
# Objective Fixes #4884. `ComponentTicks` stores both added and changed ticks contiguously in the same 8 bytes. This is convenient when passing around both together, but causes half the bytes fetched from memory for the purposes of change detection to effectively go unused. This is inefficient when most queries (no filter, mutating *something*) only write out to the changed ticks. ## Solution Split the storage for change detection ticks into two separate `Vec`s inside `Column`. Fetch only what is needed during iteration. This also potentially also removes one blocker from autovectorization of dense queries. EDIT: This is confirmed to enable autovectorization of dense queries in `for_each` and `par_for_each` where possible. Unfortunately `iter` has other blockers that prevent it. ### TODO - [x] Microbenchmark - [x] Check if this allows query iteration to autovectorize simple loops. - [x] Clean up all of the spurious tuples now littered throughout the API ### Open Questions - ~~Is `Mut::is_added` absolutely necessary? Can we not just use `Added` or `ChangeTrackers`?~~ It's optimized out if unused. - ~~Does the fetch of the added ticks get optimized out if not used?~~ Yes it is. --- ## Changelog Added: `Tick`, a wrapper around a single change detection tick. Added: `Column::get_added_ticks` Added: `Column::get_column_ticks` Added: `SparseSet::get_added_ticks` Added: `SparseSet::get_column_ticks` Changed: `Column` now stores added and changed ticks separately internally. Changed: Most APIs returning `&UnsafeCell<ComponentTicks>` now returns `TickCells` instead, which contains two separate `&UnsafeCell<Tick>` for either component ticks. Changed: `Query::for_each(_mut)`, `Query::par_for_each(_mut)` will now leverage autovectorization to speed up query iteration where possible. ## Migration Guide TODO
754 lines
28 KiB
Rust
754 lines
28 KiB
Rust
//! Types for handling [`Bundle`]s.
|
|
//!
|
|
//! This module contains the [`Bundle`] trait and some other helper types.
|
|
|
|
pub use bevy_ecs_macros::Bundle;
|
|
|
|
use crate::{
|
|
archetype::{
|
|
Archetype, ArchetypeId, Archetypes, BundleComponentStatus, ComponentStatus,
|
|
SpawnBundleStatus,
|
|
},
|
|
component::{Component, ComponentId, Components, StorageType, Tick},
|
|
entity::{Entities, Entity, EntityLocation},
|
|
storage::{SparseSetIndex, SparseSets, Storages, Table},
|
|
};
|
|
use bevy_ecs_macros::all_tuples;
|
|
use bevy_ptr::OwningPtr;
|
|
use std::{any::TypeId, collections::HashMap};
|
|
|
|
/// The `Bundle` trait enables insertion and removal of [`Component`]s from an entity.
|
|
///
|
|
/// Implementors of the `Bundle` trait are called 'bundles'.
|
|
///
|
|
/// Each bundle represents a static set of [`Component`] types.
|
|
/// Currently, bundles can only contain one of each [`Component`], and will
|
|
/// panic once initialised if this is not met.
|
|
///
|
|
/// ## Insertion
|
|
///
|
|
/// The primary use for bundles is to add a useful collection of components to an entity.
|
|
///
|
|
/// Adding a value of bundle to an entity will add the components from the set it
|
|
/// represents to the entity.
|
|
/// The values of these components are taken from the bundle.
|
|
/// If an entity already had one of these components, the entity's original component value
|
|
/// will be overwritten.
|
|
///
|
|
/// Importantly, bundles are only their constituent set of components.
|
|
/// You **should not** use bundles as a unit of behaviour.
|
|
/// The behaviour of your app can only be considered in terms of components, as systems,
|
|
/// which drive the behaviour of a `bevy` application, operate on combinations of
|
|
/// components.
|
|
///
|
|
/// This rule is also important because multiple bundles may contain the same component type,
|
|
/// calculated in different ways — adding both of these bundles to one entity
|
|
/// would create incoherent behaviour.
|
|
/// This would be unexpected if bundles were treated as an abstraction boundary, as
|
|
/// the abstraction would be unmaintainable for these cases.
|
|
/// For example, both `Camera3dBundle` and `Camera2dBundle` contain the `CameraRenderGraph`
|
|
/// component, but specifying different render graphs to use.
|
|
/// If the bundles were both added to the same entity, only one of these two bundles would work.
|
|
///
|
|
/// For this reason, There is intentionally no [`Query`] to match whether an entity
|
|
/// contains the components of a bundle.
|
|
/// Queries should instead only select the components they logically operate on.
|
|
///
|
|
/// ## Removal
|
|
///
|
|
/// Bundles are also used when removing components from an entity.
|
|
///
|
|
/// Removing a bundle from an entity will remove any of its components attached
|
|
/// to the entity from the entity.
|
|
/// That is, if the entity does not have all the components of the bundle, those
|
|
/// which are present will be removed.
|
|
///
|
|
/// # Implementors
|
|
///
|
|
/// Every type which implements [`Component`] also implements `Bundle`, since
|
|
/// [`Component`] types can be added to or removed from an entity.
|
|
///
|
|
/// Additionally, [Tuples](`tuple`) of bundles are also [`Bundle`] (with up to 15 bundles).
|
|
/// These bundles contain the items of the 'inner' bundles.
|
|
/// This is a convenient shorthand which is primarily used when spawning entities.
|
|
/// For example, spawning an entity using the bundle `(SpriteBundle {...}, PlayerMarker)`
|
|
/// will spawn an entity with components required for a 2d sprite, and the `PlayerMarker` component.
|
|
///
|
|
/// [`unit`], otherwise known as [`()`](`unit`), is a [`Bundle`] containing no components (since it
|
|
/// can also be considered as the empty tuple).
|
|
/// This can be useful for spawning large numbers of empty entities using
|
|
/// [`World::spawn_batch`](crate::world::World::spawn_batch).
|
|
///
|
|
/// Tuple bundles can be nested, which can be used to create an anonymous bundle with more than
|
|
/// 15 items.
|
|
/// However, in most cases where this is required, the derive macro [`derive@Bundle`] should be
|
|
/// used instead.
|
|
/// The derived `Bundle` implementation contains the items of its fields, which all must
|
|
/// implement `Bundle`.
|
|
/// As explained above, this includes any [`Component`] type, and other derived bundles.
|
|
///
|
|
/// If you want to add `PhantomData` to your `Bundle` you have to mark it with `#[bundle(ignore)]`.
|
|
/// ```
|
|
/// # use std::marker::PhantomData;
|
|
/// use bevy_ecs::{component::Component, bundle::Bundle};
|
|
///
|
|
/// #[derive(Component)]
|
|
/// struct XPosition(i32);
|
|
/// #[derive(Component)]
|
|
/// struct YPosition(i32);
|
|
///
|
|
/// #[derive(Bundle)]
|
|
/// struct PositionBundle {
|
|
/// // A bundle can contain components
|
|
/// x: XPosition,
|
|
/// y: YPosition,
|
|
/// }
|
|
///
|
|
/// // You have to implement `Default` for ignored field types in bundle structs.
|
|
/// #[derive(Default)]
|
|
/// struct Other(f32);
|
|
///
|
|
/// #[derive(Bundle)]
|
|
/// struct NamedPointBundle<T: Send + Sync + 'static> {
|
|
/// // Or other bundles
|
|
/// a: PositionBundle,
|
|
/// // In addition to more components
|
|
/// z: PointName,
|
|
///
|
|
/// // when you need to use `PhantomData` you have to mark it as ignored
|
|
/// #[bundle(ignore)]
|
|
/// _phantom_data: PhantomData<T>
|
|
/// }
|
|
///
|
|
/// #[derive(Component)]
|
|
/// struct PointName(String);
|
|
/// ```
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Manual implementations of this trait are unsupported.
|
|
/// That is, there is no safe way to implement this trait, and you must not do so.
|
|
/// If you want a type to implement [`Bundle`], you must use [`derive@Bundle`](derive@Bundle).
|
|
///
|
|
///
|
|
/// [`Query`]: crate::system::Query
|
|
// Some safety points:
|
|
// - [`Bundle::component_ids`] must return the [`ComponentId`] for each component type in the
|
|
// bundle, in the _exact_ order that [`Bundle::get_components`] is called.
|
|
// - [`Bundle::from_components`] must call `func` exactly once for each [`ComponentId`] returned by
|
|
// [`Bundle::component_ids`].
|
|
pub unsafe trait Bundle: Send + Sync + 'static {
|
|
/// Gets this [`Bundle`]'s component ids, in the order of this bundle's [`Component`]s
|
|
#[doc(hidden)]
|
|
fn component_ids(
|
|
components: &mut Components,
|
|
storages: &mut Storages,
|
|
ids: &mut impl FnMut(ComponentId),
|
|
);
|
|
|
|
/// Calls `func`, which should return data for each component in the bundle, in the order of
|
|
/// this bundle's [`Component`]s
|
|
///
|
|
/// # Safety
|
|
/// Caller must return data for each component in the bundle, in the order of this bundle's
|
|
/// [`Component`]s
|
|
#[doc(hidden)]
|
|
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self
|
|
where
|
|
// Ensure that the `OwningPtr` is used correctly
|
|
F: for<'a> FnMut(&'a mut T) -> OwningPtr<'a>,
|
|
Self: Sized;
|
|
|
|
/// Calls `func` on each value, in the order of this bundle's [`Component`]s. This passes
|
|
/// ownership of the component values to `func`.
|
|
#[doc(hidden)]
|
|
fn get_components(self, func: &mut impl FnMut(OwningPtr<'_>));
|
|
}
|
|
|
|
// SAFETY:
|
|
// - `Bundle::component_ids` calls `ids` for C's component id (and nothing else)
|
|
// - `Bundle::get_components` is called exactly once for C.
|
|
// - `Bundle::from_components` calls `func` exactly once for C, which is the exact value returned by `Bundle::component_ids`.
|
|
unsafe impl<C: Component> Bundle for C {
|
|
fn component_ids(
|
|
components: &mut Components,
|
|
storages: &mut Storages,
|
|
ids: &mut impl FnMut(ComponentId),
|
|
) {
|
|
ids(components.init_component::<C>(storages));
|
|
}
|
|
|
|
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self
|
|
where
|
|
// Ensure that the `OwningPtr` is used correctly
|
|
F: for<'a> FnMut(&'a mut T) -> OwningPtr<'a>,
|
|
Self: Sized,
|
|
{
|
|
// Safety: The id given in `component_ids` is for `Self`
|
|
func(ctx).read()
|
|
}
|
|
|
|
fn get_components(self, func: &mut impl FnMut(OwningPtr<'_>)) {
|
|
OwningPtr::make(self, func);
|
|
}
|
|
}
|
|
|
|
macro_rules! tuple_impl {
|
|
($($name: ident),*) => {
|
|
// SAFETY:
|
|
// - `Bundle::component_ids` calls `ids` for each component type in the
|
|
// bundle, in the exact order that `Bundle::get_components` is called.
|
|
// - `Bundle::from_components` calls `func` exactly once for each `ComponentId` returned by `Bundle::component_ids`.
|
|
unsafe impl<$($name: Bundle),*> Bundle for ($($name,)*) {
|
|
#[allow(unused_variables)]
|
|
fn component_ids(components: &mut Components, storages: &mut Storages, ids: &mut impl FnMut(ComponentId)){
|
|
$(<$name as Bundle>::component_ids(components, storages, ids);)*
|
|
}
|
|
|
|
#[allow(unused_variables, unused_mut)]
|
|
#[allow(clippy::unused_unit)]
|
|
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self
|
|
where
|
|
F: FnMut(&mut T) -> OwningPtr<'_>
|
|
{
|
|
// Rust guarantees that tuple calls are evaluated 'left to right'.
|
|
// https://doc.rust-lang.org/reference/expressions.html#evaluation-order-of-operands
|
|
($(<$name as Bundle>::from_components(ctx, func),)*)
|
|
}
|
|
|
|
#[allow(unused_variables, unused_mut)]
|
|
fn get_components(self, func: &mut impl FnMut(OwningPtr<'_>)) {
|
|
#[allow(non_snake_case)]
|
|
let ($(mut $name,)*) = self;
|
|
$(
|
|
$name.get_components(&mut *func);
|
|
)*
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
all_tuples!(tuple_impl, 0, 15, B);
|
|
|
|
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
|
|
pub struct BundleId(usize);
|
|
|
|
impl BundleId {
|
|
#[inline]
|
|
pub fn index(self) -> usize {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
impl SparseSetIndex for BundleId {
|
|
#[inline]
|
|
fn sparse_set_index(&self) -> usize {
|
|
self.index()
|
|
}
|
|
|
|
fn get_sparse_set_index(value: usize) -> Self {
|
|
Self(value)
|
|
}
|
|
}
|
|
|
|
pub struct BundleInfo {
|
|
pub(crate) id: BundleId,
|
|
pub(crate) component_ids: Vec<ComponentId>,
|
|
pub(crate) storage_types: Vec<StorageType>,
|
|
}
|
|
|
|
impl BundleInfo {
|
|
#[inline]
|
|
pub fn id(&self) -> BundleId {
|
|
self.id
|
|
}
|
|
|
|
#[inline]
|
|
pub fn components(&self) -> &[ComponentId] {
|
|
&self.component_ids
|
|
}
|
|
|
|
#[inline]
|
|
pub fn storage_types(&self) -> &[StorageType] {
|
|
&self.storage_types
|
|
}
|
|
|
|
pub(crate) fn get_bundle_inserter<'a, 'b>(
|
|
&'b self,
|
|
entities: &'a mut Entities,
|
|
archetypes: &'a mut Archetypes,
|
|
components: &mut Components,
|
|
storages: &'a mut Storages,
|
|
archetype_id: ArchetypeId,
|
|
change_tick: u32,
|
|
) -> BundleInserter<'a, 'b> {
|
|
let new_archetype_id =
|
|
self.add_bundle_to_archetype(archetypes, storages, components, archetype_id);
|
|
let archetypes_ptr = archetypes.archetypes.as_mut_ptr();
|
|
if new_archetype_id == archetype_id {
|
|
let archetype = &mut archetypes[archetype_id];
|
|
let table_id = archetype.table_id();
|
|
BundleInserter {
|
|
bundle_info: self,
|
|
archetype,
|
|
entities,
|
|
sparse_sets: &mut storages.sparse_sets,
|
|
table: &mut storages.tables[table_id],
|
|
archetypes_ptr,
|
|
change_tick,
|
|
result: InsertBundleResult::SameArchetype,
|
|
}
|
|
} else {
|
|
let (archetype, new_archetype) = archetypes.get_2_mut(archetype_id, new_archetype_id);
|
|
let table_id = archetype.table_id();
|
|
if table_id == new_archetype.table_id() {
|
|
BundleInserter {
|
|
bundle_info: self,
|
|
archetype,
|
|
archetypes_ptr,
|
|
entities,
|
|
sparse_sets: &mut storages.sparse_sets,
|
|
table: &mut storages.tables[table_id],
|
|
change_tick,
|
|
result: InsertBundleResult::NewArchetypeSameTable { new_archetype },
|
|
}
|
|
} else {
|
|
let (table, new_table) = storages
|
|
.tables
|
|
.get_2_mut(table_id, new_archetype.table_id());
|
|
BundleInserter {
|
|
bundle_info: self,
|
|
archetype,
|
|
sparse_sets: &mut storages.sparse_sets,
|
|
entities,
|
|
archetypes_ptr,
|
|
table,
|
|
change_tick,
|
|
result: InsertBundleResult::NewArchetypeNewTable {
|
|
new_archetype,
|
|
new_table,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn get_bundle_spawner<'a, 'b>(
|
|
&'b self,
|
|
entities: &'a mut Entities,
|
|
archetypes: &'a mut Archetypes,
|
|
components: &mut Components,
|
|
storages: &'a mut Storages,
|
|
change_tick: u32,
|
|
) -> BundleSpawner<'a, 'b> {
|
|
let new_archetype_id =
|
|
self.add_bundle_to_archetype(archetypes, storages, components, ArchetypeId::EMPTY);
|
|
let archetype = &mut archetypes[new_archetype_id];
|
|
let table = &mut storages.tables[archetype.table_id()];
|
|
BundleSpawner {
|
|
archetype,
|
|
bundle_info: self,
|
|
table,
|
|
entities,
|
|
sparse_sets: &mut storages.sparse_sets,
|
|
change_tick,
|
|
}
|
|
}
|
|
|
|
/// This writes components from a given [`Bundle`] to the given entity.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// `bundle_component_status` must return the "correct" [`ComponentStatus`] for each component
|
|
/// in the [`Bundle`], with respect to the entity's original archetype (prior to the bundle being added)
|
|
/// For example, if the original archetype already has `ComponentA` and `T` also has `ComponentA`, the status
|
|
/// should be `Mutated`. If the original archetype does not have `ComponentA`, the status should be `Added`.
|
|
/// When "inserting" a bundle into an existing entity, [`AddBundle`](crate::archetype::AddBundle)
|
|
/// should be used, which will report `Added` vs `Mutated` status based on the current archetype's structure.
|
|
/// When spawning a bundle, [`SpawnBundleStatus`] can be used instead, which removes the need
|
|
/// to look up the [`AddBundle`](crate::archetype::AddBundle) in the archetype graph, which requires
|
|
/// ownership of the entity's current archetype.
|
|
///
|
|
/// `table` must be the "new" table for `entity`. `table_row` must have space allocated for the
|
|
/// `entity`, `bundle` must match this [`BundleInfo`]'s type
|
|
#[inline]
|
|
#[allow(clippy::too_many_arguments)]
|
|
unsafe fn write_components<T: Bundle, S: BundleComponentStatus>(
|
|
&self,
|
|
table: &mut Table,
|
|
sparse_sets: &mut SparseSets,
|
|
bundle_component_status: &S,
|
|
entity: Entity,
|
|
table_row: usize,
|
|
change_tick: u32,
|
|
bundle: T,
|
|
) {
|
|
// NOTE: get_components calls this closure on each component in "bundle order".
|
|
// bundle_info.component_ids are also in "bundle order"
|
|
let mut bundle_component = 0;
|
|
bundle.get_components(&mut |component_ptr| {
|
|
let component_id = *self.component_ids.get_unchecked(bundle_component);
|
|
match self.storage_types[bundle_component] {
|
|
StorageType::Table => {
|
|
let column = table.get_column_mut(component_id).unwrap();
|
|
// SAFETY: bundle_component is a valid index for this bundle
|
|
match bundle_component_status.get_status(bundle_component) {
|
|
ComponentStatus::Added => {
|
|
column.initialize(table_row, component_ptr, Tick::new(change_tick));
|
|
}
|
|
ComponentStatus::Mutated => {
|
|
column.replace(table_row, component_ptr, change_tick);
|
|
}
|
|
}
|
|
}
|
|
StorageType::SparseSet => {
|
|
let sparse_set = sparse_sets.get_mut(component_id).unwrap();
|
|
sparse_set.insert(entity, component_ptr, change_tick);
|
|
}
|
|
}
|
|
bundle_component += 1;
|
|
});
|
|
}
|
|
|
|
/// Adds a bundle to the given archetype and returns the resulting archetype. This could be the
|
|
/// same [`ArchetypeId`], in the event that adding the given bundle does not result in an
|
|
/// [`Archetype`] change. Results are cached in the [`Archetype`] graph to avoid redundant work.
|
|
pub(crate) fn add_bundle_to_archetype(
|
|
&self,
|
|
archetypes: &mut Archetypes,
|
|
storages: &mut Storages,
|
|
components: &mut Components,
|
|
archetype_id: ArchetypeId,
|
|
) -> ArchetypeId {
|
|
if let Some(add_bundle) = archetypes[archetype_id].edges().get_add_bundle(self.id) {
|
|
return add_bundle.archetype_id;
|
|
}
|
|
let mut new_table_components = Vec::new();
|
|
let mut new_sparse_set_components = Vec::new();
|
|
let mut bundle_status = Vec::with_capacity(self.component_ids.len());
|
|
|
|
let current_archetype = &mut archetypes[archetype_id];
|
|
for component_id in self.component_ids.iter().cloned() {
|
|
if current_archetype.contains(component_id) {
|
|
bundle_status.push(ComponentStatus::Mutated);
|
|
} else {
|
|
bundle_status.push(ComponentStatus::Added);
|
|
// SAFETY: component_id exists
|
|
let component_info = unsafe { components.get_info_unchecked(component_id) };
|
|
match component_info.storage_type() {
|
|
StorageType::Table => new_table_components.push(component_id),
|
|
StorageType::SparseSet => new_sparse_set_components.push(component_id),
|
|
}
|
|
}
|
|
}
|
|
|
|
if new_table_components.is_empty() && new_sparse_set_components.is_empty() {
|
|
let edges = current_archetype.edges_mut();
|
|
// the archetype does not change when we add this bundle
|
|
edges.insert_add_bundle(self.id, archetype_id, bundle_status);
|
|
archetype_id
|
|
} else {
|
|
let table_id;
|
|
let table_components;
|
|
let sparse_set_components;
|
|
// the archetype changes when we add this bundle. prepare the new archetype and storages
|
|
{
|
|
let current_archetype = &archetypes[archetype_id];
|
|
table_components = if new_table_components.is_empty() {
|
|
// if there are no new table components, we can keep using this table
|
|
table_id = current_archetype.table_id();
|
|
current_archetype.table_components().collect()
|
|
} else {
|
|
new_table_components.extend(current_archetype.table_components());
|
|
// sort to ignore order while hashing
|
|
new_table_components.sort();
|
|
// SAFETY: all component ids in `new_table_components` exist
|
|
table_id = unsafe {
|
|
storages
|
|
.tables
|
|
.get_id_or_insert(&new_table_components, components)
|
|
};
|
|
|
|
new_table_components
|
|
};
|
|
|
|
sparse_set_components = if new_sparse_set_components.is_empty() {
|
|
current_archetype.sparse_set_components().collect()
|
|
} else {
|
|
new_sparse_set_components.extend(current_archetype.sparse_set_components());
|
|
// sort to ignore order while hashing
|
|
new_sparse_set_components.sort();
|
|
new_sparse_set_components
|
|
};
|
|
};
|
|
let new_archetype_id =
|
|
archetypes.get_id_or_insert(table_id, table_components, sparse_set_components);
|
|
// add an edge from the old archetype to the new archetype
|
|
archetypes[archetype_id].edges_mut().insert_add_bundle(
|
|
self.id,
|
|
new_archetype_id,
|
|
bundle_status,
|
|
);
|
|
new_archetype_id
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) struct BundleInserter<'a, 'b> {
|
|
pub(crate) archetype: &'a mut Archetype,
|
|
pub(crate) entities: &'a mut Entities,
|
|
bundle_info: &'b BundleInfo,
|
|
table: &'a mut Table,
|
|
sparse_sets: &'a mut SparseSets,
|
|
result: InsertBundleResult<'a>,
|
|
archetypes_ptr: *mut Archetype,
|
|
change_tick: u32,
|
|
}
|
|
|
|
pub(crate) enum InsertBundleResult<'a> {
|
|
SameArchetype,
|
|
NewArchetypeSameTable {
|
|
new_archetype: &'a mut Archetype,
|
|
},
|
|
NewArchetypeNewTable {
|
|
new_archetype: &'a mut Archetype,
|
|
new_table: &'a mut Table,
|
|
},
|
|
}
|
|
|
|
impl<'a, 'b> BundleInserter<'a, 'b> {
|
|
/// # Safety
|
|
/// `entity` must currently exist in the source archetype for this inserter. `archetype_index`
|
|
/// must be `entity`'s location in the archetype. `T` must match this [`BundleInfo`]'s type
|
|
#[inline]
|
|
pub unsafe fn insert<T: Bundle>(
|
|
&mut self,
|
|
entity: Entity,
|
|
archetype_index: usize,
|
|
bundle: T,
|
|
) -> EntityLocation {
|
|
let location = EntityLocation {
|
|
index: archetype_index,
|
|
archetype_id: self.archetype.id(),
|
|
};
|
|
match &mut self.result {
|
|
InsertBundleResult::SameArchetype => {
|
|
// PERF: this could be looked up during Inserter construction and stored (but borrowing makes this nasty)
|
|
let add_bundle = self
|
|
.archetype
|
|
.edges()
|
|
.get_add_bundle(self.bundle_info.id)
|
|
.unwrap();
|
|
self.bundle_info.write_components(
|
|
self.table,
|
|
self.sparse_sets,
|
|
add_bundle,
|
|
entity,
|
|
self.archetype.entity_table_row(archetype_index),
|
|
self.change_tick,
|
|
bundle,
|
|
);
|
|
location
|
|
}
|
|
InsertBundleResult::NewArchetypeSameTable { new_archetype } => {
|
|
let result = self.archetype.swap_remove(location.index);
|
|
if let Some(swapped_entity) = result.swapped_entity {
|
|
self.entities.meta[swapped_entity.index as usize].location = location;
|
|
}
|
|
let new_location = new_archetype.allocate(entity, result.table_row);
|
|
self.entities.meta[entity.index as usize].location = new_location;
|
|
|
|
// PERF: this could be looked up during Inserter construction and stored (but borrowing makes this nasty)
|
|
let add_bundle = self
|
|
.archetype
|
|
.edges()
|
|
.get_add_bundle(self.bundle_info.id)
|
|
.unwrap();
|
|
self.bundle_info.write_components(
|
|
self.table,
|
|
self.sparse_sets,
|
|
add_bundle,
|
|
entity,
|
|
result.table_row,
|
|
self.change_tick,
|
|
bundle,
|
|
);
|
|
new_location
|
|
}
|
|
InsertBundleResult::NewArchetypeNewTable {
|
|
new_archetype,
|
|
new_table,
|
|
} => {
|
|
let result = self.archetype.swap_remove(location.index);
|
|
if let Some(swapped_entity) = result.swapped_entity {
|
|
self.entities.meta[swapped_entity.index as usize].location = location;
|
|
}
|
|
// PERF: store "non bundle" components in edge, then just move those to avoid
|
|
// redundant copies
|
|
let move_result = self
|
|
.table
|
|
.move_to_superset_unchecked(result.table_row, new_table);
|
|
let new_location = new_archetype.allocate(entity, move_result.new_row);
|
|
self.entities.meta[entity.index as usize].location = new_location;
|
|
|
|
// if an entity was moved into this entity's table spot, update its table row
|
|
if let Some(swapped_entity) = move_result.swapped_entity {
|
|
let swapped_location = self.entities.get(swapped_entity).unwrap();
|
|
let swapped_archetype = if self.archetype.id() == swapped_location.archetype_id
|
|
{
|
|
&mut *self.archetype
|
|
} else if new_archetype.id() == swapped_location.archetype_id {
|
|
new_archetype
|
|
} else {
|
|
// SAFETY: the only two borrowed archetypes are above and we just did collision checks
|
|
&mut *self
|
|
.archetypes_ptr
|
|
.add(swapped_location.archetype_id.index())
|
|
};
|
|
|
|
swapped_archetype
|
|
.set_entity_table_row(swapped_location.index, result.table_row);
|
|
}
|
|
|
|
// PERF: this could be looked up during Inserter construction and stored (but borrowing makes this nasty)
|
|
let add_bundle = self
|
|
.archetype
|
|
.edges()
|
|
.get_add_bundle(self.bundle_info.id)
|
|
.unwrap();
|
|
self.bundle_info.write_components(
|
|
new_table,
|
|
self.sparse_sets,
|
|
add_bundle,
|
|
entity,
|
|
move_result.new_row,
|
|
self.change_tick,
|
|
bundle,
|
|
);
|
|
new_location
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) struct BundleSpawner<'a, 'b> {
|
|
pub(crate) archetype: &'a mut Archetype,
|
|
pub(crate) entities: &'a mut Entities,
|
|
bundle_info: &'b BundleInfo,
|
|
table: &'a mut Table,
|
|
sparse_sets: &'a mut SparseSets,
|
|
change_tick: u32,
|
|
}
|
|
|
|
impl<'a, 'b> BundleSpawner<'a, 'b> {
|
|
pub fn reserve_storage(&mut self, additional: usize) {
|
|
self.archetype.reserve(additional);
|
|
self.table.reserve(additional);
|
|
}
|
|
/// # Safety
|
|
/// `entity` must be allocated (but non-existent), `T` must match this [`BundleInfo`]'s type
|
|
#[inline]
|
|
pub unsafe fn spawn_non_existent<T: Bundle>(
|
|
&mut self,
|
|
entity: Entity,
|
|
bundle: T,
|
|
) -> EntityLocation {
|
|
let table_row = self.table.allocate(entity);
|
|
let location = self.archetype.allocate(entity, table_row);
|
|
self.bundle_info.write_components(
|
|
self.table,
|
|
self.sparse_sets,
|
|
&SpawnBundleStatus,
|
|
entity,
|
|
table_row,
|
|
self.change_tick,
|
|
bundle,
|
|
);
|
|
self.entities.meta[entity.index as usize].location = location;
|
|
|
|
location
|
|
}
|
|
|
|
/// # Safety
|
|
/// `T` must match this [`BundleInfo`]'s type
|
|
#[inline]
|
|
pub unsafe fn spawn<T: Bundle>(&mut self, bundle: T) -> Entity {
|
|
let entity = self.entities.alloc();
|
|
// SAFETY: entity is allocated (but non-existent), `T` matches this BundleInfo's type
|
|
self.spawn_non_existent(entity, bundle);
|
|
entity
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct Bundles {
|
|
bundle_infos: Vec<BundleInfo>,
|
|
bundle_ids: HashMap<TypeId, BundleId>,
|
|
}
|
|
|
|
impl Bundles {
|
|
#[inline]
|
|
pub fn get(&self, bundle_id: BundleId) -> Option<&BundleInfo> {
|
|
self.bundle_infos.get(bundle_id.index())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn get_id(&self, type_id: TypeId) -> Option<BundleId> {
|
|
self.bundle_ids.get(&type_id).cloned()
|
|
}
|
|
|
|
pub(crate) fn init_info<'a, T: Bundle>(
|
|
&'a mut self,
|
|
components: &mut Components,
|
|
storages: &mut Storages,
|
|
) -> &'a BundleInfo {
|
|
let bundle_infos = &mut self.bundle_infos;
|
|
let id = self.bundle_ids.entry(TypeId::of::<T>()).or_insert_with(|| {
|
|
let mut component_ids = Vec::new();
|
|
T::component_ids(components, storages, &mut |id| component_ids.push(id));
|
|
let id = BundleId(bundle_infos.len());
|
|
// SAFETY: T::component_id ensures info was created
|
|
let bundle_info = unsafe {
|
|
initialize_bundle(std::any::type_name::<T>(), component_ids, id, components)
|
|
};
|
|
bundle_infos.push(bundle_info);
|
|
id
|
|
});
|
|
// SAFETY: index either exists, or was initialized
|
|
unsafe { self.bundle_infos.get_unchecked(id.0) }
|
|
}
|
|
}
|
|
|
|
/// # Safety
|
|
///
|
|
/// `component_id` must be valid [`ComponentId`]'s
|
|
unsafe fn initialize_bundle(
|
|
bundle_type_name: &'static str,
|
|
component_ids: Vec<ComponentId>,
|
|
id: BundleId,
|
|
components: &mut Components,
|
|
) -> BundleInfo {
|
|
let mut storage_types = Vec::new();
|
|
|
|
for &component_id in &component_ids {
|
|
// SAFETY: component_id exists and is therefore valid
|
|
let component_info = components.get_info_unchecked(component_id);
|
|
storage_types.push(component_info.storage_type());
|
|
}
|
|
|
|
let mut deduped = component_ids.clone();
|
|
deduped.sort();
|
|
deduped.dedup();
|
|
assert!(
|
|
deduped.len() == component_ids.len(),
|
|
"Bundle {} has duplicate components",
|
|
bundle_type_name
|
|
);
|
|
|
|
BundleInfo {
|
|
id,
|
|
component_ids,
|
|
storage_types,
|
|
}
|
|
}
|