
# Background In `no_std` compatible crates, there is often an `std` feature which will allow access to the standard library. Currently, with the `std` feature _enabled_, the [`std::prelude`](https://doc.rust-lang.org/std/prelude/index.html) is implicitly imported in all modules. With the feature _disabled_, instead the [`core::prelude`](https://doc.rust-lang.org/core/prelude/index.html) is implicitly imported. This creates a subtle and pervasive issue where `alloc` items _may_ be implicitly included (if `std` is enabled), or must be explicitly included (if `std` is not enabled). # Objective - Make the implicit imports for `no_std` crates consistent regardless of what features are/not enabled. ## Solution - Replace the `cfg_attr` "double negative" `no_std` attribute with conditional compilation to _include_ `std` as an external crate. ```rust // Before #![cfg_attr(not(feature = "std"), no_std)] // After #![no_std] #[cfg(feature = "std")] extern crate std; ``` - Fix imports that are currently broken but are only now visible with the above fix. ## Testing - CI ## Notes I had previously used the "double negative" version of `no_std` based on general consensus that it was "cleaner" within the Rust embedded community. However, this implicit prelude issue likely was considered when forming this consensus. I believe the reason why is the items most affected by this issue are provided by the `alloc` crate, which is rarely used within embedded but extensively used within Bevy.
268 lines
9.0 KiB
Rust
268 lines
9.0 KiB
Rust
use super::TaskPool;
|
|
use alloc::vec::Vec;
|
|
|
|
/// Provides functions for mapping read-only slices across a provided [`TaskPool`].
|
|
pub trait ParallelSlice<T: Sync>: AsRef<[T]> {
|
|
/// Splits the slice in chunks of size `chunks_size` or less and maps the chunks
|
|
/// in parallel across the provided `task_pool`. One task is spawned in the task pool
|
|
/// for every chunk.
|
|
///
|
|
/// The iteration function takes the index of the chunk in the original slice as the
|
|
/// first argument, and the chunk as the second argument.
|
|
///
|
|
/// Returns a `Vec` of the mapped results in the same order as the input.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_tasks::prelude::*;
|
|
/// # use bevy_tasks::TaskPool;
|
|
/// let task_pool = TaskPool::new();
|
|
/// let counts = (0..10000).collect::<Vec<u32>>();
|
|
/// let incremented = counts.par_chunk_map(&task_pool, 100, |_index, chunk| {
|
|
/// let mut results = Vec::new();
|
|
/// for count in chunk {
|
|
/// results.push(*count + 2);
|
|
/// }
|
|
/// results
|
|
/// });
|
|
/// # let flattened: Vec<_> = incremented.into_iter().flatten().collect();
|
|
/// # assert_eq!(flattened, (2..10002).collect::<Vec<u32>>());
|
|
/// ```
|
|
///
|
|
/// # See Also
|
|
///
|
|
/// - [`ParallelSliceMut::par_chunk_map_mut`] for mapping mutable slices.
|
|
/// - [`ParallelSlice::par_splat_map`] for mapping when a specific chunk size is unknown.
|
|
fn par_chunk_map<F, R>(&self, task_pool: &TaskPool, chunk_size: usize, f: F) -> Vec<R>
|
|
where
|
|
F: Fn(usize, &[T]) -> R + Send + Sync,
|
|
R: Send + 'static,
|
|
{
|
|
let slice = self.as_ref();
|
|
let f = &f;
|
|
task_pool.scope(|scope| {
|
|
for (index, chunk) in slice.chunks(chunk_size).enumerate() {
|
|
scope.spawn(async move { f(index, chunk) });
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Splits the slice into a maximum of `max_tasks` chunks, and maps the chunks in parallel
|
|
/// across the provided `task_pool`. One task is spawned in the task pool for every chunk.
|
|
///
|
|
/// If `max_tasks` is `None`, this function will attempt to use one chunk per thread in
|
|
/// `task_pool`.
|
|
///
|
|
/// The iteration function takes the index of the chunk in the original slice as the
|
|
/// first argument, and the chunk as the second argument.
|
|
///
|
|
/// Returns a `Vec` of the mapped results in the same order as the input.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_tasks::prelude::*;
|
|
/// # use bevy_tasks::TaskPool;
|
|
/// let task_pool = TaskPool::new();
|
|
/// let counts = (0..10000).collect::<Vec<u32>>();
|
|
/// let incremented = counts.par_splat_map(&task_pool, None, |_index, chunk| {
|
|
/// let mut results = Vec::new();
|
|
/// for count in chunk {
|
|
/// results.push(*count + 2);
|
|
/// }
|
|
/// results
|
|
/// });
|
|
/// # let flattened: Vec<_> = incremented.into_iter().flatten().collect();
|
|
/// # assert_eq!(flattened, (2..10002).collect::<Vec<u32>>());
|
|
/// ```
|
|
///
|
|
/// # See Also
|
|
///
|
|
/// [`ParallelSliceMut::par_splat_map_mut`] for mapping mutable slices.
|
|
/// [`ParallelSlice::par_chunk_map`] for mapping when a specific chunk size is desirable.
|
|
fn par_splat_map<F, R>(&self, task_pool: &TaskPool, max_tasks: Option<usize>, f: F) -> Vec<R>
|
|
where
|
|
F: Fn(usize, &[T]) -> R + Send + Sync,
|
|
R: Send + 'static,
|
|
{
|
|
let slice = self.as_ref();
|
|
let chunk_size = core::cmp::max(
|
|
1,
|
|
core::cmp::max(
|
|
slice.len() / task_pool.thread_num(),
|
|
slice.len() / max_tasks.unwrap_or(usize::MAX),
|
|
),
|
|
);
|
|
|
|
slice.par_chunk_map(task_pool, chunk_size, f)
|
|
}
|
|
}
|
|
|
|
impl<S, T: Sync> ParallelSlice<T> for S where S: AsRef<[T]> {}
|
|
|
|
/// Provides functions for mapping mutable slices across a provided [`TaskPool`].
|
|
pub trait ParallelSliceMut<T: Send>: AsMut<[T]> {
|
|
/// Splits the slice in chunks of size `chunks_size` or less and maps the chunks
|
|
/// in parallel across the provided `task_pool`. One task is spawned in the task pool
|
|
/// for every chunk.
|
|
///
|
|
/// The iteration function takes the index of the chunk in the original slice as the
|
|
/// first argument, and the chunk as the second argument.
|
|
///
|
|
/// Returns a `Vec` of the mapped results in the same order as the input.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_tasks::prelude::*;
|
|
/// # use bevy_tasks::TaskPool;
|
|
/// let task_pool = TaskPool::new();
|
|
/// let mut counts = (0..10000).collect::<Vec<u32>>();
|
|
/// let incremented = counts.par_chunk_map_mut(&task_pool, 100, |_index, chunk| {
|
|
/// let mut results = Vec::new();
|
|
/// for count in chunk {
|
|
/// *count += 5;
|
|
/// results.push(*count - 2);
|
|
/// }
|
|
/// results
|
|
/// });
|
|
///
|
|
/// assert_eq!(counts, (5..10005).collect::<Vec<u32>>());
|
|
/// # let flattened: Vec<_> = incremented.into_iter().flatten().collect();
|
|
/// # assert_eq!(flattened, (3..10003).collect::<Vec<u32>>());
|
|
/// ```
|
|
///
|
|
/// # See Also
|
|
///
|
|
/// [`ParallelSlice::par_chunk_map`] for mapping immutable slices.
|
|
/// [`ParallelSliceMut::par_splat_map_mut`] for mapping when a specific chunk size is unknown.
|
|
fn par_chunk_map_mut<F, R>(&mut self, task_pool: &TaskPool, chunk_size: usize, f: F) -> Vec<R>
|
|
where
|
|
F: Fn(usize, &mut [T]) -> R + Send + Sync,
|
|
R: Send + 'static,
|
|
{
|
|
let slice = self.as_mut();
|
|
let f = &f;
|
|
task_pool.scope(|scope| {
|
|
for (index, chunk) in slice.chunks_mut(chunk_size).enumerate() {
|
|
scope.spawn(async move { f(index, chunk) });
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Splits the slice into a maximum of `max_tasks` chunks, and maps the chunks in parallel
|
|
/// across the provided `task_pool`. One task is spawned in the task pool for every chunk.
|
|
///
|
|
/// If `max_tasks` is `None`, this function will attempt to use one chunk per thread in
|
|
/// `task_pool`.
|
|
///
|
|
/// The iteration function takes the index of the chunk in the original slice as the
|
|
/// first argument, and the chunk as the second argument.
|
|
///
|
|
/// Returns a `Vec` of the mapped results in the same order as the input.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_tasks::prelude::*;
|
|
/// # use bevy_tasks::TaskPool;
|
|
/// let task_pool = TaskPool::new();
|
|
/// let mut counts = (0..10000).collect::<Vec<u32>>();
|
|
/// let incremented = counts.par_splat_map_mut(&task_pool, None, |_index, chunk| {
|
|
/// let mut results = Vec::new();
|
|
/// for count in chunk {
|
|
/// *count += 5;
|
|
/// results.push(*count - 2);
|
|
/// }
|
|
/// results
|
|
/// });
|
|
///
|
|
/// assert_eq!(counts, (5..10005).collect::<Vec<u32>>());
|
|
/// # let flattened: Vec<_> = incremented.into_iter().flatten().collect::<Vec<u32>>();
|
|
/// # assert_eq!(flattened, (3..10003).collect::<Vec<u32>>());
|
|
/// ```
|
|
///
|
|
/// # See Also
|
|
///
|
|
/// [`ParallelSlice::par_splat_map`] for mapping immutable slices.
|
|
/// [`ParallelSliceMut::par_chunk_map_mut`] for mapping when a specific chunk size is desirable.
|
|
fn par_splat_map_mut<F, R>(
|
|
&mut self,
|
|
task_pool: &TaskPool,
|
|
max_tasks: Option<usize>,
|
|
f: F,
|
|
) -> Vec<R>
|
|
where
|
|
F: Fn(usize, &mut [T]) -> R + Send + Sync,
|
|
R: Send + 'static,
|
|
{
|
|
let mut slice = self.as_mut();
|
|
let chunk_size = core::cmp::max(
|
|
1,
|
|
core::cmp::max(
|
|
slice.len() / task_pool.thread_num(),
|
|
slice.len() / max_tasks.unwrap_or(usize::MAX),
|
|
),
|
|
);
|
|
|
|
slice.par_chunk_map_mut(task_pool, chunk_size, f)
|
|
}
|
|
}
|
|
|
|
impl<S, T: Send> ParallelSliceMut<T> for S where S: AsMut<[T]> {}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::*;
|
|
use alloc::vec;
|
|
|
|
#[test]
|
|
fn test_par_chunks_map() {
|
|
let v = vec![42; 1000];
|
|
let task_pool = TaskPool::new();
|
|
let outputs = v.par_splat_map(&task_pool, None, |_, numbers| -> i32 {
|
|
numbers.iter().sum()
|
|
});
|
|
|
|
let mut sum = 0;
|
|
for output in outputs {
|
|
sum += output;
|
|
}
|
|
|
|
assert_eq!(sum, 1000 * 42);
|
|
}
|
|
|
|
#[test]
|
|
fn test_par_chunks_map_mut() {
|
|
let mut v = vec![42; 1000];
|
|
let task_pool = TaskPool::new();
|
|
|
|
let outputs = v.par_splat_map_mut(&task_pool, None, |_, numbers| -> i32 {
|
|
for number in numbers.iter_mut() {
|
|
*number *= 2;
|
|
}
|
|
numbers.iter().sum()
|
|
});
|
|
|
|
let mut sum = 0;
|
|
for output in outputs {
|
|
sum += output;
|
|
}
|
|
|
|
assert_eq!(sum, 1000 * 42 * 2);
|
|
assert_eq!(v[0], 84);
|
|
}
|
|
|
|
#[test]
|
|
fn test_par_chunks_map_index() {
|
|
let v = vec![1; 1000];
|
|
let task_pool = TaskPool::new();
|
|
let outputs = v.par_chunk_map(&task_pool, 100, |index, numbers| -> i32 {
|
|
numbers.iter().sum::<i32>() * index as i32
|
|
});
|
|
|
|
assert_eq!(outputs.iter().sum::<i32>(), 100 * (9 * 10) / 2);
|
|
}
|
|
}
|