bevy/crates/bevy_ecs/examples/change_detection.rs
MichiRecRoom 26bb0b40d2
Move #![warn(clippy::allow_attributes, clippy::allow_attributes_without_reason)] to the workspace Cargo.toml (#17374)
# Objective
Fixes https://github.com/bevyengine/bevy/issues/17111

## Solution
Move `#![warn(clippy::allow_attributes,
clippy::allow_attributes_without_reason)]` to the workspace `Cargo.toml`

## Testing
Lots of CI testing, and local testing too.

---------

Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
2025-01-15 01:14:58 +00:00

120 lines
4.3 KiB
Rust

//! In this example we will simulate a population of entities. In every tick we will:
//! 1. spawn a new entity with a certain possibility
//! 2. age all entities
//! 3. despawn entities with age > 2
//!
//! To demonstrate change detection, there are some console outputs based on changes in
//! the `EntityCounter` resource and updated Age components
#![expect(
clippy::std_instead_of_core,
reason = "Examples should not follow this lint"
)]
use bevy_ecs::prelude::*;
use rand::Rng;
use std::ops::Deref;
fn main() {
// Create a new empty World to hold our Entities, Components and Resources
let mut world = World::new();
// Add the counter resource to remember how many entities where spawned
world.insert_resource(EntityCounter { value: 0 });
// Create a new Schedule, which stores systems and controls their relative ordering
let mut schedule = Schedule::default();
// Add systems to the Schedule to execute our app logic
// We can label our systems to force a specific run-order between some of them
schedule.add_systems((
spawn_entities.in_set(SimulationSet::Spawn),
print_counter_when_changed.after(SimulationSet::Spawn),
age_all_entities.in_set(SimulationSet::Age),
remove_old_entities.after(SimulationSet::Age),
print_changed_entities.after(SimulationSet::Age),
));
// Simulate 10 frames in our world
for iteration in 1..=10 {
println!("Simulating frame {iteration}/10");
schedule.run(&mut world);
}
}
// This struct will be used as a Resource keeping track of the total amount of spawned entities
#[derive(Debug, Resource)]
struct EntityCounter {
pub value: i32,
}
// This struct represents a Component and holds the age in frames of the entity it gets assigned to
#[derive(Component, Default, Debug)]
struct Age {
frames: i32,
}
// System sets can be used to group systems and configured to control relative ordering
#[derive(SystemSet, Debug, Clone, PartialEq, Eq, Hash)]
enum SimulationSet {
Spawn,
Age,
}
// This system randomly spawns a new entity in 60% of all frames
// The entity will start with an age of 0 frames
// If an entity gets spawned, we increase the counter in the EntityCounter resource
fn spawn_entities(mut commands: Commands, mut entity_counter: ResMut<EntityCounter>) {
if rand::thread_rng().gen_bool(0.6) {
let entity_id = commands.spawn(Age::default()).id();
println!(" spawning {entity_id:?}");
entity_counter.value += 1;
}
}
// This system prints out changes in our entity collection
// For every entity that just got the Age component added we will print that it's the
// entities first birthday. These entities where spawned in the previous frame.
// For every entity with a changed Age component we will print the new value.
// In this example the Age component is changed in every frame, so we don't actually
// need the `Changed` here, but it is still used for the purpose of demonstration.
fn print_changed_entities(
entity_with_added_component: Query<Entity, Added<Age>>,
entity_with_mutated_component: Query<(Entity, &Age), Changed<Age>>,
) {
for entity in &entity_with_added_component {
println!(" {entity} has it's first birthday!");
}
for (entity, value) in &entity_with_mutated_component {
println!(" {entity} is now {value:?} frames old");
}
}
// This system iterates over all entities and increases their age in every frame
fn age_all_entities(mut entities: Query<&mut Age>) {
for mut age in &mut entities {
age.frames += 1;
}
}
// This system iterates over all entities in every frame and despawns entities older than 2 frames
fn remove_old_entities(mut commands: Commands, entities: Query<(Entity, &Age)>) {
for (entity, age) in &entities {
if age.frames > 2 {
println!(" despawning {entity} due to age > 2");
commands.entity(entity).despawn();
}
}
}
// This system will print the new counter value every time it was changed since
// the last execution of the system.
fn print_counter_when_changed(entity_counter: Res<EntityCounter>) {
if entity_counter.is_changed() {
println!(
" total number of entities spawned: {}",
entity_counter.deref().value
);
}
}