
PR #17684 broke occlusion culling because it neglected to set the indirect parameter offsets for the late mesh preprocessing stage if the work item buffers were already set. This PR moves the update of those values to a new function, `init_work_item_buffers`, which is unconditionally called for every phase every frame. Note that there's some complexity in order to handle the case in which occlusion culling was enabled on one frame and disabled on the next, or vice versa. This was necessary in order to make the occlusion culling toggle in the `occlusion_culling` example work again.
1788 lines
70 KiB
Rust
1788 lines
70 KiB
Rust
//! Batching functionality when GPU preprocessing is in use.
|
|
|
|
use core::any::TypeId;
|
|
|
|
use bevy_app::{App, Plugin};
|
|
use bevy_ecs::{
|
|
prelude::Entity,
|
|
query::{Has, With},
|
|
resource::Resource,
|
|
schedule::IntoSystemConfigs as _,
|
|
system::{Query, Res, ResMut, StaticSystemParam},
|
|
world::{FromWorld, World},
|
|
};
|
|
use bevy_encase_derive::ShaderType;
|
|
use bevy_math::UVec4;
|
|
use bevy_platform_support::collections::{hash_map::Entry, HashMap, HashSet};
|
|
use bevy_utils::{default, TypeIdMap};
|
|
use bytemuck::{Pod, Zeroable};
|
|
use nonmax::NonMaxU32;
|
|
use tracing::error;
|
|
use wgpu::{BindingResource, BufferUsages, DownlevelFlags, Features};
|
|
|
|
use crate::{
|
|
experimental::occlusion_culling::OcclusionCulling,
|
|
render_phase::{
|
|
BinnedPhaseItem, BinnedRenderPhaseBatch, BinnedRenderPhaseBatchSet,
|
|
BinnedRenderPhaseBatchSets, CachedRenderPipelinePhaseItem, PhaseItemBatchSetKey as _,
|
|
PhaseItemExtraIndex, SortedPhaseItem, SortedRenderPhase, UnbatchableBinnedEntityIndices,
|
|
ViewBinnedRenderPhases, ViewSortedRenderPhases,
|
|
},
|
|
render_resource::{Buffer, BufferVec, GpuArrayBufferable, RawBufferVec, UninitBufferVec},
|
|
renderer::{RenderAdapter, RenderDevice, RenderQueue},
|
|
view::{ExtractedView, NoIndirectDrawing, RetainedViewEntity},
|
|
Render, RenderApp, RenderSet,
|
|
};
|
|
|
|
use super::{BatchMeta, GetBatchData, GetFullBatchData};
|
|
|
|
#[derive(Default)]
|
|
pub struct BatchingPlugin {
|
|
/// If true, this sets the `COPY_SRC` flag on indirect draw parameters so
|
|
/// that they can be read back to CPU.
|
|
///
|
|
/// This is a debugging feature that may reduce performance. It primarily
|
|
/// exists for the `occlusion_culling` example.
|
|
pub allow_copies_from_indirect_parameters: bool,
|
|
}
|
|
|
|
impl Plugin for BatchingPlugin {
|
|
fn build(&self, app: &mut App) {
|
|
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
|
|
return;
|
|
};
|
|
|
|
render_app
|
|
.insert_resource(IndirectParametersBuffers::new(
|
|
self.allow_copies_from_indirect_parameters,
|
|
))
|
|
.add_systems(
|
|
Render,
|
|
write_indirect_parameters_buffers.in_set(RenderSet::PrepareResourcesFlush),
|
|
)
|
|
.add_systems(
|
|
Render,
|
|
clear_indirect_parameters_buffers.in_set(RenderSet::ManageViews),
|
|
);
|
|
}
|
|
|
|
fn finish(&self, app: &mut App) {
|
|
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
|
|
return;
|
|
};
|
|
|
|
render_app.init_resource::<GpuPreprocessingSupport>();
|
|
}
|
|
}
|
|
|
|
/// Records whether GPU preprocessing and/or GPU culling are supported on the
|
|
/// device.
|
|
///
|
|
/// No GPU preprocessing is supported on WebGL because of the lack of compute
|
|
/// shader support. GPU preprocessing is supported on DirectX 12, but due to [a
|
|
/// `wgpu` limitation] GPU culling is not.
|
|
///
|
|
/// [a `wgpu` limitation]: https://github.com/gfx-rs/wgpu/issues/2471
|
|
#[derive(Clone, Copy, PartialEq, Resource)]
|
|
pub struct GpuPreprocessingSupport {
|
|
/// The maximum amount of GPU preprocessing available on this platform.
|
|
pub max_supported_mode: GpuPreprocessingMode,
|
|
}
|
|
|
|
impl GpuPreprocessingSupport {
|
|
/// Returns true if this GPU preprocessing support level isn't `None`.
|
|
#[inline]
|
|
pub fn is_available(&self) -> bool {
|
|
self.max_supported_mode != GpuPreprocessingMode::None
|
|
}
|
|
|
|
/// Returns the given GPU preprocessing mode, capped to the current
|
|
/// preprocessing mode.
|
|
pub fn min(&self, mode: GpuPreprocessingMode) -> GpuPreprocessingMode {
|
|
match (self.max_supported_mode, mode) {
|
|
(GpuPreprocessingMode::None, _) | (_, GpuPreprocessingMode::None) => {
|
|
GpuPreprocessingMode::None
|
|
}
|
|
(mode, GpuPreprocessingMode::Culling) | (GpuPreprocessingMode::Culling, mode) => mode,
|
|
(GpuPreprocessingMode::PreprocessingOnly, GpuPreprocessingMode::PreprocessingOnly) => {
|
|
GpuPreprocessingMode::PreprocessingOnly
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The amount of GPU preprocessing (compute and indirect draw) that we do.
|
|
#[derive(Clone, Copy, PartialEq)]
|
|
pub enum GpuPreprocessingMode {
|
|
/// No GPU preprocessing is in use at all.
|
|
///
|
|
/// This is used when GPU compute isn't available.
|
|
None,
|
|
|
|
/// GPU preprocessing is in use, but GPU culling isn't.
|
|
///
|
|
/// This is used when the [`NoIndirectDrawing`] component is present on the
|
|
/// camera.
|
|
PreprocessingOnly,
|
|
|
|
/// Both GPU preprocessing and GPU culling are in use.
|
|
///
|
|
/// This is used by default.
|
|
Culling,
|
|
}
|
|
|
|
/// The GPU buffers holding the data needed to render batches.
|
|
///
|
|
/// For example, in the 3D PBR pipeline this holds `MeshUniform`s, which are the
|
|
/// `BD` type parameter in that mode.
|
|
///
|
|
/// We have a separate *buffer data input* type (`BDI`) here, which a compute
|
|
/// shader is expected to expand to the full buffer data (`BD`) type. GPU
|
|
/// uniform building is generally faster and uses less system RAM to VRAM bus
|
|
/// bandwidth, but only implemented for some pipelines (for example, not in the
|
|
/// 2D pipeline at present) and only when compute shader is available.
|
|
#[derive(Resource)]
|
|
pub struct BatchedInstanceBuffers<BD, BDI>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
BDI: Pod + Default,
|
|
{
|
|
/// A storage area for the buffer data that the GPU compute shader is
|
|
/// expected to write to.
|
|
///
|
|
/// There will be one entry for each index.
|
|
pub data_buffer: UninitBufferVec<BD>,
|
|
|
|
/// The index of the buffer data in the current input buffer that
|
|
/// corresponds to each instance.
|
|
///
|
|
/// This is keyed off each view. Each view has a separate buffer.
|
|
pub work_item_buffers: HashMap<RetainedViewEntity, TypeIdMap<PreprocessWorkItemBuffers>>,
|
|
|
|
/// The uniform data inputs for the current frame.
|
|
///
|
|
/// These are uploaded during the extraction phase.
|
|
pub current_input_buffer: InstanceInputUniformBuffer<BDI>,
|
|
|
|
/// The uniform data inputs for the previous frame.
|
|
///
|
|
/// The indices don't generally line up between `current_input_buffer`
|
|
/// and `previous_input_buffer`, because, among other reasons, entities
|
|
/// can spawn or despawn between frames. Instead, each current buffer
|
|
/// data input uniform is expected to contain the index of the
|
|
/// corresponding buffer data input uniform in this list.
|
|
pub previous_input_buffer: InstanceInputUniformBuffer<BDI>,
|
|
|
|
/// A buffer that holds the number of indexed meshes that weren't visible in
|
|
/// the previous frame, when GPU occlusion culling is in use.
|
|
///
|
|
/// There's one set of [`LatePreprocessWorkItemIndirectParameters`] per
|
|
/// view. Bevy uses this value to determine how many threads to dispatch to
|
|
/// check meshes that weren't visible next frame to see if they became newly
|
|
/// visible this frame.
|
|
pub late_indexed_indirect_parameters_buffer:
|
|
RawBufferVec<LatePreprocessWorkItemIndirectParameters>,
|
|
|
|
/// A buffer that holds the number of non-indexed meshes that weren't
|
|
/// visible in the previous frame, when GPU occlusion culling is in use.
|
|
///
|
|
/// There's one set of [`LatePreprocessWorkItemIndirectParameters`] per
|
|
/// view. Bevy uses this value to determine how many threads to dispatch to
|
|
/// check meshes that weren't visible next frame to see if they became newly
|
|
/// visible this frame.
|
|
pub late_non_indexed_indirect_parameters_buffer:
|
|
RawBufferVec<LatePreprocessWorkItemIndirectParameters>,
|
|
}
|
|
|
|
/// Holds the GPU buffer of instance input data, which is the data about each
|
|
/// mesh instance that the CPU provides.
|
|
///
|
|
/// `BDI` is the *buffer data input* type, which the GPU mesh preprocessing
|
|
/// shader is expected to expand to the full *buffer data* type.
|
|
pub struct InstanceInputUniformBuffer<BDI>
|
|
where
|
|
BDI: Pod + Default,
|
|
{
|
|
/// The buffer containing the data that will be uploaded to the GPU.
|
|
buffer: RawBufferVec<BDI>,
|
|
|
|
/// Indices of slots that are free within the buffer.
|
|
///
|
|
/// When adding data, we preferentially overwrite these slots first before
|
|
/// growing the buffer itself.
|
|
free_uniform_indices: Vec<u32>,
|
|
}
|
|
|
|
impl<BDI> InstanceInputUniformBuffer<BDI>
|
|
where
|
|
BDI: Pod + Default,
|
|
{
|
|
/// Creates a new, empty buffer.
|
|
pub fn new() -> InstanceInputUniformBuffer<BDI> {
|
|
InstanceInputUniformBuffer {
|
|
buffer: RawBufferVec::new(BufferUsages::STORAGE),
|
|
free_uniform_indices: vec![],
|
|
}
|
|
}
|
|
|
|
/// Clears the buffer and entity list out.
|
|
pub fn clear(&mut self) {
|
|
self.buffer.clear();
|
|
self.free_uniform_indices.clear();
|
|
}
|
|
|
|
/// Returns the [`RawBufferVec`] corresponding to this input uniform buffer.
|
|
#[inline]
|
|
pub fn buffer(&self) -> &RawBufferVec<BDI> {
|
|
&self.buffer
|
|
}
|
|
|
|
/// Adds a new piece of buffered data to the uniform buffer and returns its
|
|
/// index.
|
|
pub fn add(&mut self, element: BDI) -> u32 {
|
|
match self.free_uniform_indices.pop() {
|
|
Some(uniform_index) => {
|
|
self.buffer.values_mut()[uniform_index as usize] = element;
|
|
uniform_index
|
|
}
|
|
None => self.buffer.push(element) as u32,
|
|
}
|
|
}
|
|
|
|
/// Removes a piece of buffered data from the uniform buffer.
|
|
///
|
|
/// This simply marks the data as free.
|
|
pub fn remove(&mut self, uniform_index: u32) {
|
|
self.free_uniform_indices.push(uniform_index);
|
|
}
|
|
|
|
/// Returns the piece of buffered data at the given index.
|
|
///
|
|
/// Returns [`None`] if the index is out of bounds or the data is removed.
|
|
pub fn get(&self, uniform_index: u32) -> Option<BDI> {
|
|
if (uniform_index as usize) >= self.buffer.len()
|
|
|| self.free_uniform_indices.contains(&uniform_index)
|
|
{
|
|
None
|
|
} else {
|
|
Some(self.get_unchecked(uniform_index))
|
|
}
|
|
}
|
|
|
|
/// Returns the piece of buffered data at the given index.
|
|
/// Can return data that has previously been removed.
|
|
///
|
|
/// # Panics
|
|
/// if `uniform_index` is not in bounds of [`Self::buffer`].
|
|
pub fn get_unchecked(&self, uniform_index: u32) -> BDI {
|
|
self.buffer.values()[uniform_index as usize]
|
|
}
|
|
|
|
/// Stores a piece of buffered data at the given index.
|
|
///
|
|
/// # Panics
|
|
/// if `uniform_index` is not in bounds of [`Self::buffer`].
|
|
pub fn set(&mut self, uniform_index: u32, element: BDI) {
|
|
self.buffer.values_mut()[uniform_index as usize] = element;
|
|
}
|
|
|
|
// Ensures that the buffers are nonempty, which the GPU requires before an
|
|
// upload can take place.
|
|
pub fn ensure_nonempty(&mut self) {
|
|
if self.buffer.is_empty() {
|
|
self.buffer.push(default());
|
|
}
|
|
}
|
|
|
|
/// Returns the number of instances in this buffer.
|
|
pub fn len(&self) -> usize {
|
|
self.buffer.len()
|
|
}
|
|
|
|
/// Returns true if this buffer has no instances or false if it contains any
|
|
/// instances.
|
|
pub fn is_empty(&self) -> bool {
|
|
self.buffer.is_empty()
|
|
}
|
|
|
|
/// Consumes this [`InstanceInputUniformBuffer`] and returns the raw buffer
|
|
/// ready to be uploaded to the GPU.
|
|
pub fn into_buffer(self) -> RawBufferVec<BDI> {
|
|
self.buffer
|
|
}
|
|
}
|
|
|
|
impl<BDI> Default for InstanceInputUniformBuffer<BDI>
|
|
where
|
|
BDI: Pod + Default,
|
|
{
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// The buffer of GPU preprocessing work items for a single view.
|
|
pub enum PreprocessWorkItemBuffers {
|
|
/// The work items we use if we aren't using indirect drawing.
|
|
///
|
|
/// Because we don't have to separate indexed from non-indexed meshes in
|
|
/// direct mode, we only have a single buffer here.
|
|
Direct(BufferVec<PreprocessWorkItem>),
|
|
|
|
/// The buffer of work items we use if we are using indirect drawing.
|
|
///
|
|
/// We need to separate out indexed meshes from non-indexed meshes in this
|
|
/// case because the indirect parameters for these two types of meshes have
|
|
/// different sizes.
|
|
Indirect {
|
|
/// The buffer of work items corresponding to indexed meshes.
|
|
indexed: BufferVec<PreprocessWorkItem>,
|
|
/// The buffer of work items corresponding to non-indexed meshes.
|
|
non_indexed: BufferVec<PreprocessWorkItem>,
|
|
/// The work item buffers we use when GPU occlusion culling is in use.
|
|
gpu_occlusion_culling: Option<GpuOcclusionCullingWorkItemBuffers>,
|
|
},
|
|
}
|
|
|
|
/// The work item buffers we use when GPU occlusion culling is in use.
|
|
pub struct GpuOcclusionCullingWorkItemBuffers {
|
|
/// The buffer of work items corresponding to indexed meshes.
|
|
pub late_indexed: UninitBufferVec<PreprocessWorkItem>,
|
|
/// The buffer of work items corresponding to non-indexed meshes.
|
|
pub late_non_indexed: UninitBufferVec<PreprocessWorkItem>,
|
|
/// The offset into the
|
|
/// [`BatchedInstanceBuffers::late_indexed_indirect_parameters_buffer`]
|
|
/// where this view's indirect dispatch counts for indexed meshes live.
|
|
pub late_indirect_parameters_indexed_offset: u32,
|
|
/// The offset into the
|
|
/// [`BatchedInstanceBuffers::late_non_indexed_indirect_parameters_buffer`]
|
|
/// where this view's indirect dispatch counts for non-indexed meshes live.
|
|
pub late_indirect_parameters_non_indexed_offset: u32,
|
|
}
|
|
|
|
/// A GPU-side data structure that stores the number of workgroups to dispatch
|
|
/// for the second phase of GPU occlusion culling.
|
|
///
|
|
/// The late mesh preprocessing phase checks meshes that weren't visible frame
|
|
/// to determine if they're potentially visible this frame.
|
|
#[derive(Clone, Copy, ShaderType, Pod, Zeroable)]
|
|
#[repr(C)]
|
|
pub struct LatePreprocessWorkItemIndirectParameters {
|
|
/// The number of workgroups to dispatch.
|
|
///
|
|
/// This will be equal to `work_item_count / 64`, rounded *up*.
|
|
dispatch_x: u32,
|
|
/// The number of workgroups along the abstract Y axis to dispatch: always
|
|
/// 1.
|
|
dispatch_y: u32,
|
|
/// The number of workgroups along the abstract Z axis to dispatch: always
|
|
/// 1.
|
|
dispatch_z: u32,
|
|
/// The actual number of work items.
|
|
///
|
|
/// The GPU indirect dispatch doesn't read this, but it's used internally to
|
|
/// determine the actual number of work items that exist in the late
|
|
/// preprocessing work item buffer.
|
|
work_item_count: u32,
|
|
/// Padding to 64-byte boundaries for some hardware.
|
|
pad: UVec4,
|
|
}
|
|
|
|
impl Default for LatePreprocessWorkItemIndirectParameters {
|
|
fn default() -> LatePreprocessWorkItemIndirectParameters {
|
|
LatePreprocessWorkItemIndirectParameters {
|
|
dispatch_x: 0,
|
|
dispatch_y: 1,
|
|
dispatch_z: 1,
|
|
work_item_count: 0,
|
|
pad: default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the set of work item buffers for the given view, first creating it
|
|
/// if necessary.
|
|
///
|
|
/// Bevy uses work item buffers to tell the mesh preprocessing compute shader
|
|
/// which meshes are to be drawn.
|
|
///
|
|
/// You may need to call this function if you're implementing your own custom
|
|
/// render phases. See the `specialized_mesh_pipeline` example.
|
|
pub fn get_or_create_work_item_buffer<'a, I>(
|
|
work_item_buffers: &'a mut HashMap<RetainedViewEntity, TypeIdMap<PreprocessWorkItemBuffers>>,
|
|
view: RetainedViewEntity,
|
|
no_indirect_drawing: bool,
|
|
enable_gpu_occlusion_culling: bool,
|
|
) -> &'a mut PreprocessWorkItemBuffers
|
|
where
|
|
I: 'static,
|
|
{
|
|
let preprocess_work_item_buffers = match work_item_buffers
|
|
.entry(view)
|
|
.or_default()
|
|
.entry(TypeId::of::<I>())
|
|
{
|
|
Entry::Occupied(occupied_entry) => occupied_entry.into_mut(),
|
|
Entry::Vacant(vacant_entry) => {
|
|
if no_indirect_drawing {
|
|
vacant_entry.insert(PreprocessWorkItemBuffers::Direct(BufferVec::new(
|
|
BufferUsages::STORAGE,
|
|
)))
|
|
} else {
|
|
vacant_entry.insert(PreprocessWorkItemBuffers::Indirect {
|
|
indexed: BufferVec::new(BufferUsages::STORAGE),
|
|
non_indexed: BufferVec::new(BufferUsages::STORAGE),
|
|
// We fill this in below if `enable_gpu_occlusion_culling`
|
|
// is set.
|
|
gpu_occlusion_culling: None,
|
|
})
|
|
}
|
|
}
|
|
};
|
|
|
|
// Initialize the GPU occlusion culling buffers if necessary.
|
|
if let PreprocessWorkItemBuffers::Indirect {
|
|
ref mut gpu_occlusion_culling,
|
|
..
|
|
} = *preprocess_work_item_buffers
|
|
{
|
|
match (
|
|
enable_gpu_occlusion_culling,
|
|
gpu_occlusion_culling.is_some(),
|
|
) {
|
|
(false, false) | (true, true) => {}
|
|
(false, true) => {
|
|
*gpu_occlusion_culling = None;
|
|
}
|
|
(true, false) => {
|
|
*gpu_occlusion_culling = Some(GpuOcclusionCullingWorkItemBuffers {
|
|
late_indexed: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
late_non_indexed: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
late_indirect_parameters_indexed_offset: 0,
|
|
late_indirect_parameters_non_indexed_offset: 0,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
preprocess_work_item_buffers
|
|
}
|
|
|
|
/// Initializes work item buffers for a phase in preparation for a new frame.
|
|
pub fn init_work_item_buffers(
|
|
work_item_buffers: &mut PreprocessWorkItemBuffers,
|
|
late_indexed_indirect_parameters_buffer: &'_ mut RawBufferVec<
|
|
LatePreprocessWorkItemIndirectParameters,
|
|
>,
|
|
late_non_indexed_indirect_parameters_buffer: &'_ mut RawBufferVec<
|
|
LatePreprocessWorkItemIndirectParameters,
|
|
>,
|
|
) {
|
|
// Add the offsets for indirect parameters that the late phase of mesh
|
|
// preprocessing writes to.
|
|
if let PreprocessWorkItemBuffers::Indirect {
|
|
gpu_occlusion_culling:
|
|
Some(GpuOcclusionCullingWorkItemBuffers {
|
|
ref mut late_indirect_parameters_indexed_offset,
|
|
ref mut late_indirect_parameters_non_indexed_offset,
|
|
..
|
|
}),
|
|
..
|
|
} = *work_item_buffers
|
|
{
|
|
*late_indirect_parameters_indexed_offset = late_indexed_indirect_parameters_buffer
|
|
.push(LatePreprocessWorkItemIndirectParameters::default())
|
|
as u32;
|
|
*late_indirect_parameters_non_indexed_offset = late_non_indexed_indirect_parameters_buffer
|
|
.push(LatePreprocessWorkItemIndirectParameters::default())
|
|
as u32;
|
|
}
|
|
}
|
|
|
|
impl PreprocessWorkItemBuffers {
|
|
/// Adds a new work item to the appropriate buffer.
|
|
///
|
|
/// `indexed` specifies whether the work item corresponds to an indexed
|
|
/// mesh.
|
|
pub fn push(&mut self, indexed: bool, preprocess_work_item: PreprocessWorkItem) {
|
|
match *self {
|
|
PreprocessWorkItemBuffers::Direct(ref mut buffer) => {
|
|
buffer.push(preprocess_work_item);
|
|
}
|
|
PreprocessWorkItemBuffers::Indirect {
|
|
indexed: ref mut indexed_buffer,
|
|
non_indexed: ref mut non_indexed_buffer,
|
|
ref mut gpu_occlusion_culling,
|
|
} => {
|
|
if indexed {
|
|
indexed_buffer.push(preprocess_work_item);
|
|
} else {
|
|
non_indexed_buffer.push(preprocess_work_item);
|
|
}
|
|
|
|
if let Some(ref mut gpu_occlusion_culling) = *gpu_occlusion_culling {
|
|
if indexed {
|
|
gpu_occlusion_culling.late_indexed.add();
|
|
} else {
|
|
gpu_occlusion_culling.late_non_indexed.add();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clears out the GPU work item buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
match *self {
|
|
PreprocessWorkItemBuffers::Direct(ref mut buffer) => {
|
|
buffer.clear();
|
|
}
|
|
PreprocessWorkItemBuffers::Indirect {
|
|
indexed: ref mut indexed_buffer,
|
|
non_indexed: ref mut non_indexed_buffer,
|
|
ref mut gpu_occlusion_culling,
|
|
} => {
|
|
indexed_buffer.clear();
|
|
non_indexed_buffer.clear();
|
|
|
|
if let Some(ref mut gpu_occlusion_culling) = *gpu_occlusion_culling {
|
|
gpu_occlusion_culling.late_indexed.clear();
|
|
gpu_occlusion_culling.late_non_indexed.clear();
|
|
gpu_occlusion_culling.late_indirect_parameters_indexed_offset = 0;
|
|
gpu_occlusion_culling.late_indirect_parameters_non_indexed_offset = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// One invocation of the preprocessing shader: i.e. one mesh instance in a
|
|
/// view.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct PreprocessWorkItem {
|
|
/// The index of the batch input data in the input buffer that the shader
|
|
/// reads from.
|
|
pub input_index: u32,
|
|
/// The index of the `MeshUniform` in the output buffer that we write to.
|
|
/// In direct mode, this is the index of the uniform. In indirect mode, this
|
|
/// is the first index uniform in the batch set.
|
|
pub output_index: u32,
|
|
/// The index of the [`IndirectParametersMetadata`] in the
|
|
/// `IndirectParametersBuffers::indexed_metadata` or
|
|
/// `IndirectParametersBuffers::non_indexed_metadata`.
|
|
pub indirect_parameters_index: u32,
|
|
}
|
|
|
|
/// The `wgpu` indirect parameters structure that specifies a GPU draw command.
|
|
///
|
|
/// This is the variant for indexed meshes. We generate the instances of this
|
|
/// structure in the `build_indirect_params.wgsl` compute shader.
|
|
#[derive(Clone, Copy, Debug, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersIndexed {
|
|
/// The number of indices that this mesh has.
|
|
pub index_count: u32,
|
|
/// The number of instances we are to draw.
|
|
pub instance_count: u32,
|
|
/// The offset of the first index for this mesh in the index buffer slab.
|
|
pub first_index: u32,
|
|
/// The offset of the first vertex for this mesh in the vertex buffer slab.
|
|
pub base_vertex: u32,
|
|
/// The index of the first mesh instance in the `MeshUniform` buffer.
|
|
pub first_instance: u32,
|
|
}
|
|
|
|
/// The `wgpu` indirect parameters structure that specifies a GPU draw command.
|
|
///
|
|
/// This is the variant for non-indexed meshes. We generate the instances of
|
|
/// this structure in the `build_indirect_params.wgsl` compute shader.
|
|
#[derive(Clone, Copy, Debug, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersNonIndexed {
|
|
/// The number of vertices that this mesh has.
|
|
pub vertex_count: u32,
|
|
/// The number of instances we are to draw.
|
|
pub instance_count: u32,
|
|
/// The offset of the first vertex for this mesh in the vertex buffer slab.
|
|
pub base_vertex: u32,
|
|
/// The index of the first mesh instance in the `Mesh` buffer.
|
|
pub first_instance: u32,
|
|
}
|
|
|
|
/// A structure, shared between CPU and GPU, that records how many instances of
|
|
/// each mesh are actually to be drawn.
|
|
///
|
|
/// The CPU writes to this structure in order to initialize the fields other
|
|
/// than [`Self::early_instance_count`] and [`Self::late_instance_count`]. The
|
|
/// GPU mesh preprocessing shader increments the [`Self::early_instance_count`]
|
|
/// and [`Self::late_instance_count`] as it determines that meshes are visible.
|
|
/// The indirect parameter building shader reads this metadata in order to
|
|
/// construct the indirect draw parameters.
|
|
///
|
|
/// Each batch will have one instance of this structure.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersMetadata {
|
|
/// The index of the mesh in the array of `MeshInputUniform`s.
|
|
pub mesh_index: u32,
|
|
|
|
/// The index of the first instance of this mesh in the array of
|
|
/// `MeshUniform`s.
|
|
///
|
|
/// Note that this is the *first* output index in this batch. Since each
|
|
/// instance of this structure refers to arbitrarily many instances, the
|
|
/// `MeshUniform`s corresponding to this batch span the indices
|
|
/// `base_output_index..(base_output_index + instance_count)`.
|
|
pub base_output_index: u32,
|
|
|
|
/// The index of the batch set that this batch belongs to in the
|
|
/// [`IndirectBatchSet`] buffer.
|
|
///
|
|
/// A *batch set* is a set of meshes that may be multi-drawn together.
|
|
/// Multiple batches (and therefore multiple instances of
|
|
/// [`IndirectParametersMetadata`] structures) can be part of the same batch
|
|
/// set.
|
|
pub batch_set_index: u32,
|
|
|
|
/// The number of instances that were judged visible last frame.
|
|
///
|
|
/// The CPU sets this value to 0, and the GPU mesh preprocessing shader
|
|
/// increments it as it culls mesh instances.
|
|
pub early_instance_count: u32,
|
|
|
|
/// The number of instances that have been judged potentially visible this
|
|
/// frame that weren't in the last frame's potentially visible set.
|
|
///
|
|
/// The CPU sets this value to 0, and the GPU mesh preprocessing shader
|
|
/// increments it as it culls mesh instances.
|
|
pub late_instance_count: u32,
|
|
}
|
|
|
|
/// A structure, shared between CPU and GPU, that holds the number of on-GPU
|
|
/// indirect draw commands for each *batch set*.
|
|
///
|
|
/// A *batch set* is a set of meshes that may be multi-drawn together.
|
|
///
|
|
/// If the current hardware and driver support `multi_draw_indirect_count`, the
|
|
/// indirect parameters building shader increments
|
|
/// [`Self::indirect_parameters_count`] as it generates indirect parameters. The
|
|
/// `multi_draw_indirect_count` command reads
|
|
/// [`Self::indirect_parameters_count`] in order to determine how many commands
|
|
/// belong to each batch set.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectBatchSet {
|
|
/// The number of indirect parameter commands (i.e. batches) in this batch
|
|
/// set.
|
|
///
|
|
/// The CPU sets this value to 0 before uploading this structure to GPU. The
|
|
/// indirect parameters building shader increments this value as it creates
|
|
/// indirect parameters. Then the `multi_draw_indirect_count` command reads
|
|
/// this value in order to determine how many indirect draw commands to
|
|
/// process.
|
|
pub indirect_parameters_count: u32,
|
|
|
|
/// The offset within the `IndirectParametersBuffers::indexed_data` or
|
|
/// `IndirectParametersBuffers::non_indexed_data` of the first indirect draw
|
|
/// command for this batch set.
|
|
///
|
|
/// The CPU fills out this value.
|
|
pub indirect_parameters_base: u32,
|
|
}
|
|
|
|
/// The buffers containing all the information that indirect draw commands
|
|
/// (`multi_draw_indirect`, `multi_draw_indirect_count`) use to draw the scene.
|
|
///
|
|
/// In addition to the indirect draw buffers themselves, this structure contains
|
|
/// the buffers that store [`IndirectParametersMetadata`], which are the
|
|
/// structures that culling writes to so that the indirect parameter building
|
|
/// pass can determine how many meshes are actually to be drawn.
|
|
///
|
|
/// These buffers will remain empty if indirect drawing isn't in use.
|
|
#[derive(Resource)]
|
|
pub struct IndirectParametersBuffers {
|
|
/// The GPU buffer that stores the indirect draw parameters for non-indexed
|
|
/// meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, while the
|
|
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
|
|
/// it to perform the draws.
|
|
non_indexed_data: UninitBufferVec<IndirectParametersNonIndexed>,
|
|
|
|
/// The GPU buffer that holds the data used to construct indirect draw
|
|
/// parameters for non-indexed meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
non_indexed_metadata: RawBufferVec<IndirectParametersMetadata>,
|
|
|
|
/// The GPU buffer that holds the number of indirect draw commands for each
|
|
/// phase of each view, for non-indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, and the
|
|
/// `multi_draw_indirect_count` command reads from it in order to know how
|
|
/// many indirect draw commands to process.
|
|
non_indexed_batch_sets: RawBufferVec<IndirectBatchSet>,
|
|
|
|
/// The GPU buffer that stores the indirect draw parameters for indexed
|
|
/// meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, while the
|
|
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
|
|
/// it to perform the draws.
|
|
indexed_data: UninitBufferVec<IndirectParametersIndexed>,
|
|
|
|
/// The GPU buffer that holds the data used to construct indirect draw
|
|
/// parameters for indexed meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
indexed_metadata: RawBufferVec<IndirectParametersMetadata>,
|
|
|
|
/// The GPU buffer that holds the number of indirect draw commands for each
|
|
/// phase of each view, for indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, and the
|
|
/// `multi_draw_indirect_count` command reads from it in order to know how
|
|
/// many indirect draw commands to process.
|
|
indexed_batch_sets: RawBufferVec<IndirectBatchSet>,
|
|
}
|
|
|
|
impl IndirectParametersBuffers {
|
|
/// Creates the indirect parameters buffers.
|
|
pub fn new(allow_copies_from_indirect_parameter_buffers: bool) -> IndirectParametersBuffers {
|
|
let mut indirect_parameter_buffer_usages = BufferUsages::STORAGE | BufferUsages::INDIRECT;
|
|
if allow_copies_from_indirect_parameter_buffers {
|
|
indirect_parameter_buffer_usages |= BufferUsages::COPY_SRC;
|
|
}
|
|
|
|
IndirectParametersBuffers {
|
|
non_indexed_data: UninitBufferVec::new(indirect_parameter_buffer_usages),
|
|
non_indexed_metadata: RawBufferVec::new(BufferUsages::STORAGE),
|
|
non_indexed_batch_sets: RawBufferVec::new(indirect_parameter_buffer_usages),
|
|
indexed_data: UninitBufferVec::new(indirect_parameter_buffer_usages),
|
|
indexed_metadata: RawBufferVec::new(BufferUsages::STORAGE),
|
|
indexed_batch_sets: RawBufferVec::new(indirect_parameter_buffer_usages),
|
|
}
|
|
}
|
|
|
|
/// Returns the GPU buffer that stores the indirect draw parameters for
|
|
/// indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, while the
|
|
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
|
|
/// it to perform the draws.
|
|
#[inline]
|
|
pub fn indexed_data_buffer(&self) -> Option<&Buffer> {
|
|
self.indexed_data.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the data used to construct indirect
|
|
/// draw parameters for indexed meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
#[inline]
|
|
pub fn indexed_metadata_buffer(&self) -> Option<&Buffer> {
|
|
self.indexed_metadata.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the number of indirect draw commands
|
|
/// for each phase of each view, for indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, and the
|
|
/// `multi_draw_indirect_count` command reads from it in order to know how
|
|
/// many indirect draw commands to process.
|
|
#[inline]
|
|
pub fn indexed_batch_sets_buffer(&self) -> Option<&Buffer> {
|
|
self.indexed_batch_sets.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that stores the indirect draw parameters for
|
|
/// non-indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, while the
|
|
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
|
|
/// it to perform the draws.
|
|
#[inline]
|
|
pub fn non_indexed_data_buffer(&self) -> Option<&Buffer> {
|
|
self.non_indexed_data.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the data used to construct indirect
|
|
/// draw parameters for non-indexed meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
#[inline]
|
|
pub fn non_indexed_metadata_buffer(&self) -> Option<&Buffer> {
|
|
self.non_indexed_metadata.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the number of indirect draw commands
|
|
/// for each phase of each view, for non-indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, and the
|
|
/// `multi_draw_indirect_count` command reads from it in order to know how
|
|
/// many indirect draw commands to process.
|
|
#[inline]
|
|
pub fn non_indexed_batch_sets_buffer(&self) -> Option<&Buffer> {
|
|
self.non_indexed_batch_sets.buffer()
|
|
}
|
|
|
|
/// Reserves space for `count` new batches corresponding to indexed meshes.
|
|
///
|
|
/// This allocates in both the [`Self::indexed_metadata`] and
|
|
/// [`Self::indexed_data`] buffers.
|
|
fn allocate_indexed(&mut self, count: u32) -> u32 {
|
|
let length = self.indexed_data.len();
|
|
self.indexed_metadata.reserve_internal(count as usize);
|
|
for _ in 0..count {
|
|
self.indexed_data.add();
|
|
self.indexed_metadata
|
|
.push(IndirectParametersMetadata::default());
|
|
}
|
|
length as u32
|
|
}
|
|
|
|
/// Reserves space for `count` new batches corresponding to non-indexed
|
|
/// meshes.
|
|
///
|
|
/// This allocates in both the `non_indexed_metadata` and `non_indexed_data`
|
|
/// buffers.
|
|
pub fn allocate_non_indexed(&mut self, count: u32) -> u32 {
|
|
let length = self.non_indexed_data.len();
|
|
self.non_indexed_metadata.reserve_internal(count as usize);
|
|
for _ in 0..count {
|
|
self.non_indexed_data.add();
|
|
self.non_indexed_metadata
|
|
.push(IndirectParametersMetadata::default());
|
|
}
|
|
length as u32
|
|
}
|
|
|
|
/// Reserves space for `count` new batches.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes that these batches
|
|
/// correspond to are indexed or not.
|
|
pub fn allocate(&mut self, indexed: bool, count: u32) -> u32 {
|
|
if indexed {
|
|
self.allocate_indexed(count)
|
|
} else {
|
|
self.allocate_non_indexed(count)
|
|
}
|
|
}
|
|
|
|
/// Initializes the batch corresponding to an indexed mesh at the given
|
|
/// index with the given [`IndirectParametersMetadata`].
|
|
pub fn set_indexed(&mut self, index: u32, value: IndirectParametersMetadata) {
|
|
self.indexed_metadata.set(index, value);
|
|
}
|
|
|
|
/// Initializes the batch corresponding to a non-indexed mesh at the given
|
|
/// index with the given [`IndirectParametersMetadata`].
|
|
pub fn set_non_indexed(&mut self, index: u32, value: IndirectParametersMetadata) {
|
|
self.non_indexed_metadata.set(index, value);
|
|
}
|
|
|
|
/// Returns the number of batches currently allocated.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes that these batches
|
|
/// correspond to are indexed or not.
|
|
fn batch_count(&self, indexed: bool) -> usize {
|
|
if indexed {
|
|
self.indexed_batch_count()
|
|
} else {
|
|
self.non_indexed_batch_count()
|
|
}
|
|
}
|
|
|
|
/// Returns the number of batches corresponding to indexed meshes that are
|
|
/// currently allocated.
|
|
#[inline]
|
|
pub fn indexed_batch_count(&self) -> usize {
|
|
self.indexed_data.len()
|
|
}
|
|
|
|
/// Returns the number of batches corresponding to non-indexed meshes that
|
|
/// are currently allocated.
|
|
#[inline]
|
|
pub fn non_indexed_batch_count(&self) -> usize {
|
|
self.non_indexed_data.len()
|
|
}
|
|
|
|
/// Returns the number of batch sets currently allocated.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes that these batch
|
|
/// sets correspond to are indexed or not.
|
|
pub fn batch_set_count(&self, indexed: bool) -> usize {
|
|
if indexed {
|
|
self.indexed_batch_sets.len()
|
|
} else {
|
|
self.non_indexed_batch_sets.len()
|
|
}
|
|
}
|
|
|
|
/// Adds a new batch set to `Self::indexed_batch_sets` or
|
|
/// `Self::non_indexed_batch_sets` as appropriate.
|
|
///
|
|
/// `indexed` specifies whether the meshes that these batch sets correspond
|
|
/// to are indexed or not. `indirect_parameters_base` specifies the offset
|
|
/// within `Self::indexed_data` or `Self::non_indexed_data` of the first
|
|
/// batch in this batch set.
|
|
pub fn add_batch_set(&mut self, indexed: bool, indirect_parameters_base: u32) {
|
|
if indexed {
|
|
self.indexed_batch_sets.push(IndirectBatchSet {
|
|
indirect_parameters_base,
|
|
indirect_parameters_count: 0,
|
|
});
|
|
} else {
|
|
self.non_indexed_batch_sets.push(IndirectBatchSet {
|
|
indirect_parameters_base,
|
|
indirect_parameters_count: 0,
|
|
});
|
|
}
|
|
}
|
|
|
|
pub fn get_next_batch_set_index(&self, indexed: bool) -> Option<NonMaxU32> {
|
|
NonMaxU32::new(self.batch_set_count(indexed) as u32)
|
|
}
|
|
}
|
|
|
|
impl Default for IndirectParametersBuffers {
|
|
fn default() -> Self {
|
|
// By default, we don't allow GPU indirect parameter mapping, since
|
|
// that's a debugging option.
|
|
Self::new(false)
|
|
}
|
|
}
|
|
|
|
impl FromWorld for GpuPreprocessingSupport {
|
|
fn from_world(world: &mut World) -> Self {
|
|
let adapter = world.resource::<RenderAdapter>();
|
|
let device = world.resource::<RenderDevice>();
|
|
|
|
// Filter some Qualcomm devices on Android as they crash when using GPU
|
|
// preprocessing.
|
|
// We filter out Adreno 730 and earlier GPUs (except 720, as it's newer
|
|
// than 730).
|
|
fn is_non_supported_android_device(adapter: &RenderAdapter) -> bool {
|
|
crate::get_adreno_model(adapter).is_some_and(|model| model != 720 && model <= 730)
|
|
}
|
|
|
|
let max_supported_mode = if device.limits().max_compute_workgroup_size_x == 0 ||
|
|
is_non_supported_android_device(adapter)
|
|
{
|
|
GpuPreprocessingMode::None
|
|
} else if !device
|
|
.features()
|
|
.contains(Features::INDIRECT_FIRST_INSTANCE | Features::MULTI_DRAW_INDIRECT) ||
|
|
!adapter.get_downlevel_capabilities().flags.contains(
|
|
DownlevelFlags::VERTEX_AND_INSTANCE_INDEX_RESPECTS_RESPECTIVE_FIRST_VALUE_IN_INDIRECT_DRAW)
|
|
{
|
|
GpuPreprocessingMode::PreprocessingOnly
|
|
} else {
|
|
GpuPreprocessingMode::Culling
|
|
};
|
|
|
|
GpuPreprocessingSupport { max_supported_mode }
|
|
}
|
|
}
|
|
|
|
impl<BD, BDI> BatchedInstanceBuffers<BD, BDI>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
BDI: Pod + Sync + Send + Default + 'static,
|
|
{
|
|
/// Creates new buffers.
|
|
pub fn new() -> Self {
|
|
BatchedInstanceBuffers {
|
|
data_buffer: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
work_item_buffers: HashMap::default(),
|
|
current_input_buffer: InstanceInputUniformBuffer::new(),
|
|
previous_input_buffer: InstanceInputUniformBuffer::new(),
|
|
late_indexed_indirect_parameters_buffer: RawBufferVec::new(
|
|
BufferUsages::STORAGE | BufferUsages::INDIRECT,
|
|
),
|
|
late_non_indexed_indirect_parameters_buffer: RawBufferVec::new(
|
|
BufferUsages::STORAGE | BufferUsages::INDIRECT,
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Returns the binding of the buffer that contains the per-instance data.
|
|
///
|
|
/// This buffer needs to be filled in via a compute shader.
|
|
pub fn instance_data_binding(&self) -> Option<BindingResource> {
|
|
self.data_buffer
|
|
.buffer()
|
|
.map(|buffer| buffer.as_entire_binding())
|
|
}
|
|
|
|
/// Clears out the buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
self.data_buffer.clear();
|
|
self.late_indexed_indirect_parameters_buffer.clear();
|
|
self.late_non_indexed_indirect_parameters_buffer.clear();
|
|
|
|
// Clear each individual set of buffers, but don't depopulate the hash
|
|
// table. We want to avoid reallocating these vectors every frame.
|
|
for view_work_item_buffers in self.work_item_buffers.values_mut() {
|
|
for phase_work_item_buffers in view_work_item_buffers.values_mut() {
|
|
phase_work_item_buffers.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<BD, BDI> Default for BatchedInstanceBuffers<BD, BDI>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
BDI: Pod + Default + Sync + Send + 'static,
|
|
{
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// Information about a render batch that we're building up during a sorted
|
|
/// render phase.
|
|
struct SortedRenderBatch<F>
|
|
where
|
|
F: GetBatchData,
|
|
{
|
|
/// The index of the first phase item in this batch in the list of phase
|
|
/// items.
|
|
phase_item_start_index: u32,
|
|
|
|
/// The index of the first instance in this batch in the instance buffer.
|
|
instance_start_index: u32,
|
|
|
|
/// True if the mesh in question has an index buffer; false otherwise.
|
|
indexed: bool,
|
|
|
|
/// The index of the indirect parameters for this batch in the
|
|
/// [`IndirectParametersBuffers`].
|
|
///
|
|
/// If CPU culling is being used, then this will be `None`.
|
|
indirect_parameters_index: Option<NonMaxU32>,
|
|
|
|
/// Metadata that can be used to determine whether an instance can be placed
|
|
/// into this batch.
|
|
///
|
|
/// If `None`, the item inside is unbatchable.
|
|
meta: Option<BatchMeta<F::CompareData>>,
|
|
}
|
|
|
|
impl<F> SortedRenderBatch<F>
|
|
where
|
|
F: GetBatchData,
|
|
{
|
|
/// Finalizes this batch and updates the [`SortedRenderPhase`] with the
|
|
/// appropriate indices.
|
|
///
|
|
/// `instance_end_index` is the index of the last instance in this batch
|
|
/// plus one.
|
|
fn flush<I>(
|
|
self,
|
|
instance_end_index: u32,
|
|
phase: &mut SortedRenderPhase<I>,
|
|
indirect_parameters_buffers: &mut IndirectParametersBuffers,
|
|
) where
|
|
I: CachedRenderPipelinePhaseItem + SortedPhaseItem,
|
|
{
|
|
let (batch_range, batch_extra_index) =
|
|
phase.items[self.phase_item_start_index as usize].batch_range_and_extra_index_mut();
|
|
*batch_range = self.instance_start_index..instance_end_index;
|
|
*batch_extra_index = match self.indirect_parameters_index {
|
|
Some(indirect_parameters_index) => PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: u32::from(indirect_parameters_index)
|
|
..(u32::from(indirect_parameters_index) + 1),
|
|
batch_set_index: None,
|
|
},
|
|
None => PhaseItemExtraIndex::None,
|
|
};
|
|
if let Some(indirect_parameters_index) = self.indirect_parameters_index {
|
|
indirect_parameters_buffers
|
|
.add_batch_set(self.indexed, indirect_parameters_index.into());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A system that runs early in extraction and clears out all the
|
|
/// [`BatchedInstanceBuffers`] for the frame.
|
|
///
|
|
/// We have to run this during extraction because, if GPU preprocessing is in
|
|
/// use, the extraction phase will write to the mesh input uniform buffers
|
|
/// directly, so the buffers need to be cleared before then.
|
|
pub fn clear_batched_gpu_instance_buffers<GFBD>(
|
|
gpu_batched_instance_buffers: Option<
|
|
ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
|
|
>,
|
|
) where
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
if let Some(mut gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
|
|
gpu_batched_instance_buffers.clear();
|
|
}
|
|
}
|
|
|
|
/// A system that removes GPU preprocessing work item buffers that correspond to
|
|
/// deleted [`ExtractedView`]s.
|
|
///
|
|
/// This is a separate system from [`clear_batched_gpu_instance_buffers`]
|
|
/// because [`ExtractedView`]s aren't created until after the extraction phase
|
|
/// is completed.
|
|
pub fn delete_old_work_item_buffers<GFBD>(
|
|
mut gpu_batched_instance_buffers: ResMut<
|
|
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
|
|
>,
|
|
extracted_views: Query<&ExtractedView>,
|
|
) where
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
let retained_view_entities: HashSet<_> = extracted_views
|
|
.iter()
|
|
.map(|extracted_view| extracted_view.retained_view_entity)
|
|
.collect();
|
|
gpu_batched_instance_buffers
|
|
.work_item_buffers
|
|
.retain(|retained_view_entity, _| retained_view_entities.contains(retained_view_entity));
|
|
}
|
|
|
|
/// Batch the items in a sorted render phase, when GPU instance buffer building
|
|
/// is in use. This means comparing metadata needed to draw each phase item and
|
|
/// trying to combine the draws into a batch.
|
|
pub fn batch_and_prepare_sorted_render_phase<I, GFBD>(
|
|
gpu_array_buffer: ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
mut sorted_render_phases: ResMut<ViewSortedRenderPhases<I>>,
|
|
mut views: Query<(
|
|
&ExtractedView,
|
|
Has<NoIndirectDrawing>,
|
|
Has<OcclusionCulling>,
|
|
)>,
|
|
system_param_item: StaticSystemParam<GFBD::Param>,
|
|
) where
|
|
I: CachedRenderPipelinePhaseItem + SortedPhaseItem,
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
// We only process GPU-built batch data in this function.
|
|
let BatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
..
|
|
} = gpu_array_buffer.into_inner();
|
|
|
|
for (extracted_view, no_indirect_drawing, gpu_occlusion_culling) in &mut views {
|
|
let Some(phase) = sorted_render_phases.get_mut(&extracted_view.retained_view_entity) else {
|
|
continue;
|
|
};
|
|
|
|
// Create the work item buffer if necessary.
|
|
let work_item_buffer = get_or_create_work_item_buffer::<I>(
|
|
work_item_buffers,
|
|
extracted_view.retained_view_entity,
|
|
no_indirect_drawing,
|
|
gpu_occlusion_culling,
|
|
);
|
|
|
|
// Initialize those work item buffers in preparation for this new frame.
|
|
init_work_item_buffers(
|
|
work_item_buffer,
|
|
late_indexed_indirect_parameters_buffer,
|
|
late_non_indexed_indirect_parameters_buffer,
|
|
);
|
|
|
|
// Walk through the list of phase items, building up batches as we go.
|
|
let mut batch: Option<SortedRenderBatch<GFBD>> = None;
|
|
|
|
let mut first_output_index = data_buffer.len() as u32;
|
|
|
|
for current_index in 0..phase.items.len() {
|
|
// Get the index of the input data, and comparison metadata, for
|
|
// this entity.
|
|
let item = &phase.items[current_index];
|
|
let entity = item.main_entity();
|
|
let item_is_indexed = item.indexed();
|
|
let current_batch_input_index =
|
|
GFBD::get_index_and_compare_data(&system_param_item, entity);
|
|
|
|
// Unpack that index and metadata. Note that it's possible for index
|
|
// and/or metadata to not be present, which signifies that this
|
|
// entity is unbatchable. In that case, we break the batch here.
|
|
// If the index isn't present the item is not part of this pipeline and so will be skipped.
|
|
let Some((current_input_index, current_meta)) = current_batch_input_index else {
|
|
// Break a batch if we need to.
|
|
if let Some(batch) = batch.take() {
|
|
batch.flush(
|
|
data_buffer.len() as u32,
|
|
phase,
|
|
&mut indirect_parameters_buffers,
|
|
);
|
|
}
|
|
|
|
continue;
|
|
};
|
|
let current_meta =
|
|
current_meta.map(|meta| BatchMeta::new(&phase.items[current_index], meta));
|
|
|
|
// Determine if this entity can be included in the batch we're
|
|
// building up.
|
|
let can_batch = batch.as_ref().is_some_and(|batch| {
|
|
// `None` for metadata indicates that the items are unbatchable.
|
|
match (¤t_meta, &batch.meta) {
|
|
(Some(current_meta), Some(batch_meta)) => current_meta == batch_meta,
|
|
(_, _) => false,
|
|
}
|
|
});
|
|
|
|
// Make space in the data buffer for this instance.
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
// If we can't batch, break the existing batch and make a new one.
|
|
if !can_batch {
|
|
// Break a batch if we need to.
|
|
if let Some(batch) = batch.take() {
|
|
batch.flush(output_index, phase, &mut indirect_parameters_buffers);
|
|
}
|
|
|
|
let indirect_parameters_index = if no_indirect_drawing {
|
|
None
|
|
} else if item_is_indexed {
|
|
Some(indirect_parameters_buffers.allocate_indexed(1))
|
|
} else {
|
|
Some(indirect_parameters_buffers.allocate_non_indexed(1))
|
|
};
|
|
|
|
// Start a new batch.
|
|
if let Some(indirect_parameters_index) = indirect_parameters_index {
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
current_input_index.into(),
|
|
item_is_indexed,
|
|
output_index,
|
|
None,
|
|
&mut indirect_parameters_buffers,
|
|
indirect_parameters_index,
|
|
);
|
|
};
|
|
|
|
batch = Some(SortedRenderBatch {
|
|
phase_item_start_index: current_index as u32,
|
|
instance_start_index: output_index,
|
|
indexed: item_is_indexed,
|
|
indirect_parameters_index: indirect_parameters_index.and_then(NonMaxU32::new),
|
|
meta: current_meta,
|
|
});
|
|
|
|
first_output_index = output_index;
|
|
}
|
|
|
|
// Add a new preprocessing work item so that the preprocessing
|
|
// shader will copy the per-instance data over.
|
|
if let Some(batch) = batch.as_ref() {
|
|
work_item_buffer.push(
|
|
item_is_indexed,
|
|
PreprocessWorkItem {
|
|
input_index: current_input_index.into(),
|
|
output_index: if no_indirect_drawing {
|
|
output_index
|
|
} else {
|
|
first_output_index
|
|
},
|
|
indirect_parameters_index: match batch.indirect_parameters_index {
|
|
Some(indirect_parameters_index) => indirect_parameters_index.into(),
|
|
None => 0,
|
|
},
|
|
},
|
|
);
|
|
}
|
|
}
|
|
|
|
// Flush the final batch if necessary.
|
|
if let Some(batch) = batch.take() {
|
|
batch.flush(
|
|
data_buffer.len() as u32,
|
|
phase,
|
|
&mut indirect_parameters_buffers,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Creates batches for a render phase that uses bins.
|
|
pub fn batch_and_prepare_binned_render_phase<BPI, GFBD>(
|
|
gpu_array_buffer: ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
mut binned_render_phases: ResMut<ViewBinnedRenderPhases<BPI>>,
|
|
mut views: Query<
|
|
(
|
|
&ExtractedView,
|
|
Has<NoIndirectDrawing>,
|
|
Has<OcclusionCulling>,
|
|
),
|
|
With<ExtractedView>,
|
|
>,
|
|
param: StaticSystemParam<GFBD::Param>,
|
|
) where
|
|
BPI: BinnedPhaseItem,
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
let system_param_item = param.into_inner();
|
|
|
|
let BatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
..
|
|
} = gpu_array_buffer.into_inner();
|
|
|
|
for (extracted_view, no_indirect_drawing, gpu_occlusion_culling) in &mut views {
|
|
let Some(phase) = binned_render_phases.get_mut(&extracted_view.retained_view_entity) else {
|
|
continue;
|
|
};
|
|
|
|
// Create the work item buffer if necessary; otherwise, just mark it as
|
|
// used this frame.
|
|
let work_item_buffer = get_or_create_work_item_buffer::<BPI>(
|
|
work_item_buffers,
|
|
extracted_view.retained_view_entity,
|
|
no_indirect_drawing,
|
|
gpu_occlusion_culling,
|
|
);
|
|
|
|
// Initialize those work item buffers in preparation for this new frame.
|
|
init_work_item_buffers(
|
|
work_item_buffer,
|
|
late_indexed_indirect_parameters_buffer,
|
|
late_non_indexed_indirect_parameters_buffer,
|
|
);
|
|
|
|
// Prepare multidrawables.
|
|
|
|
for batch_set_key in &phase.multidrawable_mesh_keys {
|
|
let mut batch_set = None;
|
|
let indirect_parameters_base =
|
|
indirect_parameters_buffers.batch_count(batch_set_key.indexed()) as u32;
|
|
for (bin_key, bin) in &phase.multidrawable_mesh_values[batch_set_key] {
|
|
let first_output_index = data_buffer.len() as u32;
|
|
let mut batch: Option<BinnedRenderPhaseBatch> = None;
|
|
|
|
for main_entity in bin.entities() {
|
|
let Some(input_index) =
|
|
GFBD::get_binned_index(&system_param_item, *main_entity)
|
|
else {
|
|
continue;
|
|
};
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
match batch {
|
|
Some(ref mut batch) => {
|
|
// Append to the current batch.
|
|
batch.instance_range.end = output_index + 1;
|
|
work_item_buffer.push(
|
|
batch_set_key.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index: first_output_index,
|
|
indirect_parameters_index: match batch.extra_index {
|
|
PhaseItemExtraIndex::IndirectParametersIndex {
|
|
ref range,
|
|
..
|
|
} => range.start,
|
|
PhaseItemExtraIndex::DynamicOffset(_)
|
|
| PhaseItemExtraIndex::None => 0,
|
|
},
|
|
},
|
|
);
|
|
}
|
|
|
|
None => {
|
|
// Start a new batch, in indirect mode.
|
|
let indirect_parameters_index =
|
|
indirect_parameters_buffers.allocate(batch_set_key.indexed(), 1);
|
|
let batch_set_index = indirect_parameters_buffers
|
|
.get_next_batch_set_index(batch_set_key.indexed());
|
|
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
input_index.into(),
|
|
batch_set_key.indexed(),
|
|
output_index,
|
|
batch_set_index,
|
|
&mut indirect_parameters_buffers,
|
|
indirect_parameters_index,
|
|
);
|
|
work_item_buffer.push(
|
|
batch_set_key.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index: first_output_index,
|
|
indirect_parameters_index,
|
|
},
|
|
);
|
|
batch = Some(BinnedRenderPhaseBatch {
|
|
representative_entity: (Entity::PLACEHOLDER, *main_entity),
|
|
instance_range: output_index..output_index + 1,
|
|
extra_index: PhaseItemExtraIndex::maybe_indirect_parameters_index(
|
|
NonMaxU32::new(indirect_parameters_index),
|
|
),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Some(batch) = batch {
|
|
match batch_set {
|
|
None => {
|
|
batch_set = Some(BinnedRenderPhaseBatchSet {
|
|
first_batch: batch,
|
|
batch_count: 1,
|
|
bin_key: bin_key.clone(),
|
|
index: indirect_parameters_buffers
|
|
.batch_set_count(batch_set_key.indexed())
|
|
as u32,
|
|
});
|
|
}
|
|
Some(ref mut batch_set) => {
|
|
batch_set.batch_count += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if let BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut batch_sets) =
|
|
phase.batch_sets
|
|
{
|
|
if let Some(batch_set) = batch_set {
|
|
batch_sets.push(batch_set);
|
|
indirect_parameters_buffers
|
|
.add_batch_set(batch_set_key.indexed(), indirect_parameters_base);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare batchables.
|
|
|
|
for key in &phase.batchable_mesh_keys {
|
|
let first_output_index = data_buffer.len() as u32;
|
|
|
|
let mut batch: Option<BinnedRenderPhaseBatch> = None;
|
|
for main_entity in phase.batchable_mesh_values[key].entities() {
|
|
let Some(input_index) = GFBD::get_binned_index(&system_param_item, *main_entity)
|
|
else {
|
|
continue;
|
|
};
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
match batch {
|
|
Some(ref mut batch) => {
|
|
batch.instance_range.end = output_index + 1;
|
|
|
|
// Append to the current batch.
|
|
//
|
|
// If we're in indirect mode, then we write the first
|
|
// output index of this batch, so that we have a
|
|
// tightly-packed buffer if GPU culling discards some of
|
|
// the instances. Otherwise, we can just write the
|
|
// output index directly.
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index: if no_indirect_drawing {
|
|
output_index
|
|
} else {
|
|
first_output_index
|
|
},
|
|
indirect_parameters_index: match batch.extra_index {
|
|
PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: ref indirect_parameters_range,
|
|
..
|
|
} => indirect_parameters_range.start,
|
|
PhaseItemExtraIndex::DynamicOffset(_)
|
|
| PhaseItemExtraIndex::None => 0,
|
|
},
|
|
},
|
|
);
|
|
}
|
|
|
|
None if !no_indirect_drawing => {
|
|
// Start a new batch, in indirect mode.
|
|
let indirect_parameters_index =
|
|
indirect_parameters_buffers.allocate(key.0.indexed(), 1);
|
|
let batch_set_index =
|
|
indirect_parameters_buffers.get_next_batch_set_index(key.0.indexed());
|
|
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
input_index.into(),
|
|
key.0.indexed(),
|
|
output_index,
|
|
batch_set_index,
|
|
&mut indirect_parameters_buffers,
|
|
indirect_parameters_index,
|
|
);
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index: first_output_index,
|
|
indirect_parameters_index,
|
|
},
|
|
);
|
|
batch = Some(BinnedRenderPhaseBatch {
|
|
representative_entity: (Entity::PLACEHOLDER, *main_entity),
|
|
instance_range: output_index..output_index + 1,
|
|
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: indirect_parameters_index..(indirect_parameters_index + 1),
|
|
batch_set_index: None,
|
|
},
|
|
});
|
|
}
|
|
|
|
None => {
|
|
// Start a new batch, in direct mode.
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index,
|
|
indirect_parameters_index: 0,
|
|
},
|
|
);
|
|
batch = Some(BinnedRenderPhaseBatch {
|
|
representative_entity: (Entity::PLACEHOLDER, *main_entity),
|
|
instance_range: output_index..output_index + 1,
|
|
extra_index: PhaseItemExtraIndex::None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Some(batch) = batch {
|
|
match phase.batch_sets {
|
|
BinnedRenderPhaseBatchSets::DynamicUniforms(_) => {
|
|
error!("Dynamic uniform batch sets shouldn't be used here");
|
|
}
|
|
BinnedRenderPhaseBatchSets::Direct(ref mut vec) => {
|
|
vec.push(batch);
|
|
}
|
|
BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut vec) => {
|
|
// The Bevy renderer will never mark a mesh as batchable
|
|
// but not multidrawable if multidraw is in use.
|
|
// However, custom render pipelines might do so, such as
|
|
// the `specialized_mesh_pipeline` example.
|
|
vec.push(BinnedRenderPhaseBatchSet {
|
|
first_batch: batch,
|
|
batch_count: 1,
|
|
bin_key: key.1.clone(),
|
|
index: indirect_parameters_buffers.batch_set_count(key.0.indexed())
|
|
as u32,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare unbatchables.
|
|
for key in &phase.unbatchable_mesh_keys {
|
|
let unbatchables = phase.unbatchable_mesh_values.get_mut(key).unwrap();
|
|
|
|
// Allocate the indirect parameters if necessary.
|
|
let mut indirect_parameters_offset = if no_indirect_drawing {
|
|
None
|
|
} else if key.0.indexed() {
|
|
Some(
|
|
indirect_parameters_buffers
|
|
.allocate_indexed(unbatchables.entities.len() as u32),
|
|
)
|
|
} else {
|
|
Some(
|
|
indirect_parameters_buffers
|
|
.allocate_non_indexed(unbatchables.entities.len() as u32),
|
|
)
|
|
};
|
|
|
|
for main_entity in unbatchables.entities.keys() {
|
|
let Some(input_index) = GFBD::get_binned_index(&system_param_item, *main_entity)
|
|
else {
|
|
continue;
|
|
};
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
if let Some(ref mut indirect_parameters_index) = indirect_parameters_offset {
|
|
// We're in indirect mode, so add an indirect parameters
|
|
// index.
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
input_index.into(),
|
|
key.0.indexed(),
|
|
output_index,
|
|
None,
|
|
&mut indirect_parameters_buffers,
|
|
*indirect_parameters_index,
|
|
);
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index,
|
|
indirect_parameters_index: *indirect_parameters_index,
|
|
},
|
|
);
|
|
unbatchables
|
|
.buffer_indices
|
|
.add(UnbatchableBinnedEntityIndices {
|
|
instance_index: *indirect_parameters_index,
|
|
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: *indirect_parameters_index..(*indirect_parameters_index + 1),
|
|
batch_set_index: None,
|
|
},
|
|
});
|
|
indirect_parameters_buffers
|
|
.add_batch_set(key.0.indexed(), *indirect_parameters_index);
|
|
*indirect_parameters_index += 1;
|
|
} else {
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_index,
|
|
indirect_parameters_index: 0,
|
|
},
|
|
);
|
|
unbatchables
|
|
.buffer_indices
|
|
.add(UnbatchableBinnedEntityIndices {
|
|
instance_index: output_index,
|
|
extra_index: PhaseItemExtraIndex::None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A system that writes all instance buffers to the GPU.
|
|
pub fn write_batched_instance_buffers<GFBD>(
|
|
render_device: Res<RenderDevice>,
|
|
render_queue: Res<RenderQueue>,
|
|
gpu_array_buffer: ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
|
|
) where
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
let BatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut current_input_buffer,
|
|
ref mut previous_input_buffer,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
} = gpu_array_buffer.into_inner();
|
|
|
|
data_buffer.write_buffer(&render_device);
|
|
current_input_buffer
|
|
.buffer
|
|
.write_buffer(&render_device, &render_queue);
|
|
previous_input_buffer
|
|
.buffer
|
|
.write_buffer(&render_device, &render_queue);
|
|
late_indexed_indirect_parameters_buffer.write_buffer(&render_device, &render_queue);
|
|
late_non_indexed_indirect_parameters_buffer.write_buffer(&render_device, &render_queue);
|
|
|
|
for view_work_item_buffers in work_item_buffers.values_mut() {
|
|
for phase_work_item_buffers in view_work_item_buffers.values_mut() {
|
|
match *phase_work_item_buffers {
|
|
PreprocessWorkItemBuffers::Direct(ref mut buffer_vec) => {
|
|
buffer_vec.write_buffer(&render_device, &render_queue);
|
|
}
|
|
PreprocessWorkItemBuffers::Indirect {
|
|
ref mut indexed,
|
|
ref mut non_indexed,
|
|
ref mut gpu_occlusion_culling,
|
|
} => {
|
|
indexed.write_buffer(&render_device, &render_queue);
|
|
non_indexed.write_buffer(&render_device, &render_queue);
|
|
|
|
if let Some(GpuOcclusionCullingWorkItemBuffers {
|
|
ref mut late_indexed,
|
|
ref mut late_non_indexed,
|
|
late_indirect_parameters_indexed_offset: _,
|
|
late_indirect_parameters_non_indexed_offset: _,
|
|
}) = *gpu_occlusion_culling
|
|
{
|
|
if !late_indexed.is_empty() {
|
|
late_indexed.write_buffer(&render_device);
|
|
}
|
|
if !late_non_indexed.is_empty() {
|
|
late_non_indexed.write_buffer(&render_device);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn clear_indirect_parameters_buffers(
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
) {
|
|
indirect_parameters_buffers.indexed_data.clear();
|
|
indirect_parameters_buffers.indexed_metadata.clear();
|
|
indirect_parameters_buffers.indexed_batch_sets.clear();
|
|
indirect_parameters_buffers.non_indexed_data.clear();
|
|
indirect_parameters_buffers.non_indexed_metadata.clear();
|
|
indirect_parameters_buffers.non_indexed_batch_sets.clear();
|
|
}
|
|
|
|
pub fn write_indirect_parameters_buffers(
|
|
render_device: Res<RenderDevice>,
|
|
render_queue: Res<RenderQueue>,
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
) {
|
|
indirect_parameters_buffers
|
|
.indexed_data
|
|
.write_buffer(&render_device);
|
|
indirect_parameters_buffers
|
|
.non_indexed_data
|
|
.write_buffer(&render_device);
|
|
|
|
indirect_parameters_buffers
|
|
.indexed_metadata
|
|
.write_buffer(&render_device, &render_queue);
|
|
indirect_parameters_buffers
|
|
.non_indexed_metadata
|
|
.write_buffer(&render_device, &render_queue);
|
|
|
|
indirect_parameters_buffers
|
|
.indexed_batch_sets
|
|
.write_buffer(&render_device, &render_queue);
|
|
indirect_parameters_buffers
|
|
.non_indexed_batch_sets
|
|
.write_buffer(&render_device, &render_queue);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn instance_buffer_correct_behavior() {
|
|
let mut instance_buffer = InstanceInputUniformBuffer::new();
|
|
|
|
let index = instance_buffer.add(2);
|
|
instance_buffer.remove(index);
|
|
assert_eq!(instance_buffer.get_unchecked(index), 2);
|
|
assert_eq!(instance_buffer.get(index), None);
|
|
|
|
instance_buffer.add(5);
|
|
assert_eq!(instance_buffer.buffer().len(), 1);
|
|
}
|
|
}
|