![]() Fixes #17720 ## Objective Spawning RelationshipTargets from scenes currently fails to preserve RelationshipTarget ordering (ex: `Children` has an arbitrary order). This is because it uses the normal hook flow to set up the collection, which means we are pushing onto the collection in _spawn order_ (which is currently in archetype order, which will often produce mismatched orderings). We need to preserve the ordering in the original RelationshipTarget collection. Ideally without expensive checking / fixups. ## Solution One solution would be to spawn in hierarchy-order. However this gets complicated as there can be multiple hierarchies, and it also means we can't spawn in more cache-friendly orders (ex: the current per-archetype spawning, or future even-smarter per-table spawning). Additionally, same-world cloning has _slightly_ more nuanced needs (ex: recursively clone linked relationships, while maintaining _original_ relationships outside of the tree via normal hooks). The preferred approach is to directly spawn the remapped RelationshipTarget collection, as this trivially preserves the ordering. Unfortunately we can't _just_ do that, as when we spawn the children with their Relationships (ex: `ChildOf`), that will insert a duplicate. We could "fixup" the collection retroactively by just removing the back half of duplicates, but this requires another pass / more lookups / allocating twice as much space. Additionally, it becomes complicated because observers could insert additional children, making it harder (aka more expensive) to determine which children are dupes and which are not. The path I chose is to support "opting out" of the relationship target hook in the contexts that need that, as this allows us to just cheaply clone the mapped collection. The relationship hook can look for this configuration when it runs and skip its logic when that happens. A "simple" / small-amount-of-code way to do this would be to add a "skip relationship spawn" flag to World. Sadly, any hook / observer that runs _as the result of an insert_ would also read this flag. We really need a way to scope this setting to a _specific_ insert. Therefore I opted to add a new `RelationshipInsertHookMode` enum and an `entity.insert_with_relationship_insert_hook_mode` variant. Obviously this is verbose and ugly. And nobody wants _more_ insert variants. But sadly this was the best I could come up with from a performance and capability perspective. If you have alternatives let me know! There are three variants: 1. `RelationshipInsertHookMode::Run`: always run relationship insert hooks (this is the default) 2. `RelationshipInsertHookMode::Skip`: do not run any relationship insert hooks for this insert (this is used by spawner code) 3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for _unlinked_ relationships (this is used in same-world recursive entity cloning to preserve relationships outside of the deep-cloned tree) Note that I have intentionally only added "insert with relationship hook mode" variants to the cases we absolutely need (everything else uses the default `Run` mode), just to keep the code size in check. I do not think we should add more without real _very necessary_ use cases. I also made some other minor tweaks: 1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the source component no longer needlessly blocks mutable access to `ComponentCloneCtx`. 2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned component queue. 3. (1) also allowed me to write to the EntityMapper while queuing up clones, meaning we can reserve entities during the component clone and write them to the mapper _before_ inserting the component, meaning cloned collections can be mapped on insert. 4. I've removed the closure from `write_target_component_ptr` to simplify the API / make it compatible with the split `SourceComponent` approach. 5. I've renamed `EntityCloner::recursive` to `EntityCloner::linked_cloning` to connect that feature more directly with `RelationshipTarget::LINKED_SPAWN` 6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was always intended to be temporary, and this new behavior removes the need for it. --------- Co-authored-by: Viktor Gustavsson <villor94@gmail.com> |
||
---|---|---|
.. | ||
compile_fail | ||
examples | ||
macros | ||
src | ||
Cargo.toml | ||
clippy.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md |
Bevy ECS
What is Bevy ECS?
Bevy ECS is an Entity Component System custom-built for the Bevy game engine. It aims to be simple to use, ergonomic, fast, massively parallel, opinionated, and featureful. It was created specifically for Bevy's needs, but it can easily be used as a standalone crate in other projects.
ECS
All app logic in Bevy uses the Entity Component System paradigm, which is often shortened to ECS. ECS is a software pattern that involves breaking your program up into Entities, Components, and Systems. Entities are unique "things" that are assigned groups of Components, which are then processed using Systems.
For example, one entity might have a Position
and Velocity
component, whereas another entity might have a Position
and UI
component. You might have a movement system that runs on all entities with a Position and Velocity component.
The ECS pattern encourages clean, decoupled designs by forcing you to break up your app data and logic into its core components. It also helps make your code faster by optimizing memory access patterns and making parallelism easier.
Concepts
Bevy ECS is Bevy's implementation of the ECS pattern. Unlike other Rust ECS implementations, which often require complex lifetimes, traits, builder patterns, or macros, Bevy ECS uses normal Rust data types for all of these concepts:
Components
Components are normal Rust structs. They are data stored in a World
and specific instances of Components correlate to Entities.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
Worlds
Entities, Components, and Resources are stored in a World
. Worlds, much like std::collections
's HashSet
and Vec
, expose operations to insert, read, write, and remove the data they store.
use bevy_ecs::world::World;
let world = World::default();
Entities
Entities are unique identifiers that correlate to zero or more Components.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
let mut world = World::new();
let entity = world
.spawn((Position { x: 0.0, y: 0.0 }, Velocity { x: 1.0, y: 0.0 }))
.id();
let entity_ref = world.entity(entity);
let position = entity_ref.get::<Position>().unwrap();
let velocity = entity_ref.get::<Velocity>().unwrap();
Systems
Systems are normal Rust functions. Thanks to the Rust type system, Bevy ECS can use function parameter types to determine what data needs to be sent to the system. It also uses this "data access" information to determine what Systems can run in parallel with each other.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
fn print_position(query: Query<(Entity, &Position)>) {
for (entity, position) in &query {
println!("Entity {} is at position: x {}, y {}", entity, position.x, position.y);
}
}
Resources
Apps often require unique resources, such as asset collections, renderers, audio servers, time, etc. Bevy ECS makes this pattern a first class citizen. Resource
is a special kind of component that does not belong to any entity. Instead, it is identified uniquely by its type:
use bevy_ecs::prelude::*;
#[derive(Resource, Default)]
struct Time {
seconds: f32,
}
let mut world = World::new();
world.insert_resource(Time::default());
let time = world.get_resource::<Time>().unwrap();
// You can also access resources from Systems
fn print_time(time: Res<Time>) {
println!("{}", time.seconds);
}
Schedules
Schedules run a set of Systems according to some execution strategy. Systems can be added to any number of System Sets, which are used to control their scheduling metadata.
The built in "parallel executor" considers dependencies between systems and (by default) run as many of them in parallel as possible. This maximizes performance, while keeping the system execution safe. To control the system ordering, define explicit dependencies between systems and their sets.
Using Bevy ECS
Bevy ECS should feel very natural for those familiar with Rust syntax:
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
// This system moves each entity with a Position and Velocity component
fn movement(mut query: Query<(&mut Position, &Velocity)>) {
for (mut position, velocity) in &mut query {
position.x += velocity.x;
position.y += velocity.y;
}
}
fn main() {
// Create a new empty World to hold our Entities and Components
let mut world = World::new();
// Spawn an entity with Position and Velocity components
world.spawn((
Position { x: 0.0, y: 0.0 },
Velocity { x: 1.0, y: 0.0 },
));
// Create a new Schedule, which defines an execution strategy for Systems
let mut schedule = Schedule::default();
// Add our system to the schedule
schedule.add_systems(movement);
// Run the schedule once. If your app has a "loop", you would run this once per loop
schedule.run(&mut world);
}
Features
Query Filters
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Player;
#[derive(Component)]
struct Alive;
// Gets the Position component of all Entities with Player component and without the Alive
// component.
fn system(query: Query<&Position, (With<Player>, Without<Alive>)>) {
for position in &query {
}
}
Change Detection
Bevy ECS tracks all changes to Components and Resources.
Queries can filter for changed Components:
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
// Gets the Position component of all Entities whose Velocity has changed since the last run of the System
fn system_changed(query: Query<&Position, Changed<Velocity>>) {
for position in &query {
}
}
// Gets the Position component of all Entities that had a Velocity component added since the last run of the System
fn system_added(query: Query<&Position, Added<Velocity>>) {
for position in &query {
}
}
Resources also expose change state:
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct Time(f32);
// Prints "time changed!" if the Time resource has changed since the last run of the System
fn system(time: Res<Time>) {
if time.is_changed() {
println!("time changed!");
}
}
Component Storage
Bevy ECS supports multiple component storage types.
Components can be stored in:
- Tables: Fast and cache friendly iteration, but slower adding and removing of components. This is the default storage type.
- Sparse Sets: Fast adding and removing of components, but slower iteration.
Component storage types are configurable, and they default to table storage if the storage is not manually defined.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct TableStoredComponent;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseStoredComponent;
Component Bundles
Define sets of Components that should be added together.
use bevy_ecs::prelude::*;
#[derive(Default, Component)]
struct Player;
#[derive(Default, Component)]
struct Position { x: f32, y: f32 }
#[derive(Default, Component)]
struct Velocity { x: f32, y: f32 }
#[derive(Bundle, Default)]
struct PlayerBundle {
player: Player,
position: Position,
velocity: Velocity,
}
let mut world = World::new();
// Spawn a new entity and insert the default PlayerBundle
world.spawn(PlayerBundle::default());
// Bundles play well with Rust's struct update syntax
world.spawn(PlayerBundle {
position: Position { x: 1.0, y: 1.0 },
..Default::default()
});
Events
Events offer a communication channel between one or more systems. Events can be sent using the system parameter EventWriter
and received with EventReader
.
use bevy_ecs::prelude::*;
#[derive(Event)]
struct MyEvent {
message: String,
}
fn writer(mut writer: EventWriter<MyEvent>) {
writer.send(MyEvent {
message: "hello!".to_string(),
});
}
fn reader(mut reader: EventReader<MyEvent>) {
for event in reader.read() {
}
}
Observers
Observers are systems that listen for a "trigger" of a specific Event
:
use bevy_ecs::prelude::*;
#[derive(Event)]
struct MyEvent {
message: String
}
let mut world = World::new();
world.add_observer(|trigger: Trigger<MyEvent>| {
println!("{}", trigger.event().message);
});
world.flush();
world.trigger(MyEvent {
message: "hello!".to_string(),
});
These differ from EventReader
and EventWriter
in that they are "reactive". Rather than happening at a specific point in a schedule, they happen immediately whenever a trigger happens. Triggers can trigger other triggers, and they all will be evaluated at the same time!
Events can also be triggered to target specific entities:
use bevy_ecs::prelude::*;
#[derive(Event)]
struct Explode;
let mut world = World::new();
let entity = world.spawn_empty().id();
world.add_observer(|trigger: Trigger<Explode>, mut commands: Commands| {
println!("Entity {} goes BOOM!", trigger.target());
commands.entity(trigger.target()).despawn();
});
world.flush();
world.trigger_targets(Explode, entity);