bevy/crates/bevy_render/src/render_resource/bind_group.rs
Patrick Walton 913eb46324
Reimplement bindless storage buffers. (#17994)
Support for bindless storage buffers was temporarily removed with the
bindless revamp. This commit restores that support.
2025-03-10 21:32:19 +00:00

703 lines
31 KiB
Rust

use crate::renderer::WgpuWrapper;
use crate::{
define_atomic_id,
render_asset::RenderAssets,
render_resource::{BindGroupLayout, Buffer, Sampler, TextureView},
renderer::RenderDevice,
texture::GpuImage,
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::system::{SystemParam, SystemParamItem};
pub use bevy_render_macros::AsBindGroup;
use core::ops::Deref;
use encase::ShaderType;
use thiserror::Error;
use wgpu::{
BindGroupEntry, BindGroupLayoutEntry, BindingResource, SamplerBindingType, TextureViewDimension,
};
use super::{BindlessDescriptor, BindlessSlabResourceLimit};
define_atomic_id!(BindGroupId);
/// Bind groups are responsible for binding render resources (e.g. buffers, textures, samplers)
/// to a [`TrackedRenderPass`](crate::render_phase::TrackedRenderPass).
/// This makes them accessible in the pipeline (shaders) as uniforms.
///
/// This is a lightweight thread-safe wrapper around wgpu's own [`BindGroup`](wgpu::BindGroup),
/// which can be cloned as needed to workaround lifetime management issues. It may be converted
/// from and dereferences to wgpu's [`BindGroup`](wgpu::BindGroup).
///
/// Can be created via [`RenderDevice::create_bind_group`](RenderDevice::create_bind_group).
#[derive(Clone, Debug)]
pub struct BindGroup {
id: BindGroupId,
value: WgpuWrapper<wgpu::BindGroup>,
}
impl BindGroup {
/// Returns the [`BindGroupId`] representing the unique ID of the bind group.
#[inline]
pub fn id(&self) -> BindGroupId {
self.id
}
}
impl PartialEq for BindGroup {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for BindGroup {}
impl core::hash::Hash for BindGroup {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
self.id.0.hash(state);
}
}
impl From<wgpu::BindGroup> for BindGroup {
fn from(value: wgpu::BindGroup) -> Self {
BindGroup {
id: BindGroupId::new(),
value: WgpuWrapper::new(value),
}
}
}
impl<'a> From<&'a BindGroup> for Option<&'a wgpu::BindGroup> {
fn from(value: &'a BindGroup) -> Self {
Some(value.deref())
}
}
impl<'a> From<&'a mut BindGroup> for Option<&'a wgpu::BindGroup> {
fn from(value: &'a mut BindGroup) -> Self {
Some(&*value)
}
}
impl Deref for BindGroup {
type Target = wgpu::BindGroup;
#[inline]
fn deref(&self) -> &Self::Target {
&self.value
}
}
/// Converts a value to a [`BindGroup`] with a given [`BindGroupLayout`], which can then be used in Bevy shaders.
/// This trait can be derived (and generally should be). Read on for details and examples.
///
/// This is an opinionated trait that is intended to make it easy to generically
/// convert a type into a [`BindGroup`]. It provides access to specific render resources,
/// such as [`RenderAssets<GpuImage>`] and [`crate::texture::FallbackImage`]. If a type has a [`Handle<Image>`](bevy_asset::Handle),
/// these can be used to retrieve the corresponding [`Texture`](crate::render_resource::Texture) resource.
///
/// [`AsBindGroup::as_bind_group`] is intended to be called once, then the result cached somewhere. It is generally
/// ok to do "expensive" work here, such as creating a [`Buffer`] for a uniform.
///
/// If for some reason a [`BindGroup`] cannot be created yet (for example, the [`Texture`](crate::render_resource::Texture)
/// for an [`Image`](bevy_image::Image) hasn't loaded yet), just return [`AsBindGroupError::RetryNextUpdate`], which signals that the caller
/// should retry again later.
///
/// # Deriving
///
/// This trait can be derived. Field attributes like `uniform` and `texture` are used to define which fields should be bindings,
/// what their binding type is, and what index they should be bound at:
///
/// ```
/// # use bevy_render::render_resource::*;
/// # use bevy_image::Image;
/// # use bevy_color::LinearRgba;
/// # use bevy_asset::Handle;
/// # use bevy_render::storage::ShaderStorageBuffer;
///
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// #[storage(3, read_only)]
/// storage_buffer: Handle<ShaderStorageBuffer>,
/// #[storage(4, read_only, buffer)]
/// raw_buffer: Buffer,
/// #[storage_texture(5)]
/// storage_texture: Handle<Image>,
/// }
/// ```
///
/// In WGSL shaders, the binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// @group(2) @binding(3) var<storage> storage_buffer: array<f32>;
/// @group(2) @binding(4) var<storage> raw_buffer: array<f32>;
/// @group(2) @binding(5) var storage_texture: texture_storage_2d<rgba8unorm, read_write>;
/// ```
/// Note that the "group" index is determined by the usage context. It is not defined in [`AsBindGroup`]. For example, in Bevy material bind groups
/// are generally bound to group 2.
///
/// The following field-level attributes are supported:
///
/// ## `uniform(BINDING_INDEX)`
///
/// * The field will be converted to a shader-compatible type using the [`ShaderType`] trait, written to a [`Buffer`], and bound as a uniform.
/// [`ShaderType`] is implemented for most math types already, such as [`f32`], [`Vec4`](bevy_math::Vec4), and
/// [`LinearRgba`](bevy_color::LinearRgba). It can also be derived for custom structs.
///
/// ## `texture(BINDING_INDEX, arguments)`
///
/// * This field's [`Handle<Image>`](bevy_asset::Handle) will be used to look up the matching [`Texture`](crate::render_resource::Texture)
/// GPU resource, which will be bound as a texture in shaders. The field will be assumed to implement [`Into<Option<Handle<Image>>>`]. In practice,
/// most fields should be a [`Handle<Image>`](bevy_asset::Handle) or [`Option<Handle<Image>>`]. If the value of an [`Option<Handle<Image>>`] is
/// [`None`], the [`crate::texture::FallbackImage`] resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute
/// (with a different binding index) if a binding of the sampler for the [`Image`](bevy_image::Image) is also required.
///
/// | Arguments | Values | Default |
/// |-----------------------|-------------------------------------------------------------------------|----------------------|
/// | `dimension` = "..." | `"1d"`, `"2d"`, `"2d_array"`, `"3d"`, `"cube"`, `"cube_array"` | `"2d"` |
/// | `sample_type` = "..." | `"float"`, `"depth"`, `"s_int"` or `"u_int"` | `"float"` |
/// | `filterable` = ... | `true`, `false` | `true` |
/// | `multisampled` = ... | `true`, `false` | `false` |
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
///
/// ## `storage_texture(BINDING_INDEX, arguments)`
///
/// * This field's [`Handle<Image>`](bevy_asset::Handle) will be used to look up the matching [`Texture`](crate::render_resource::Texture)
/// GPU resource, which will be bound as a storage texture in shaders. The field will be assumed to implement [`Into<Option<Handle<Image>>>`]. In practice,
/// most fields should be a [`Handle<Image>`](bevy_asset::Handle) or [`Option<Handle<Image>>`]. If the value of an [`Option<Handle<Image>>`] is
/// [`None`], the [`crate::texture::FallbackImage`] resource will be used instead.
///
/// | Arguments | Values | Default |
/// |------------------------|--------------------------------------------------------------------------------------------|---------------|
/// | `dimension` = "..." | `"1d"`, `"2d"`, `"2d_array"`, `"3d"`, `"cube"`, `"cube_array"` | `"2d"` |
/// | `image_format` = ... | any member of [`TextureFormat`](crate::render_resource::TextureFormat) | `Rgba8Unorm` |
/// | `access` = ... | any member of [`StorageTextureAccess`](crate::render_resource::StorageTextureAccess) | `ReadWrite` |
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `compute` |
///
/// ## `sampler(BINDING_INDEX, arguments)`
///
/// * This field's [`Handle<Image>`](bevy_asset::Handle) will be used to look up the matching [`Sampler`] GPU
/// resource, which will be bound as a sampler in shaders. The field will be assumed to implement [`Into<Option<Handle<Image>>>`]. In practice,
/// most fields should be a [`Handle<Image>`](bevy_asset::Handle) or [`Option<Handle<Image>>`]. If the value of an [`Option<Handle<Image>>`] is
/// [`None`], the [`crate::texture::FallbackImage`] resource will be used instead. This attribute can be used in conjunction with a `texture` binding attribute
/// (with a different binding index) if a binding of the texture for the [`Image`](bevy_image::Image) is also required.
///
/// | Arguments | Values | Default |
/// |------------------------|-------------------------------------------------------------------------|------------------------|
/// | `sampler_type` = "..." | `"filtering"`, `"non_filtering"`, `"comparison"`. | `"filtering"` |
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
///
/// ## `storage(BINDING_INDEX, arguments)`
///
/// * The field's [`Handle<Storage>`](bevy_asset::Handle) will be used to look
/// up the matching [`Buffer`] GPU resource, which will be bound as a storage
/// buffer in shaders. If the `storage` attribute is used, the field is expected
/// a raw buffer, and the buffer will be bound as a storage buffer in shaders.
/// In bindless mode, `binding_array()` argument that specifies the binding
/// number of the resulting storage buffer binding array must be present.
///
/// | Arguments | Values | Default |
/// |------------------------|-------------------------------------------------------------------------|------------------------|
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
/// | `read_only` | if present then value is true, otherwise false | `false` |
/// | `buffer` | if present then the field will be assumed to be a raw wgpu buffer | |
/// | `binding_array(...)` | the binding number of the binding array, for bindless mode | bindless mode disabled |
///
/// Note that fields without field-level binding attributes will be ignored.
/// ```
/// # use bevy_render::{render_resource::AsBindGroup};
/// # use bevy_color::LinearRgba;
/// # use bevy_asset::Handle;
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// this_field_is_ignored: String,
/// }
/// ```
///
/// As mentioned above, [`Option<Handle<Image>>`] is also supported:
/// ```
/// # use bevy_asset::Handle;
/// # use bevy_color::LinearRgba;
/// # use bevy_image::Image;
/// # use bevy_render::render_resource::AsBindGroup;
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Option<Handle<Image>>,
/// }
/// ```
/// This is useful if you want a texture to be optional. When the value is [`None`], the [`crate::texture::FallbackImage`] will be used for the binding instead, which defaults
/// to "pure white".
///
/// Field uniforms with the same index will be combined into a single binding:
/// ```
/// # use bevy_render::{render_resource::AsBindGroup};
/// # use bevy_color::LinearRgba;
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// #[uniform(0)]
/// roughness: f32,
/// }
/// ```
///
/// In WGSL shaders, the binding would look like this:
/// ```wgsl
/// struct CoolMaterial {
/// color: vec4<f32>,
/// roughness: f32,
/// };
///
/// @group(2) @binding(0) var<uniform> material: CoolMaterial;
/// ```
///
/// Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes:
/// ## `uniform(BINDING_INDEX, ConvertedShaderType)`
///
/// * This also creates a [`Buffer`] using [`ShaderType`] and binds it as a
/// uniform, much like the field-level `uniform` attribute. The difference is
/// that the entire [`AsBindGroup`] value is converted to `ConvertedShaderType`,
/// which must implement [`ShaderType`], instead of a specific field
/// implementing [`ShaderType`]. This is useful if more complicated conversion
/// logic is required, or when using bindless mode (see below). The conversion
/// is done using the [`AsBindGroupShaderType<ConvertedShaderType>`] trait,
/// which is automatically implemented if `&Self` implements
/// [`Into<ConvertedShaderType>`]. Outside of bindless mode, only use
/// [`AsBindGroupShaderType`] if access to resources like
/// [`RenderAssets<GpuImage>`] is required.
///
/// * In bindless mode (see `bindless(COUNT)`), this attribute becomes
/// `uniform(BINDLESS_INDEX, ConvertedShaderType,
/// binding_array(BINDING_INDEX))`. The resulting uniform buffers will be
/// available in the shader as a binding array at the given `BINDING_INDEX`. The
/// `BINDLESS_INDEX` specifies the offset of the buffer in the bindless index
/// table.
///
/// For example, suppose that the material slot is stored in a variable named
/// `slot`, the bindless index table is named `material_indices`, and that the
/// first field (index 0) of the bindless index table type is named
/// `material`. Then specifying `#[uniform(0, StandardMaterialUniform,
/// binding_array(10)]` will create a binding array buffer declared in the
/// shader as `var<storage> material_array:
/// binding_array<StandardMaterialUniform>` and accessible as
/// `material_array[material_indices[slot].material]`.
///
/// ## `data(BINDING_INDEX, ConvertedShaderType, binding_array(BINDING_INDEX))`
///
/// * This is very similar to `uniform(BINDING_INDEX, ConvertedShaderType,
/// binding_array(BINDING_INDEX)` and in fact is identical if bindless mode
/// isn't being used. The difference is that, in bindless mode, the `data`
/// attribute produces a single buffer containing an array, not an array of
/// buffers. For example, suppose you had the following declaration:
///
/// ```ignore
/// #[uniform(0, StandardMaterialUniform, binding_array(10))]
/// struct StandardMaterial { ... }
/// ```
///
/// In bindless mode, this will produce a binding matching the following WGSL
/// declaration:
///
/// ```wgsl
/// @group(2) @binding(10) var<storage> material_array: binding_array<StandardMaterial>;
/// ```
///
/// On the other hand, if you write this declaration:
///
/// ```ignore
/// #[data(0, StandardMaterialUniform, binding_array(10))]
/// struct StandardMaterial { ... }
/// ```
///
/// Then Bevy produces a binding that matches this WGSL declaration instead:
///
/// ```wgsl
/// @group(2) @binding(10) var<storage> material_array: array<StandardMaterial>;
/// ```
///
/// * Just as with the structure-level `uniform` attribute, Bevy converts the
/// entire [`AsBindGroup`] to `ConvertedShaderType`, using the
/// [`AsBindGroupShaderType<ConvertedShaderType>`] trait.
///
/// * In non-bindless mode, the structure-level `data` attribute is the same as
/// the structure-level `uniform` attribute and produces a single uniform buffer
/// in the shader. The above example would result in a binding that looks like
/// this in WGSL in non-bindless mode:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> material: StandardMaterial;
/// ```
///
/// * For efficiency reasons, `data` is generally preferred over `uniform`
/// unless you need to place your data in individual buffers.
///
/// ## `bind_group_data(DataType)`
///
/// * The [`AsBindGroup`] type will be converted to some `DataType` using [`Into<DataType>`] and stored
/// as [`AsBindGroup::Data`] as part of the [`AsBindGroup::as_bind_group`] call. This is useful if data needs to be stored alongside
/// the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute
/// is "shader pipeline specialization". See [`SpecializedRenderPipeline`](crate::render_resource::SpecializedRenderPipeline).
///
/// ## `bindless`
///
/// * This switch enables *bindless resources*, which changes the way Bevy
/// supplies resources (textures, and samplers) to the shader. When bindless
/// resources are enabled, and the current platform supports them, Bevy will
/// allocate textures, and samplers into *binding arrays*, separated based on
/// type and will supply your shader with indices into those arrays.
/// * Bindless textures and samplers are placed into the appropriate global
/// array defined in `bevy_render::bindless` (`bindless.wgsl`).
/// * Bevy doesn't currently support bindless buffers, except for those created
/// with the `uniform(BINDLESS_INDEX, ConvertedShaderType,
/// binding_array(BINDING_INDEX))` attribute. If you need to include a buffer in
/// your object, and you can't create the data in that buffer with the `uniform`
/// attribute, consider a non-bindless object instead.
/// * If bindless mode is enabled, the `BINDLESS` definition will be
/// available. Because not all platforms support bindless resources, you
/// should check for the presence of this definition via `#ifdef` and fall
/// back to standard bindings if it isn't present.
/// * In bindless mode, binding 0 becomes the *bindless index table*, which is
/// an array of structures, each of which contains as many fields of type `u32`
/// as the highest binding number in the structure annotated with
/// `#[derive(AsBindGroup)]`. The *i*th field of the bindless index table
/// contains the index of the resource with binding *i* within the appropriate
/// binding array.
/// * In the case of materials, the index of the applicable table within the
/// bindless index table list corresponding to the mesh currently being drawn
/// can be retrieved with
/// `mesh[in.instance_index].material_and_lightmap_bind_group_slot & 0xffffu`.
/// * You can limit the size of the bindless slabs to N resources with the
/// `limit(N)` declaration. For example, `#[bindless(limit(16))]` ensures that
/// each slab will have no more than 16 total resources in it. If you don't
/// specify a limit, Bevy automatically picks a reasonable one for the current
/// platform.
/// * The purpose of bindless mode is to improve performance by reducing
/// state changes. By grouping resources together into binding arrays, Bevy
/// doesn't have to modify GPU state as often, decreasing API and driver
/// overhead.
/// * See the `shaders/shader_material_bindless` example for an example of
/// how to use bindless mode.
/// * The following diagram illustrates how bindless mode works using a subset
/// of `StandardMaterial`:
///
/// ```text
/// Shader Bindings Sampler Binding Array
/// +----+-----------------------------+ +-----------+-----------+-----+
/// +---| 0 | material_indices | +->| sampler 0 | sampler 1 | ... |
/// | +----+-----------------------------+ | +-----------+-----------+-----+
/// | | 1 | bindless_samplers_filtering +--+ ^
/// | +----+-----------------------------+ +-------------------------------+
/// | | .. | ... | |
/// | +----+-----------------------------+ Texture Binding Array |
/// | | 5 | bindless_textures_2d +--+ +-----------+-----------+-----+ |
/// | +----+-----------------------------+ +->| texture 0 | texture 1 | ... | |
/// | | .. | ... | +-----------+-----------+-----+ |
/// | +----+-----------------------------+ ^ |
/// | + 10 | material_array +--+ +---------------------------+ |
/// | +----+-----------------------------+ | | |
/// | | Buffer Binding Array | |
/// | | +----------+----------+-----+ | |
/// | +->| buffer 0 | buffer 1 | ... | | |
/// | Material Bindless Indices +----------+----------+-----+ | |
/// | +----+-----------------------------+ ^ | |
/// +-->| 0 | material +----------+ | |
/// +----+-----------------------------+ | |
/// | 1 | base_color_texture +---------------------------------------+ |
/// +----+-----------------------------+ |
/// | 2 | base_color_sampler +-------------------------------------------+
/// +----+-----------------------------+
/// | .. | ... |
/// +----+-----------------------------+
/// ```
///
/// The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can
/// also be equivalently represented with a single struct-level uniform attribute:
/// ```
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderType}};
/// # use bevy_color::LinearRgba;
/// #[derive(AsBindGroup)]
/// #[uniform(0, CoolMaterialUniform)]
/// struct CoolMaterial {
/// color: LinearRgba,
/// roughness: f32,
/// }
///
/// #[derive(ShaderType)]
/// struct CoolMaterialUniform {
/// color: LinearRgba,
/// roughness: f32,
/// }
///
/// impl From<&CoolMaterial> for CoolMaterialUniform {
/// fn from(material: &CoolMaterial) -> CoolMaterialUniform {
/// CoolMaterialUniform {
/// color: material.color,
/// roughness: material.roughness,
/// }
/// }
/// }
/// ```
///
/// Setting `bind_group_data` looks like this:
/// ```
/// # use bevy_render::{render_resource::AsBindGroup};
/// # use bevy_color::LinearRgba;
/// #[derive(AsBindGroup)]
/// #[bind_group_data(CoolMaterialKey)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// is_shaded: bool,
/// }
///
/// #[derive(Copy, Clone, Hash, Eq, PartialEq)]
/// struct CoolMaterialKey {
/// is_shaded: bool,
/// }
///
/// impl From<&CoolMaterial> for CoolMaterialKey {
/// fn from(material: &CoolMaterial) -> CoolMaterialKey {
/// CoolMaterialKey {
/// is_shaded: material.is_shaded,
/// }
/// }
/// }
/// ```
pub trait AsBindGroup {
/// Data that will be stored alongside the "prepared" bind group.
type Data: Send + Sync;
type Param: SystemParam + 'static;
/// The number of slots per bind group, if bindless mode is enabled.
///
/// If this bind group doesn't use bindless, then this will be `None`.
///
/// Note that the *actual* slot count may be different from this value, due
/// to platform limitations. For example, if bindless resources aren't
/// supported on this platform, the actual slot count will be 1.
fn bindless_slot_count() -> Option<BindlessSlabResourceLimit> {
None
}
/// True if the hardware *actually* supports bindless textures for this
/// type, taking the device and driver capabilities into account.
///
/// If this type doesn't use bindless textures, then the return value from
/// this function is meaningless.
fn bindless_supported(_: &RenderDevice) -> bool {
true
}
/// label
fn label() -> Option<&'static str> {
None
}
/// Creates a bind group for `self` matching the layout defined in [`AsBindGroup::bind_group_layout`].
fn as_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
param: &mut SystemParamItem<'_, '_, Self::Param>,
) -> Result<PreparedBindGroup<Self::Data>, AsBindGroupError> {
let UnpreparedBindGroup { bindings, data } =
Self::unprepared_bind_group(self, layout, render_device, param, false)?;
let entries = bindings
.iter()
.map(|(index, binding)| BindGroupEntry {
binding: *index,
resource: binding.get_binding(),
})
.collect::<Vec<_>>();
let bind_group = render_device.create_bind_group(Self::label(), layout, &entries);
Ok(PreparedBindGroup {
bindings,
bind_group,
data,
})
}
/// Returns a vec of (binding index, `OwnedBindingResource`).
///
/// In cases where `OwnedBindingResource` is not available (as for bindless
/// texture arrays currently), an implementor may return
/// `AsBindGroupError::CreateBindGroupDirectly` from this function and
/// instead define `as_bind_group` directly. This may prevent certain
/// features, such as bindless mode, from working correctly.
///
/// Set `force_no_bindless` to true to require that bindless textures *not*
/// be used. `ExtendedMaterial` uses this in order to ensure that the base
/// material doesn't use bindless mode if the extension doesn't.
fn unprepared_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
param: &mut SystemParamItem<'_, '_, Self::Param>,
force_no_bindless: bool,
) -> Result<UnpreparedBindGroup<Self::Data>, AsBindGroupError>;
/// Creates the bind group layout matching all bind groups returned by
/// [`AsBindGroup::as_bind_group`]
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout
where
Self: Sized,
{
render_device.create_bind_group_layout(
Self::label(),
&Self::bind_group_layout_entries(render_device, false),
)
}
/// Returns a vec of bind group layout entries.
///
/// Set `force_no_bindless` to true to require that bindless textures *not*
/// be used. `ExtendedMaterial` uses this in order to ensure that the base
/// material doesn't use bindless mode if the extension doesn't.
fn bind_group_layout_entries(
render_device: &RenderDevice,
force_no_bindless: bool,
) -> Vec<BindGroupLayoutEntry>
where
Self: Sized;
fn bindless_descriptor() -> Option<BindlessDescriptor> {
None
}
}
/// An error that occurs during [`AsBindGroup::as_bind_group`] calls.
#[derive(Debug, Error)]
pub enum AsBindGroupError {
/// The bind group could not be generated. Try again next frame.
#[error("The bind group could not be generated")]
RetryNextUpdate,
#[error("Create the bind group via `as_bind_group()` instead")]
CreateBindGroupDirectly,
#[error("At binding index {0}, the provided image sampler `{1}` does not match the required sampler type(s) `{2}`.")]
InvalidSamplerType(u32, String, String),
}
/// A prepared bind group returned as a result of [`AsBindGroup::as_bind_group`].
pub struct PreparedBindGroup<T> {
pub bindings: BindingResources,
pub bind_group: BindGroup,
pub data: T,
}
/// a map containing `OwnedBindingResource`s, keyed by the target binding index
pub struct UnpreparedBindGroup<T> {
pub bindings: BindingResources,
pub data: T,
}
/// A pair of binding index and binding resource, used as part of
/// [`PreparedBindGroup`] and [`UnpreparedBindGroup`].
#[derive(Deref, DerefMut)]
pub struct BindingResources(pub Vec<(u32, OwnedBindingResource)>);
/// An owned binding resource of any type (ex: a [`Buffer`], [`TextureView`], etc).
/// This is used by types like [`PreparedBindGroup`] to hold a single list of all
/// render resources used by bindings.
#[derive(Debug)]
pub enum OwnedBindingResource {
Buffer(Buffer),
TextureView(TextureViewDimension, TextureView),
Sampler(SamplerBindingType, Sampler),
Data(OwnedData),
}
/// Data that will be copied into a GPU buffer.
///
/// This corresponds to the `#[data]` attribute in `AsBindGroup`.
#[derive(Debug, Deref, DerefMut)]
pub struct OwnedData(pub Vec<u8>);
impl OwnedBindingResource {
/// Creates a [`BindingResource`] reference to this
/// [`OwnedBindingResource`].
///
/// Note that this operation panics if passed a
/// [`OwnedBindingResource::Data`], because [`OwnedData`] doesn't itself
/// correspond to any binding and instead requires the
/// `MaterialBindGroupAllocator` to pack it into a buffer.
pub fn get_binding(&self) -> BindingResource {
match self {
OwnedBindingResource::Buffer(buffer) => buffer.as_entire_binding(),
OwnedBindingResource::TextureView(_, view) => BindingResource::TextureView(view),
OwnedBindingResource::Sampler(_, sampler) => BindingResource::Sampler(sampler),
OwnedBindingResource::Data(_) => panic!("`OwnedData` has no binding resource"),
}
}
}
/// Converts a value to a [`ShaderType`] for use in a bind group.
///
/// This is automatically implemented for references that implement [`Into`].
/// Generally normal [`Into`] / [`From`] impls should be preferred, but
/// sometimes additional runtime metadata is required.
/// This exists largely to make some [`AsBindGroup`] use cases easier.
pub trait AsBindGroupShaderType<T: ShaderType> {
/// Return the `T` [`ShaderType`] for `self`. When used in [`AsBindGroup`]
/// derives, it is safe to assume that all images in `self` exist.
fn as_bind_group_shader_type(&self, images: &RenderAssets<GpuImage>) -> T;
}
impl<T, U: ShaderType> AsBindGroupShaderType<U> for T
where
for<'a> &'a T: Into<U>,
{
#[inline]
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U {
self.into()
}
}
#[cfg(test)]
mod test {
use super::*;
use bevy_asset::Handle;
use bevy_image::Image;
#[test]
fn texture_visibility() {
#[derive(AsBindGroup)]
pub struct TextureVisibilityTest {
#[texture(0, visibility(all))]
pub all: Handle<Image>,
#[texture(1, visibility(none))]
pub none: Handle<Image>,
#[texture(2, visibility(fragment))]
pub fragment: Handle<Image>,
#[texture(3, visibility(vertex))]
pub vertex: Handle<Image>,
#[texture(4, visibility(compute))]
pub compute: Handle<Image>,
#[texture(5, visibility(vertex, fragment))]
pub vertex_fragment: Handle<Image>,
#[texture(6, visibility(vertex, compute))]
pub vertex_compute: Handle<Image>,
#[texture(7, visibility(fragment, compute))]
pub fragment_compute: Handle<Image>,
#[texture(8, visibility(vertex, fragment, compute))]
pub vertex_fragment_compute: Handle<Image>,
}
}
}