bevy/examples/stress_tests/many_sprites.rs
ira 992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00

122 lines
3.9 KiB
Rust

//! Renders a lot of sprites to allow performance testing.
//! See <https://github.com/bevyengine/bevy/pull/1492>
//!
//! It sets up many sprites in different sizes and rotations, and at different scales in the world,
//! and moves the camera over them to see how well frustum culling works.
//!
//! Add the `--colored` arg to run with color tinted sprites. This will cause the sprites to be rendered
//! in multiple batches, reducing performance but useful for testing.
use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::Quat,
prelude::*,
render::camera::Camera,
window::PresentMode,
};
use rand::Rng;
const CAMERA_SPEED: f32 = 1000.0;
const COLORS: [Color; 3] = [Color::BLUE, Color::WHITE, Color::RED];
#[derive(Resource)]
struct ColorTint(bool);
fn main() {
App::new()
.insert_resource(WindowDescriptor {
present_mode: PresentMode::AutoNoVsync,
..default()
})
.insert_resource(ColorTint(
std::env::args().nth(1).unwrap_or_default() == "--colored",
))
// Since this is also used as a benchmark, we want it to display performance data.
.add_plugin(LogDiagnosticsPlugin::default())
.add_plugin(FrameTimeDiagnosticsPlugin::default())
.add_plugins(DefaultPlugins)
.add_startup_system(setup)
.add_system(print_sprite_count)
.add_system(move_camera.after(print_sprite_count))
.run();
}
fn setup(mut commands: Commands, assets: Res<AssetServer>, color_tint: Res<ColorTint>) {
warn!(include_str!("warning_string.txt"));
let mut rng = rand::thread_rng();
let tile_size = Vec2::splat(64.0);
let map_size = Vec2::splat(320.0);
let half_x = (map_size.x / 2.0) as i32;
let half_y = (map_size.y / 2.0) as i32;
let sprite_handle = assets.load("branding/icon.png");
// Spawns the camera
commands
.spawn()
.insert_bundle(Camera2dBundle::default())
.insert(Transform::from_xyz(0.0, 0.0, 1000.0));
// Builds and spawns the sprites
let mut sprites = vec![];
for y in -half_y..half_y {
for x in -half_x..half_x {
let position = Vec2::new(x as f32, y as f32);
let translation = (position * tile_size).extend(rng.gen::<f32>());
let rotation = Quat::from_rotation_z(rng.gen::<f32>());
let scale = Vec3::splat(rng.gen::<f32>() * 2.0);
sprites.push(SpriteBundle {
texture: sprite_handle.clone(),
transform: Transform {
translation,
rotation,
scale,
},
sprite: Sprite {
custom_size: Some(tile_size),
color: if color_tint.0 {
COLORS[rng.gen_range(0..3)]
} else {
Color::WHITE
},
..default()
},
..default()
});
}
}
commands.spawn_batch(sprites);
}
// System for rotating and translating the camera
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
let mut camera_transform = camera_query.single_mut();
camera_transform.rotate_z(time.delta_seconds() * 0.5);
*camera_transform = *camera_transform
* Transform::from_translation(Vec3::X * CAMERA_SPEED * time.delta_seconds());
}
#[derive(Deref, DerefMut)]
struct PrintingTimer(Timer);
impl Default for PrintingTimer {
fn default() -> Self {
Self(Timer::from_seconds(1.0, true))
}
}
// System for printing the number of sprites on every tick of the timer
fn print_sprite_count(time: Res<Time>, mut timer: Local<PrintingTimer>, sprites: Query<&Sprite>) {
timer.tick(time.delta());
if timer.just_finished() {
info!("Sprites: {}", sprites.iter().count(),);
}
}