
}
}
}
/// Optimization for static scenes. Propagates a "dirty bit" up the hierarchy towards ancestors.
/// Transform propagation can ignore entire subtrees of the hierarchy if it encounters an entity
/// without the dirty bit.
pub fn mark_dirty_trees(
changed_transforms: Query<
Entity,
Or<(Changed<Transform>, Changed<ChildOf>, Added<GlobalTransform>)>,
>,
mut orphaned: RemovedComponents<ChildOf>,
mut transforms: Query<(Option<&ChildOf>, &mut TransformTreeChanged)>,
) {
for entity in changed_transforms.iter().chain(orphaned.read()) {
let mut next = entity;
while let Ok((child_of, mut tree)) = transforms.get_mut(next) {
if tree.is_changed() && !tree.is_added() {
// If the component was changed, this part of the tree has already been processed.
// Ignore this if the change was caused by the component being added.
break;
}
tree.set_changed();
if let Some(parent) = child_of.map(ChildOf::parent) {
next = parent;
} else {
break;
};
}
}
}
// TODO: This serial implementation isn't actually serial, it parallelizes across the roots.
// Additionally, this couples "no_std" with "single_threaded" when these two features should be
// independent.
//
// What we want to do in a future refactor is take the current "single threaded" implementation, and
// actually make it single threaded. This will remove any overhead associated with working on a task
// pool when you only have a single thread, and will have the benefit of removing the need for any
// unsafe. We would then make the multithreaded implementation work across std and no_std, but this
// is blocked a no_std compatible Channel, which is why this TODO is not yet implemented.
//
// This complexity might also not be needed. If the multithreaded implementation on a single thread
// is as fast as the single threaded implementation, we could simply remove the entire serial
// module, and make the multithreaded module no_std compatible.
//
/// Serial hierarchy traversal. Useful in `no_std` or single threaded contexts.
#[cfg(not(feature = "std"))]
mod serial {
use crate::prelude::*;
use alloc::vec::Vec;
use bevy_ecs::prelude::*;
/// Update [`GlobalTransform`] component of entities based on entity hierarchy and [`Transform`]
/// component.
///
/// Third party plugins should ensure that this is used in concert with
/// [`sync_simple_transforms`](super::sync_simple_transforms) and
/// [`mark_dirty_trees`](super::mark_dirty_trees).
pub fn propagate_parent_transforms(
mut root_query: Query<
(Entity, &Children, Ref<Transform>, &mut GlobalTransform),
Without<ChildOf>,
>,
mut orphaned: RemovedComponents<ChildOf>,
transform_query: Query<
(Ref<Transform>, &mut GlobalTransform, Option<&Children>),
With<ChildOf>,
>,
child_query: Query<(Entity, Ref<ChildOf>), With<GlobalTransform>>,
mut orphaned_entities: Local<Vec<Entity>>,
) {
orphaned_entities.clear();
orphaned_entities.extend(orphaned.read());
orphaned_entities.sort_unstable();
root_query.par_iter_mut().for_each(
|(entity, children, transform, mut global_transform)| {
let changed = transform.is_changed() || global_transform.is_added() || orphaned_entities.binary_search(&entity).is_ok();
if changed {
*global_transform = GlobalTransform::from(*transform);
}
for (child, child_of) in child_query.iter_many(children) {
assert_eq!(
child_of.parent(), entity,
"Malformed hierarchy. This probably means that your hierarchy has been improperly maintained, or contains a cycle"
);
// SAFETY:
// - `child` must have consistent parentage, or the above assertion would panic.
// Since `child` is parented to a root entity, the entire hierarchy leading to it
// is consistent.
// - We may operate as if all descendants are consistent, since
// `propagate_recursive` will panic before continuing to propagate if it
// encounters an entity with inconsistent parentage.
// - Since each root entity is unique and the hierarchy is consistent and
// forest-like, other root entities' `propagate_recursive` calls will not conflict
// with this one.
// - Since this is the only place where `transform_query` gets used, there will be
// no conflicting fetches elsewhere.
#[expect(unsafe_code, reason = "`propagate_recursive()` is unsafe due to its use of `Query::get_unchecked()`.")]
unsafe {
propagate_recursive(
&global_transform,
&transform_query,
&child_query,
child,
changed || child_of.is_changed(),
);
}
}
},
);
}
/// Recursively propagates the transforms for `entity` and all of its descendants.
///
/// # Panics
///
/// If `entity`'s descendants have a malformed hierarchy, this function will panic occur before
/// propagating the transforms of any malformed entities and their descendants.
///
/// # Safety
///
/// - While this function is running, `transform_query` must not have any fetches for `entity`,
/// nor any of its descendants.
/// - The caller must ensure that the hierarchy leading to `entity` is well-formed and must
/// remain as a tree or a forest. Each entity must have at most one parent.
#[expect(
unsafe_code,
reason = "This function uses `Query::get_unchecked()`, which can result in multiple mutable references if the preconditions are not met."
)]
unsafe fn propagate_recursive(
parent: &GlobalTransform,
transform_query: &Query<
(Ref<Transform>, &mut GlobalTransform, Option<&Children>),
With<ChildOf>,
>,
child_query: &Query<(Entity, Ref<ChildOf>), With<GlobalTransform>>,
entity: Entity,
mut changed: bool,
) {
let (global_matrix, children) = {
let Ok((transform, mut global_transform, children)) =
// SAFETY: This call cannot create aliased mutable references.
// - The top level iteration parallelizes on the roots of the hierarchy.
// - The caller ensures that each child has one and only one unique parent throughout
// the entire hierarchy.
//
// For example, consider the following malformed hierarchy:
//
// A
// / \
// B C
// \ /
// D
//
// D has two parents, B and C. If the propagation passes through C, but the ChildOf
// component on D points to B, the above check will panic as the origin parent does
// match the recorded parent.
//
// Also consider the following case, where A and B are roots:
//
// A B
// \ /
// C D
// \ /
// E
//
// Even if these A and B start two separate tasks running in parallel, one of them will
// panic before attempting to mutably access E.
(unsafe { transform_query.get_unchecked(entity) }) else {
return;
};
changed |= transform.is_changed() || global_transform.is_added();
if changed {
*global_transform = parent.mul_transform(*transform);
}
(global_transform, children)
};
let Some(children) = children else { return };
for (child, child_of) in child_query.iter_many(children) {
assert_eq!(
child_of.parent(), entity,
"Malformed hierarchy. This probably means that your hierarchy has been improperly maintained, or contains a cycle"
);
// SAFETY: The caller guarantees that `transform_query` will not be fetched for any
// descendants of `entity`, so it is safe to call `propagate_recursive` for each child.
//
// The above assertion ensures that each child has one and only one unique parent
// throughout the entire hierarchy.
unsafe {
propagate_recursive(
global_matrix.as_ref(),
transform_query,
child_query,
child,
changed || child_of.is_changed(),
);
}
}
}
}
// TODO: Relies on `std` until a `no_std` `mpsc` channel is available.
//
/// Parallel hierarchy traversal with a batched work sharing scheduler. Often 2-5 times faster than
/// the serial version.
#[cfg(feature = "std")]
mod parallel {
use crate::prelude::*;
// TODO: this implementation could be used in no_std if there are equivalents of these.
use alloc::{sync::Arc, vec::Vec};
use bevy_ecs::{entity::UniqueEntityIter, prelude::*, system::lifetimeless::Read};
use bevy_tasks::{ComputeTaskPool, TaskPool};
use bevy_utils::Parallel;
use core::sync::atomic::{AtomicI32, Ordering};
use std::sync::{
mpsc::{Receiver, Sender},
Mutex,
};
/// Update [`GlobalTransform`] component of entities based on entity hierarchy and [`Transform`]
/// component.
///
/// Third party plugins should ensure that this is used in concert with
/// [`sync_simple_transforms`](super::sync_simple_transforms) and
/// [`mark_dirty_trees`](super::mark_dirty_trees).
pub fn propagate_parent_transforms(
mut queue: Local<WorkQueue>,
mut roots: Query<
(Entity, Ref<Transform>, &mut GlobalTransform, &Children),
(Without<ChildOf>, Changed<TransformTreeChanged>),
>,
nodes: NodeQuery,
) {
// Process roots in parallel, seeding the work queue
roots.par_iter_mut().for_each_init(
|| queue.local_queue.borrow_local_mut(),
|outbox, (parent, transform, mut parent_transform, children)| {
*parent_transform = GlobalTransform::from(*transform);
// SAFETY: the parent entities passed into this function are taken from iterating
// over the root entity query. Queries iterate over disjoint entities, preventing
// mutable aliasing, and making this call safe.
#[expect(unsafe_code, reason = "Mutating disjoint entities in parallel")]
unsafe {
propagate_descendants_unchecked(
parent,
parent_transform,
children,
&nodes,
outbox,
&queue,
// Need to revisit this single-max-depth by profiling more representative
// scenes. It's possible that it is actually beneficial to go deep into the
// hierarchy to build up a good task queue before starting the workers.
// However, we avoid this for now to prevent cases where only a single
// thread is going deep into the hierarchy while the others sit idle, which
// is the problem that the tasks sharing workers already solve.
1,
);
}
},
);
// Send all tasks in thread local outboxes *after* roots are processed to reduce the total
// number of channel sends by avoiding sending partial batches.
queue.send_batches();
if let Ok(rx) = queue.receiver.try_lock() {
if let Some(task) = rx.try_iter().next() {
// This is a bit silly, but the only way to see if there is any work is to grab a
// task. Peeking will remove the task even if you don't call `next`, resulting in
// dropping a task. What we do here is grab the first task if there is one, then
// immediately send it to the back of the queue.
queue.sender.send(task).ok();
} else {
return; // No work, don't bother spawning any tasks
}
}
// Spawn workers on the task pool to recursively propagate the hierarchy in parallel.
let task_pool = ComputeTaskPool::get_or_init(TaskPool::default);
task_pool.scope(|s| {
(1..task_pool.thread_num()) // First worker is run locally instead of the task pool.
.for_each(|_| s.spawn(async { propagation_worker(&queue, &nodes) }));
propagation_worker(&queue, &nodes);
});
}
/// A parallel worker that will consume processed parent entities from the queue, and push
/// children to the queue once it has propagated their [`GlobalTransform`].
#[inline]
fn propagation_worker(queue: &WorkQueue, nodes: &NodeQuery) {
#[cfg(feature = "std")]
let _span = bevy_log::info_span!("transform propagation worker").entered();
let mut outbox = queue.local_queue.borrow_local_mut();
loop {
// Try to acquire a lock on the work queue in a tight loop. Profiling shows this is much
// more efficient than relying on `.lock()`, which causes gaps to form between tasks.
let Ok(rx) = queue.receiver.try_lock() else {
core::hint::spin_loop(); // No apparent impact on profiles, but best practice.
continue;
};
// If the queue is empty and no other threads are busy processing work, we can conclude
// there is no more work to do, and end the task by exiting the loop.
let Some(mut tasks) = rx.try_iter().next() else {
if queue.busy_threads.load(Ordering::Relaxed) == 0 {
break; // All work is complete, kill the worker
}
continue; // No work to do now, but another thread is busy creating more work.
};
if tasks.is_empty() {
continue; // This shouldn't happen, but if it does, we might as well stop early.
}
// If the task queue is extremely short, it's worthwhile to gather a few more tasks to
// reduce the amount of thread synchronization needed once this very short task is
// complete.
while tasks.len() < WorkQueue::CHUNK_SIZE / 2 {
let Some(mut extra_task) = rx.try_iter().next() else {
break;
};
tasks.append(&mut extra_task);
}
// At this point, we know there is work to do, so we increment the busy thread counter,
// and drop the mutex guard *after* we have incremented the counter. This ensures that
// if another thread is able to acquire a lock, the busy thread counter will already be
// incremented.
queue.busy_threads.fetch_add(1, Ordering::Relaxed);
drop(rx); // Important: drop after atomic and before work starts.
for parent in tasks.drain(..) {
// SAFETY: each task pushed to the worker queue represents an unprocessed subtree of
// the hierarchy, guaranteeing unique access.
#[expect(unsafe_code, reason = "Mutating disjoint entities in parallel")]
unsafe {
let (_, (_, p_global_transform, _), (p_children, _)) =
nodes.get_unchecked(parent).unwrap();
propagate_descendants_unchecked(
parent,
p_global_transform,
p_children.unwrap(), // All entities in the queue should have children
nodes,
&mut outbox,
queue,
// Only affects performance. Trees deeper than this will still be fully
// propagated, but the work will be broken into multiple tasks. This number
// was chosen to be larger than any reasonable tree depth, while not being
// so large the function could hang on a deep hierarchy.
10_000,
);
}
}
WorkQueue::send_batches_with(&queue.sender, &mut outbox);
queue.busy_threads.fetch_add(-1, Ordering::Relaxed);
}
}
/// Propagate transforms from `parent` to its `children`, pushing updated child entities to the
/// `outbox`. This function will continue propagating transforms to descendants in a depth-first
/// traversal, while simultaneously pushing unvisited branches to the outbox, for other threads
/// to take when idle.
///
/// # Safety
///
/// Callers must ensure that concurrent calls to this function are given unique `parent`
/// entities. Calling this function concurrently with the same `parent` is unsound. This
/// function will validate that the entity hierarchy does not contain cycles to prevent mutable
/// aliasing during propagation, but it is unable to verify that it isn't being used to mutably
/// alias the same entity.
///
/// ## Panics
///
/// Panics if the parent of a child node is not the same as the supplied `parent`. This
/// assertion ensures that the hierarchy is acyclic, which in turn ensures that if the caller is
/// following the supplied safety rules, multi-threaded propagation is sound.
#[inline]
#[expect(unsafe_code, reason = "Mutating disjoint entities in parallel")]
unsafe fn propagate_descendants_unchecked(
parent: Entity,
p_global_transform: Mut<GlobalTransform>,
p_children: &Children,
nodes: &NodeQuery,
outbox: &mut Vec<Entity>,
queue: &WorkQueue,
max_depth: usize,
) {
// Create mutable copies of the input variables, used for iterative depth-first traversal.
let (mut parent, mut p_global_transform, mut p_children) =
(parent, p_global_transform, p_children);
// See the optimization note at the end to understand why this loop is here.
for depth in 1..=max_depth {
// Safety: traversing the entity tree from the roots, we assert that the childof and
// children pointers match in both directions (see assert below) to ensure the hierarchy
// does not have any cycles. Because the hierarchy does not have cycles, we know we are
// visiting disjoint entities in parallel, which is safe.
#[expect(unsafe_code, reason = "Mutating disjoint entities in parallel")]
let children_iter = unsafe {
nodes.iter_many_unique_unsafe(UniqueEntityIter::from_iterator_unchecked(
p_children.iter(),
))
};
let mut last_child = None;
let new_children = children_iter.filter_map(
|(child, (transform, mut global_transform, tree), (children, child_of))| {
if !tree.is_changed() && !p_global_transform.is_changed() {
// Static scene optimization
return None;
}
assert_eq!(child_of.parent(), parent);
// Transform prop is expensive - this helps avoid updating entire subtrees if
// the GlobalTransform is unchanged, at the cost of an added equality check.
global_transform.set_if_neq(p_global_transform.mul_transform(*transform));
children.map(|children| {
// Only continue propagation if the entity has children.
last_child = Some((child, global_transform, children));
child
})
},
);
outbox.extend(new_children);
if depth >= max_depth || last_child.is_none() {
break; // Don't remove anything from the outbox or send any chunks, just exit.
}
// Optimization: tasks should consume work locally as long as they can to avoid
// thread synchronization for as long as possible.
if let Some(last_child) = last_child {
// Overwrite parent data with children, and loop to iterate through descendants.
(parent, p_global_transform, p_children) = last_child;
outbox.pop();
// Send chunks during traversal. This allows sharing tasks with other threads before
// fully completing the traversal.
if outbox.len() >= WorkQueue::CHUNK_SIZE {
WorkQueue::send_batches_with(&queue.sender, outbox);
}
}
}
}
/// Alias for a large, repeatedly used query. Queries for transform entities that have both a
/// parent and possibly children, thus they are not roots.
type NodeQuery<'w, 's> = Query<
'w,
's,
(
Entity,
(
Ref<'static, Transform>,
Mut<'static, GlobalTransform>,
Ref<'static, TransformTreeChanged>,
),
(Option<Read<Children>>, Read<ChildOf>),
),
>;
/// A queue shared between threads for transform propagation.
pub struct WorkQueue {
/// A semaphore that tracks how many threads are busy doing work. Used to determine when
/// there is no more work to do.
busy_threads: AtomicI32,
sender: Sender<Vec<Entity>>,
receiver: Arc<Mutex<Receiver<Vec<Entity>>>>,
local_queue: Parallel<Vec<Entity>>,
}
impl Default for WorkQueue {
fn default() -> Self {
let (tx, rx) = std::sync::mpsc::channel();
Self {
busy_threads: AtomicI32::default(),
sender: tx,
receiver: Arc::new(Mutex::new(rx)),
local_queue: Default::default(),
}
}
}
impl WorkQueue {
const CHUNK_SIZE: usize = 512;
#[inline]
fn send_batches_with(sender: &Sender<Vec<Entity>>, outbox: &mut Vec<Entity>) {
for chunk in outbox
.chunks(WorkQueue::CHUNK_SIZE)
.filter(|c| !c.is_empty())
{
sender.send(chunk.to_vec()).ok();
}
outbox.clear();
}
#[inline]
fn send_batches(&mut self) {
let Self {
sender,
local_queue,
..
} = self;
// Iterate over the locals to send batched tasks, avoiding the need to drain the locals
// into a larger allocation.
local_queue
.iter_mut()
.for_each(|outbox| Self::send_batches_with(sender, outbox));
}
}
}
#[cfg(test)]
mod test {
use alloc::{vec, vec::Vec};
use bevy_app::prelude::*;
use bevy_ecs::{prelude::*, world::CommandQueue};
use bevy_math::{vec3, Vec3};
use bevy_tasks::{ComputeTaskPool, TaskPool};
use crate::systems::*;
#[test]
fn correct_parent_removed() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::default();
let offset_global_transform =
|offset| GlobalTransform::from(Transform::from_xyz(offset, offset, offset));
let offset_transform = |offset| Transform::from_xyz(offset, offset, offset);
let mut schedule = Schedule::default();
schedule.add_systems(
(
mark_dirty_trees,
sync_simple_transforms,
propagate_parent_transforms,
)
.chain(),
);
let mut command_queue = CommandQueue::default();
let mut commands = Commands::new(&mut command_queue, &world);
let root = commands.spawn(offset_transform(3.3)).id();
let parent = commands.spawn(offset_transform(4.4)).id();
let child = commands.spawn(offset_transform(5.5)).id();
commands.entity(parent).insert(ChildOf(root));
commands.entity(child).insert(ChildOf(parent));
command_queue.apply(&mut world);
schedule.run(&mut world);
assert_eq!(
world.get::<GlobalTransform>(parent).unwrap(),
&offset_global_transform(4.4 + 3.3),
"The transform systems didn't run, ie: `GlobalTransform` wasn't updated",
);
// Remove parent of `parent`
let mut command_queue = CommandQueue::default();
let mut commands = Commands::new(&mut command_queue, &world);
commands.entity(parent).remove::<ChildOf>();
command_queue.apply(&mut world);
schedule.run(&mut world);
assert_eq!(
world.get::<GlobalTransform>(parent).unwrap(),
&offset_global_transform(4.4),
"The global transform of an orphaned entity wasn't updated properly",
);
// Remove parent of `child`
let mut command_queue = CommandQueue::default();
let mut commands = Commands::new(&mut command_queue, &world);
commands.entity(child).remove::<ChildOf>();
command_queue.apply(&mut world);
schedule.run(&mut world);
assert_eq!(
world.get::<GlobalTransform>(child).unwrap(),
&offset_global_transform(5.5),
"The global transform of an orphaned entity wasn't updated properly",
);
}
#[test]
fn did_propagate() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::default();
let mut schedule = Schedule::default();
schedule.add_systems(
(
mark_dirty_trees,
sync_simple_transforms,
propagate_parent_transforms,
)
.chain(),
);
// Root entity
world.spawn(Transform::from_xyz(1.0, 0.0, 0.0));
let mut children = Vec::new();
world
.spawn(Transform::from_xyz(1.0, 0.0, 0.0))
.with_children(|parent| {
children.push(parent.spawn(Transform::from_xyz(0.0, 2.0, 0.)).id());
children.push(parent.spawn(Transform::from_xyz(0.0, 0.0, 3.)).id());
});
schedule.run(&mut world);
assert_eq!(
*world.get::<GlobalTransform>(children[0]).unwrap(),
GlobalTransform::from_xyz(1.0, 0.0, 0.0) * Transform::from_xyz(0.0, 2.0, 0.0)
);
assert_eq!(
*world.get::<GlobalTransform>(children[1]).unwrap(),
GlobalTransform::from_xyz(1.0, 0.0, 0.0) * Transform::from_xyz(0.0, 0.0, 3.0)
);
}
#[test]
fn did_propagate_command_buffer() {
let mut world = World::default();
let mut schedule = Schedule::default();
schedule.add_systems(
(
mark_dirty_trees,
sync_simple_transforms,
propagate_parent_transforms,
)
.chain(),
);
// Root entity
let mut queue = CommandQueue::default();
let mut commands = Commands::new(&mut queue, &world);
let mut children = Vec::new();
commands
.spawn(Transform::from_xyz(1.0, 0.0, 0.0))
.with_children(|parent| {
children.push(parent.spawn(Transform::from_xyz(0.0, 2.0, 0.0)).id());
children.push(parent.spawn(Transform::from_xyz(0.0, 0.0, 3.0)).id());
});
queue.apply(&mut world);
schedule.run(&mut world);
assert_eq!(
*world.get::<GlobalTransform>(children[0]).unwrap(),
GlobalTransform::from_xyz(1.0, 0.0, 0.0) * Transform::from_xyz(0.0, 2.0, 0.0)
);
assert_eq!(
*world.get::<GlobalTransform>(children[1]).unwrap(),
GlobalTransform::from_xyz(1.0, 0.0, 0.0) * Transform::from_xyz(0.0, 0.0, 3.0)
);
}
#[test]
fn correct_children() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::default();
let mut schedule = Schedule::default();
schedule.add_systems(
(
mark_dirty_trees,
sync_simple_transforms,
propagate_parent_transforms,
)
.chain(),
);
// Add parent entities
let mut children = Vec::new();
let parent = {
let mut command_queue = CommandQueue::default();
let mut commands = Commands::new(&mut command_queue, &world);
let parent = commands.spawn(Transform::from_xyz(1.0, 0.0, 0.0)).id();
commands.entity(parent).with_children(|parent| {
children.push(parent.spawn(Transform::from_xyz(0.0, 2.0, 0.0)).id());
children.push(parent.spawn(Transform::from_xyz(0.0, 3.0, 0.0)).id());
});
command_queue.apply(&mut world);
schedule.run(&mut world);
parent
};
assert_eq!(
world
.get::<Children>(parent)
.unwrap()
.iter()
.collect::<Vec<_>>(),
children,
);
// Parent `e1` to `e2`.
{
let mut command_queue = CommandQueue::default();
let mut commands = Commands::new(&mut command_queue, &world);
commands.entity(children[1]).add_child(children[0]);
command_queue.apply(&mut world);
schedule.run(&mut world);
}
assert_eq!(
world
.get::<Children>(parent)
.unwrap()
.iter()
.collect::<Vec<_>>(),
vec![children[1]]
);
assert_eq!(
world
.get::<Children>(children[1])
.unwrap()
.iter()
.collect::<Vec<_>>(),
vec![children[0]]
);
assert!(world.despawn(children[0]));
schedule.run(&mut world);
assert_eq!(
world
.get::<Children>(parent)
.unwrap()
.iter()
.collect::<Vec<_>>(),
vec![children[1]]
);
}
#[test]
fn correct_transforms_when_no_children() {
let mut app = App::new();
ComputeTaskPool::get_or_init(TaskPool::default);
app.add_systems(
Update,
(
mark_dirty_trees,
sync_simple_transforms,
propagate_parent_transforms,
)
.chain(),
);
let translation = vec3(1.0, 0.0, 0.0);
// These will be overwritten.
let mut child = Entity::from_raw(0);
let mut grandchild = Entity::from_raw(1);
let parent = app
.world_mut()
.spawn(Transform::from_translation(translation))
.with_children(|builder| {
child = builder
.spawn(Transform::IDENTITY)
.with_children(|builder| {
grandchild = builder.spawn(Transform::IDENTITY).id();
})
.id();
})
.id();
app.update();
// check the `Children` structure is spawned
assert_eq!(&**app.world().get::<Children>(parent).unwrap(), &[child]);
assert_eq!(
&**app.world().get::<Children>(child).unwrap(),
&[grandchild]
);
// Note that at this point, the `GlobalTransform`s will not have updated yet, due to
// `Commands` delay
app.update();
let mut state = app.world_mut().query::<&GlobalTransform>();
for global in state.iter(app.world()) {
assert_eq!(global, &GlobalTransform::from_translation(translation));
}
}
#[test]
#[should_panic]
fn panic_when_hierarchy_cycle() {
ComputeTaskPool::get_or_init(TaskPool::default);
// We cannot directly edit ChildOf and Children, so we use a temp world to break the
// hierarchy's invariants.
let mut temp = World::new();
let mut app = App::new();
app.add_systems(
Update,
// It is unsound for this unsafe system to encounter a cycle without panicking. This
// requirement only applies to systems with unsafe parallel traversal that result in
// aliased mutability during a cycle.
propagate_parent_transforms,
);
fn setup_world(world: &mut World) -> (Entity, Entity) {
let mut grandchild = Entity::from_raw(0);
let child = world
.spawn(Transform::IDENTITY)
.with_children(|builder| {
grandchild = builder.spawn(Transform::IDENTITY).id();
})
.id();
(child, grandchild)
}
let (temp_child, temp_grandchild) = setup_world(&mut temp);
let (child, grandchild) = setup_world(app.world_mut());
assert_eq!(temp_child, child);
assert_eq!(temp_grandchild, grandchild);
app.world_mut()
.spawn(Transform::IDENTITY)
.add_children(&[child]);
let mut child_entity = app.world_mut().entity_mut(child);
let mut grandchild_entity = temp.entity_mut(grandchild);
#[expect(
unsafe_code,
reason = "ChildOf is not mutable but this is for a test to produce a scenario that cannot happen"
)]
// SAFETY: ChildOf is not mutable but this is for a test to produce a scenario that
// cannot happen
let mut a = unsafe { child_entity.get_mut_assume_mutable::<ChildOf>().unwrap() };
// SAFETY: ChildOf is not mutable but this is for a test to produce a scenario that
// cannot happen
#[expect(
unsafe_code,
reason = "ChildOf is not mutable but this is for a test to produce a scenario that cannot happen"
)]
let mut b = unsafe {
grandchild_entity
.get_mut_assume_mutable::<ChildOf>()
.unwrap()
};
core::mem::swap(a.as_mut(), b.as_mut());
app.update();
}
#[test]
fn global_transform_should_not_be_overwritten_after_reparenting() {
let translation = Vec3::ONE;
let mut world = World::new();
// Create transform propagation schedule
let mut schedule = Schedule::default();
schedule.add_systems(
(
mark_dirty_trees,
propagate_parent_transforms,
sync_simple_transforms,
)
.chain(),
);
// Spawn a `Transform` entity with a local translation of `Vec3::ONE`
let mut spawn_transform_bundle =
|| world.spawn(Transform::from_translation(translation)).id();
// Spawn parent and child with identical transform bundles
let parent = spawn_transform_bundle();
let child = spawn_transform_bundle();
world.entity_mut(parent).add_child(child);
// Run schedule to propagate transforms
schedule.run(&mut world);
// Child should be positioned relative to its parent
let parent_global_transform = *world.entity(parent).get::<GlobalTransform>().unwrap();
let child_global_transform = *world.entity(child).get::<GlobalTransform>().unwrap();
assert!(parent_global_transform
.translation()
.abs_diff_eq(translation, 0.1));
assert!(child_global_transform
.translation()
.abs_diff_eq(2. * translation, 0.1));
// Reparent child
world.entity_mut(child).remove::<ChildOf>();
world.entity_mut(parent).add_child(child);
// Run schedule to propagate transforms
schedule.run(&mut world);
// Translations should be unchanged after update
assert_eq!(
parent_global_transform,
*world.entity(parent).get::<GlobalTransform>().unwrap()
);
assert_eq!(
child_global_transform,
*world.entity(child).get::<GlobalTransform>().unwrap()
);
}
}