bevy/crates/bevy_render/src/mesh/allocator.rs
JMS55 5e8dec8a90 Have the mesh allocator handle modified meshes (#18531)
# Objective
Fixes https://github.com/bevyengine/bevy/issues/16586.

## Solution
- Free meshes before allocating new ones (so hopefully the existing
allocation is used, but it's not guaranteed since it might end up
getting used by a smaller mesh first).
- Keep track of modified render assets, and have the mesh allocator free
their allocations.
- Cleaned up some render asset code to make it more understandable,
since it took me several minutes to reverse engineer/remember how it was
supposed to work.

Long term we'll probably want to explicitly reusing allocations for
modified meshes that haven't grown in size, or do delta uploads using a
compute shader or something, but this is an easy fix for the near term.

## Testing
Ran the example provided in the issue. No crash after a few minutes, and
memory usage remains steady.
2025-03-27 23:31:05 +01:00

1021 lines
36 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Manages mesh vertex and index buffers.
use alloc::vec::Vec;
use core::{
fmt::{self, Display, Formatter},
ops::Range,
};
use nonmax::NonMaxU32;
use bevy_app::{App, Plugin};
use bevy_asset::AssetId;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
resource::Resource,
schedule::IntoScheduleConfigs as _,
system::{Res, ResMut},
world::{FromWorld, World},
};
use bevy_platform_support::collections::{hash_map::Entry, HashMap, HashSet};
use bevy_utils::default;
use offset_allocator::{Allocation, Allocator};
use tracing::error;
use wgpu::{
BufferDescriptor, BufferSize, BufferUsages, CommandEncoderDescriptor, DownlevelFlags,
COPY_BUFFER_ALIGNMENT,
};
use crate::{
mesh::{Indices, Mesh, MeshVertexBufferLayouts, RenderMesh},
render_asset::{prepare_assets, ExtractedAssets},
render_resource::Buffer,
renderer::{RenderAdapter, RenderDevice, RenderQueue},
Render, RenderApp, RenderSet,
};
/// A plugin that manages GPU memory for mesh data.
pub struct MeshAllocatorPlugin;
/// Manages the assignment of mesh data to GPU buffers.
///
/// The Bevy renderer tries to pack vertex and index data for multiple meshes
/// together so that multiple meshes can be drawn back-to-back without any
/// rebinding. This resource manages these buffers.
///
/// Within each slab, or hardware buffer, the underlying allocation algorithm is
/// [`offset-allocator`], a Rust port of Sebastian Aaltonen's hard-real-time C++
/// `OffsetAllocator`. Slabs start small and then grow as their contents fill
/// up, up to a maximum size limit. To reduce fragmentation, vertex and index
/// buffers that are too large bypass this system and receive their own buffers.
///
/// The [`MeshAllocatorSettings`] allows you to tune the behavior of the
/// allocator for better performance with your application. Most applications
/// won't need to change the settings from their default values.
#[derive(Resource)]
pub struct MeshAllocator {
/// Holds all buffers and allocators.
slabs: HashMap<SlabId, Slab>,
/// Maps a layout to the slabs that hold elements of that layout.
///
/// This is used when allocating, so that we can find the appropriate slab
/// to place an object in.
slab_layouts: HashMap<ElementLayout, Vec<SlabId>>,
/// Maps mesh asset IDs to the ID of the slabs that hold their vertex data.
mesh_id_to_vertex_slab: HashMap<AssetId<Mesh>, SlabId>,
/// Maps mesh asset IDs to the ID of the slabs that hold their index data.
mesh_id_to_index_slab: HashMap<AssetId<Mesh>, SlabId>,
/// The next slab ID to assign.
next_slab_id: SlabId,
/// Whether we can pack multiple vertex arrays into a single slab on this
/// platform.
///
/// This corresponds to [`DownlevelFlags::BASE_VERTEX`], which is unset on
/// WebGL 2. On this platform, we must give each vertex array its own
/// buffer, because we can't adjust the first vertex when we perform a draw.
general_vertex_slabs_supported: bool,
}
/// Tunable parameters that customize the behavior of the allocator.
///
/// Generally, these parameters adjust the tradeoff between memory fragmentation
/// and performance. You can adjust them as desired for your application. Most
/// applications can stick with the default values.
#[derive(Resource)]
pub struct MeshAllocatorSettings {
/// The minimum size of a slab (hardware buffer), in bytes.
///
/// The default value is 1 MiB.
pub min_slab_size: u64,
/// The maximum size of a slab (hardware buffer), in bytes.
///
/// When a slab reaches this limit, a new slab is created.
///
/// The default value is 512 MiB.
pub max_slab_size: u64,
/// The maximum size of vertex or index data that can be placed in a general
/// slab, in bytes.
///
/// If a mesh has vertex or index data that exceeds this size limit, that
/// data is placed in its own slab. This reduces fragmentation, but incurs
/// more CPU-side binding overhead when drawing the mesh.
///
/// The default value is 256 MiB.
pub large_threshold: u64,
/// The factor by which we scale a slab when growing it.
///
/// This value must be greater than 1. Higher values result in more
/// fragmentation but fewer expensive copy operations when growing the
/// buffer.
///
/// The default value is 1.5.
pub growth_factor: f64,
}
impl Default for MeshAllocatorSettings {
fn default() -> Self {
Self {
// 1 MiB
min_slab_size: 1024 * 1024,
// 512 MiB
max_slab_size: 1024 * 1024 * 512,
// 256 MiB
large_threshold: 1024 * 1024 * 256,
// 1.5× growth
growth_factor: 1.5,
}
}
}
/// The hardware buffer that mesh data lives in, as well as the range within
/// that buffer.
pub struct MeshBufferSlice<'a> {
/// The buffer that the mesh data resides in.
pub buffer: &'a Buffer,
/// The range of elements within this buffer that the mesh data resides in,
/// measured in elements.
///
/// This is not a byte range; it's an element range. For vertex data, this
/// is measured in increments of a single vertex. (Thus, if a vertex is 32
/// bytes long, then this range is in units of 32 bytes each.) For index
/// data, this is measured in increments of a single index value (2 or 4
/// bytes). Draw commands generally take their ranges in elements, not
/// bytes, so this is the most convenient unit in this case.
pub range: Range<u32>,
}
/// The index of a single slab.
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[repr(transparent)]
pub struct SlabId(pub NonMaxU32);
/// Data for a single slab.
enum Slab {
/// A slab that can contain multiple objects.
General(GeneralSlab),
/// A slab that contains a single object.
LargeObject(LargeObjectSlab),
}
/// A resizable slab that can contain multiple objects.
///
/// This is the normal type of slab used for objects that are below the
/// [`MeshAllocatorSettings::large_threshold`]. Slabs are divided into *slots*,
/// which are described in detail in the [`ElementLayout`] documentation.
struct GeneralSlab {
/// The [`Allocator`] that manages the objects in this slab.
allocator: Allocator,
/// The GPU buffer that backs this slab.
///
/// This may be `None` if the buffer hasn't been created yet. We delay
/// creation of buffers until allocating all the meshes for a single frame,
/// so that we don't needlessly create and resize buffers when many meshes
/// load all at once.
buffer: Option<Buffer>,
/// Allocations that are on the GPU.
///
/// The range is in slots.
resident_allocations: HashMap<AssetId<Mesh>, SlabAllocation>,
/// Allocations that are waiting to be uploaded to the GPU.
///
/// The range is in slots.
pending_allocations: HashMap<AssetId<Mesh>, SlabAllocation>,
/// The layout of a single element (vertex or index).
element_layout: ElementLayout,
/// The size of this slab in slots.
current_slot_capacity: u32,
}
/// A slab that contains a single object.
///
/// Typically, this is for objects that exceed the
/// [`MeshAllocatorSettings::large_threshold`]. This is also for objects that
/// would ordinarily receive their own slab but can't because of platform
/// limitations, most notably vertex arrays on WebGL 2.
struct LargeObjectSlab {
/// The GPU buffer that backs this slab.
///
/// This may be `None` if the buffer hasn't been created yet.
buffer: Option<Buffer>,
/// The layout of a single element (vertex or index).
element_layout: ElementLayout,
}
/// The type of element that a slab can store.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
enum ElementClass {
/// Data for a vertex.
Vertex,
/// A vertex index.
Index,
}
/// The results of [`GeneralSlab::grow_if_necessary`].
enum SlabGrowthResult {
/// The mesh data already fits in the slab; the slab doesn't need to grow.
NoGrowthNeeded,
/// The slab needed to grow.
///
/// The [`SlabToReallocate`] contains the old capacity of the slab.
NeededGrowth(SlabToReallocate),
/// The slab wanted to grow but couldn't because it hit its maximum size.
CantGrow,
}
/// Information about the size of individual elements (vertices or indices)
/// within a slab.
///
/// Slab objects are allocated in units of *slots*. Usually, each element takes
/// up one slot, and so elements and slots are equivalent. Occasionally,
/// however, a slot may consist of 2 or even 4 elements. This occurs when the
/// size of an element isn't divisible by [`COPY_BUFFER_ALIGNMENT`]. When we
/// resize buffers, we perform GPU-to-GPU copies to shuffle the existing
/// elements into their new positions, and such copies must be on
/// [`COPY_BUFFER_ALIGNMENT`] boundaries. Slots solve this problem by
/// guaranteeing that the size of an allocation quantum is divisible by both the
/// size of an element and [`COPY_BUFFER_ALIGNMENT`], so we can relocate it
/// freely.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
struct ElementLayout {
/// Either a vertex or an index.
class: ElementClass,
/// The size in bytes of a single element (vertex or index).
size: u64,
/// The number of elements that make up a single slot.
///
/// Usually, this is 1, but it can be different if [`ElementLayout::size`]
/// isn't divisible by 4. See the comment in [`ElementLayout`] for more
/// details.
elements_per_slot: u32,
}
/// The location of an allocation and the slab it's contained in.
struct MeshAllocation {
/// The ID of the slab.
slab_id: SlabId,
/// Holds the actual allocation.
slab_allocation: SlabAllocation,
}
/// An allocation within a slab.
#[derive(Clone)]
struct SlabAllocation {
/// The actual [`Allocator`] handle, needed to free the allocation.
allocation: Allocation,
/// The number of slots that this allocation takes up.
slot_count: u32,
}
/// Holds information about all slabs scheduled to be allocated or reallocated.
#[derive(Default, Deref, DerefMut)]
struct SlabsToReallocate(HashMap<SlabId, SlabToReallocate>);
/// Holds information about a slab that's scheduled to be allocated or
/// reallocated.
#[derive(Default)]
struct SlabToReallocate {
/// The capacity of the slab before we decided to grow it.
old_slot_capacity: u32,
}
impl Display for SlabId {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl Plugin for MeshAllocatorPlugin {
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<MeshAllocatorSettings>()
.add_systems(
Render,
allocate_and_free_meshes
.in_set(RenderSet::PrepareAssets)
.before(prepare_assets::<RenderMesh>),
);
}
fn finish(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
// The `RenderAdapter` isn't available until now, so we can't do this in
// [`Plugin::build`].
render_app.init_resource::<MeshAllocator>();
}
}
impl FromWorld for MeshAllocator {
fn from_world(world: &mut World) -> Self {
// Note whether we're on WebGL 2. In this case, we must give every
// vertex array its own slab.
let render_adapter = world.resource::<RenderAdapter>();
let general_vertex_slabs_supported = render_adapter
.get_downlevel_capabilities()
.flags
.contains(DownlevelFlags::BASE_VERTEX);
Self {
slabs: HashMap::default(),
slab_layouts: HashMap::default(),
mesh_id_to_vertex_slab: HashMap::default(),
mesh_id_to_index_slab: HashMap::default(),
next_slab_id: default(),
general_vertex_slabs_supported,
}
}
}
/// A system that processes newly-extracted or newly-removed meshes and writes
/// their data into buffers or frees their data as appropriate.
pub fn allocate_and_free_meshes(
mut mesh_allocator: ResMut<MeshAllocator>,
mesh_allocator_settings: Res<MeshAllocatorSettings>,
extracted_meshes: Res<ExtractedAssets<RenderMesh>>,
mut mesh_vertex_buffer_layouts: ResMut<MeshVertexBufferLayouts>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
) {
// Process removed or modified meshes.
mesh_allocator.free_meshes(&extracted_meshes);
// Process newly-added or modified meshes.
mesh_allocator.allocate_meshes(
&mesh_allocator_settings,
&extracted_meshes,
&mut mesh_vertex_buffer_layouts,
&render_device,
&render_queue,
);
}
impl MeshAllocator {
/// Returns the buffer and range within that buffer of the vertex data for
/// the mesh with the given ID.
///
/// If the mesh wasn't allocated, returns None.
pub fn mesh_vertex_slice(&self, mesh_id: &AssetId<Mesh>) -> Option<MeshBufferSlice> {
self.mesh_slice_in_slab(mesh_id, *self.mesh_id_to_vertex_slab.get(mesh_id)?)
}
/// Returns the buffer and range within that buffer of the index data for
/// the mesh with the given ID.
///
/// If the mesh has no index data or wasn't allocated, returns None.
pub fn mesh_index_slice(&self, mesh_id: &AssetId<Mesh>) -> Option<MeshBufferSlice> {
self.mesh_slice_in_slab(mesh_id, *self.mesh_id_to_index_slab.get(mesh_id)?)
}
/// Returns the IDs of the vertex buffer and index buffer respectively for
/// the mesh with the given ID.
///
/// If the mesh wasn't allocated, or has no index data in the case of the
/// index buffer, the corresponding element in the returned tuple will be
/// None.
pub fn mesh_slabs(&self, mesh_id: &AssetId<Mesh>) -> (Option<SlabId>, Option<SlabId>) {
(
self.mesh_id_to_vertex_slab.get(mesh_id).cloned(),
self.mesh_id_to_index_slab.get(mesh_id).cloned(),
)
}
/// Given a slab and a mesh with data located with it, returns the buffer
/// and range of that mesh data within the slab.
fn mesh_slice_in_slab(
&self,
mesh_id: &AssetId<Mesh>,
slab_id: SlabId,
) -> Option<MeshBufferSlice> {
match self.slabs.get(&slab_id)? {
Slab::General(general_slab) => {
let slab_allocation = general_slab.resident_allocations.get(mesh_id)?;
Some(MeshBufferSlice {
buffer: general_slab.buffer.as_ref()?,
range: (slab_allocation.allocation.offset
* general_slab.element_layout.elements_per_slot)
..((slab_allocation.allocation.offset + slab_allocation.slot_count)
* general_slab.element_layout.elements_per_slot),
})
}
Slab::LargeObject(large_object_slab) => {
let buffer = large_object_slab.buffer.as_ref()?;
Some(MeshBufferSlice {
buffer,
range: 0..((buffer.size() / large_object_slab.element_layout.size) as u32),
})
}
}
}
/// Processes newly-loaded meshes, allocating room in the slabs for their
/// mesh data and performing upload operations as appropriate.
fn allocate_meshes(
&mut self,
mesh_allocator_settings: &MeshAllocatorSettings,
extracted_meshes: &ExtractedAssets<RenderMesh>,
mesh_vertex_buffer_layouts: &mut MeshVertexBufferLayouts,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let mut slabs_to_grow = SlabsToReallocate::default();
// Allocate.
for (mesh_id, mesh) in &extracted_meshes.extracted {
// Allocate vertex data. Note that we can only pack mesh vertex data
// together if the platform supports it.
let vertex_element_layout = ElementLayout::vertex(mesh_vertex_buffer_layouts, mesh);
if self.general_vertex_slabs_supported {
self.allocate(
mesh_id,
mesh.get_vertex_buffer_size() as u64,
vertex_element_layout,
&mut slabs_to_grow,
mesh_allocator_settings,
);
} else {
self.allocate_large(mesh_id, vertex_element_layout);
}
// Allocate index data.
if let (Some(index_buffer_data), Some(index_element_layout)) =
(mesh.get_index_buffer_bytes(), ElementLayout::index(mesh))
{
self.allocate(
mesh_id,
index_buffer_data.len() as u64,
index_element_layout,
&mut slabs_to_grow,
mesh_allocator_settings,
);
}
}
// Perform growth.
for (slab_id, slab_to_grow) in slabs_to_grow.0 {
self.reallocate_slab(render_device, render_queue, slab_id, slab_to_grow);
}
// Copy new mesh data in.
for (mesh_id, mesh) in &extracted_meshes.extracted {
self.copy_mesh_vertex_data(mesh_id, mesh, render_device, render_queue);
self.copy_mesh_index_data(mesh_id, mesh, render_device, render_queue);
}
}
/// Copies vertex array data from a mesh into the appropriate spot in the
/// slab.
fn copy_mesh_vertex_data(
&mut self,
mesh_id: &AssetId<Mesh>,
mesh: &Mesh,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let Some(&slab_id) = self.mesh_id_to_vertex_slab.get(mesh_id) else {
return;
};
// Call the generic function.
self.copy_element_data(
mesh_id,
mesh.get_vertex_buffer_size(),
|slice| mesh.write_packed_vertex_buffer_data(slice),
BufferUsages::VERTEX,
slab_id,
render_device,
render_queue,
);
}
/// Copies index array data from a mesh into the appropriate spot in the
/// slab.
fn copy_mesh_index_data(
&mut self,
mesh_id: &AssetId<Mesh>,
mesh: &Mesh,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let Some(&slab_id) = self.mesh_id_to_index_slab.get(mesh_id) else {
return;
};
let Some(index_data) = mesh.get_index_buffer_bytes() else {
return;
};
// Call the generic function.
self.copy_element_data(
mesh_id,
index_data.len(),
|slice| slice.copy_from_slice(index_data),
BufferUsages::INDEX,
slab_id,
render_device,
render_queue,
);
}
/// A generic function that copies either vertex or index data into a slab.
fn copy_element_data(
&mut self,
mesh_id: &AssetId<Mesh>,
len: usize,
fill_data: impl Fn(&mut [u8]),
buffer_usages: BufferUsages,
slab_id: SlabId,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
let Some(slab) = self.slabs.get_mut(&slab_id) else {
return;
};
match *slab {
Slab::General(ref mut general_slab) => {
let (Some(buffer), Some(allocated_range)) = (
&general_slab.buffer,
general_slab.pending_allocations.remove(mesh_id),
) else {
return;
};
let slot_size = general_slab.element_layout.slot_size();
// round up size to a multiple of the slot size to satisfy wgpu alignment requirements
if let Some(size) = BufferSize::new((len as u64).next_multiple_of(slot_size)) {
// Write the data in.
if let Some(mut buffer) = render_queue.write_buffer_with(
buffer,
allocated_range.allocation.offset as u64 * slot_size,
size,
) {
let slice = &mut buffer.as_mut()[..len];
fill_data(slice);
}
}
// Mark the allocation as resident.
general_slab
.resident_allocations
.insert(*mesh_id, allocated_range);
}
Slab::LargeObject(ref mut large_object_slab) => {
debug_assert!(large_object_slab.buffer.is_none());
// Create the buffer and its data in one go.
let buffer = render_device.create_buffer(&BufferDescriptor {
label: Some(&format!(
"large mesh slab {} ({}buffer)",
slab_id,
buffer_usages_to_str(buffer_usages)
)),
size: len as u64,
usage: buffer_usages | BufferUsages::COPY_DST,
mapped_at_creation: true,
});
{
let slice = &mut buffer.slice(..).get_mapped_range_mut()[..len];
fill_data(slice);
}
buffer.unmap();
large_object_slab.buffer = Some(buffer);
}
}
}
/// Frees allocations for meshes that were removed or modified this frame.
fn free_meshes(&mut self, extracted_meshes: &ExtractedAssets<RenderMesh>) {
let mut empty_slabs = <HashSet<_>>::default();
// TODO: Consider explicitly reusing allocations for changed meshes of the same size
let meshes_to_free = extracted_meshes
.removed
.iter()
.chain(extracted_meshes.modified.iter());
for mesh_id in meshes_to_free {
if let Some(slab_id) = self.mesh_id_to_vertex_slab.remove(mesh_id) {
self.free_allocation_in_slab(mesh_id, slab_id, &mut empty_slabs);
}
if let Some(slab_id) = self.mesh_id_to_index_slab.remove(mesh_id) {
self.free_allocation_in_slab(mesh_id, slab_id, &mut empty_slabs);
}
}
for empty_slab in empty_slabs {
self.slab_layouts.values_mut().for_each(|slab_ids| {
let idx = slab_ids.iter().position(|&slab_id| slab_id == empty_slab);
if let Some(idx) = idx {
slab_ids.remove(idx);
}
});
self.slabs.remove(&empty_slab);
}
}
/// Given a slab and the ID of a mesh containing data in it, marks the
/// allocation as free.
///
/// If this results in the slab becoming empty, this function adds the slab
/// to the `empty_slabs` set.
fn free_allocation_in_slab(
&mut self,
mesh_id: &AssetId<Mesh>,
slab_id: SlabId,
empty_slabs: &mut HashSet<SlabId>,
) {
let Some(slab) = self.slabs.get_mut(&slab_id) else {
return;
};
match *slab {
Slab::General(ref mut general_slab) => {
let Some(slab_allocation) = general_slab
.resident_allocations
.remove(mesh_id)
.or_else(|| general_slab.pending_allocations.remove(mesh_id))
else {
return;
};
general_slab.allocator.free(slab_allocation.allocation);
if general_slab.is_empty() {
empty_slabs.insert(slab_id);
}
}
Slab::LargeObject(_) => {
empty_slabs.insert(slab_id);
}
}
}
/// Allocates space for mesh data with the given byte size and layout in the
/// appropriate slab, creating that slab if necessary.
fn allocate(
&mut self,
mesh_id: &AssetId<Mesh>,
data_byte_len: u64,
layout: ElementLayout,
slabs_to_grow: &mut SlabsToReallocate,
settings: &MeshAllocatorSettings,
) {
let data_element_count = data_byte_len.div_ceil(layout.size) as u32;
let data_slot_count = data_element_count.div_ceil(layout.elements_per_slot);
// If the mesh data is too large for a slab, give it a slab of its own.
if data_slot_count as u64 * layout.slot_size()
>= settings.large_threshold.min(settings.max_slab_size)
{
self.allocate_large(mesh_id, layout);
} else {
self.allocate_general(mesh_id, data_slot_count, layout, slabs_to_grow, settings);
}
}
/// Allocates space for mesh data with the given slot size and layout in the
/// appropriate general slab.
fn allocate_general(
&mut self,
mesh_id: &AssetId<Mesh>,
data_slot_count: u32,
layout: ElementLayout,
slabs_to_grow: &mut SlabsToReallocate,
settings: &MeshAllocatorSettings,
) {
let candidate_slabs = self.slab_layouts.entry(layout).or_default();
// Loop through the slabs that accept elements of the appropriate type
// and try to allocate the mesh inside them. We go with the first one
// that succeeds.
let mut mesh_allocation = None;
for &slab_id in &*candidate_slabs {
let Some(Slab::General(slab)) = self.slabs.get_mut(&slab_id) else {
unreachable!("Slab not found")
};
let Some(allocation) = slab.allocator.allocate(data_slot_count) else {
continue;
};
// Try to fit the object in the slab, growing if necessary.
match slab.grow_if_necessary(allocation.offset + data_slot_count, settings) {
SlabGrowthResult::NoGrowthNeeded => {}
SlabGrowthResult::NeededGrowth(slab_to_reallocate) => {
// If we already grew the slab this frame, don't replace the
// `SlabToReallocate` entry. We want to keep the entry
// corresponding to the size that the slab had at the start
// of the frame, so that we can copy only the used portion
// of the initial buffer to the new one.
if let Entry::Vacant(vacant_entry) = slabs_to_grow.entry(slab_id) {
vacant_entry.insert(slab_to_reallocate);
}
}
SlabGrowthResult::CantGrow => continue,
}
mesh_allocation = Some(MeshAllocation {
slab_id,
slab_allocation: SlabAllocation {
allocation,
slot_count: data_slot_count,
},
});
break;
}
// If we still have no allocation, make a new slab.
if mesh_allocation.is_none() {
let new_slab_id = self.next_slab_id;
self.next_slab_id.0 = NonMaxU32::new(self.next_slab_id.0.get() + 1).unwrap_or_default();
let new_slab = GeneralSlab::new(
new_slab_id,
&mut mesh_allocation,
settings,
layout,
data_slot_count,
);
self.slabs.insert(new_slab_id, Slab::General(new_slab));
candidate_slabs.push(new_slab_id);
slabs_to_grow.insert(new_slab_id, SlabToReallocate::default());
}
let mesh_allocation = mesh_allocation.expect("Should have been able to allocate");
// Mark the allocation as pending. Don't copy it in just yet; further
// meshes loaded this frame may result in its final allocation location
// changing.
if let Some(Slab::General(general_slab)) = self.slabs.get_mut(&mesh_allocation.slab_id) {
general_slab
.pending_allocations
.insert(*mesh_id, mesh_allocation.slab_allocation);
};
self.record_allocation(mesh_id, mesh_allocation.slab_id, layout.class);
}
/// Allocates an object into its own dedicated slab.
fn allocate_large(&mut self, mesh_id: &AssetId<Mesh>, layout: ElementLayout) {
let new_slab_id = self.next_slab_id;
self.next_slab_id.0 = NonMaxU32::new(self.next_slab_id.0.get() + 1).unwrap_or_default();
self.record_allocation(mesh_id, new_slab_id, layout.class);
self.slabs.insert(
new_slab_id,
Slab::LargeObject(LargeObjectSlab {
buffer: None,
element_layout: layout,
}),
);
}
/// Reallocates a slab that needs to be resized, or allocates a new slab.
///
/// This performs the actual growth operation that
/// [`GeneralSlab::grow_if_necessary`] scheduled. We do the growth in two
/// phases so that, if a slab grows multiple times in the same frame, only
/// one new buffer is reallocated, rather than reallocating the buffer
/// multiple times.
fn reallocate_slab(
&mut self,
render_device: &RenderDevice,
render_queue: &RenderQueue,
slab_id: SlabId,
slab_to_grow: SlabToReallocate,
) {
let Some(Slab::General(slab)) = self.slabs.get_mut(&slab_id) else {
error!("Couldn't find slab {} to grow", slab_id);
return;
};
let old_buffer = slab.buffer.take();
let mut buffer_usages = BufferUsages::COPY_SRC | BufferUsages::COPY_DST;
match slab.element_layout.class {
ElementClass::Vertex => buffer_usages |= BufferUsages::VERTEX,
ElementClass::Index => buffer_usages |= BufferUsages::INDEX,
};
// Create the buffer.
let new_buffer = render_device.create_buffer(&BufferDescriptor {
label: Some(&format!(
"general mesh slab {} ({}buffer)",
slab_id,
buffer_usages_to_str(buffer_usages)
)),
size: slab.current_slot_capacity as u64 * slab.element_layout.slot_size(),
usage: buffer_usages,
mapped_at_creation: false,
});
slab.buffer = Some(new_buffer.clone());
let Some(old_buffer) = old_buffer else { return };
// In order to do buffer copies, we need a command encoder.
let mut encoder = render_device.create_command_encoder(&CommandEncoderDescriptor {
label: Some("slab resize encoder"),
});
// Copy the data from the old buffer into the new one.
encoder.copy_buffer_to_buffer(
&old_buffer,
0,
&new_buffer,
0,
slab_to_grow.old_slot_capacity as u64 * slab.element_layout.slot_size(),
);
let command_buffer = encoder.finish();
render_queue.submit([command_buffer]);
}
/// Records the location of the given newly-allocated mesh data in the
/// [`Self::mesh_id_to_vertex_slab`] or [`Self::mesh_id_to_index_slab`]
/// tables as appropriate.
fn record_allocation(
&mut self,
mesh_id: &AssetId<Mesh>,
slab_id: SlabId,
element_class: ElementClass,
) {
match element_class {
ElementClass::Vertex => {
self.mesh_id_to_vertex_slab.insert(*mesh_id, slab_id);
}
ElementClass::Index => {
self.mesh_id_to_index_slab.insert(*mesh_id, slab_id);
}
}
}
}
impl GeneralSlab {
/// Creates a new growable slab big enough to hold a single element of
/// `data_slot_count` size with the given `layout`.
fn new(
new_slab_id: SlabId,
mesh_allocation: &mut Option<MeshAllocation>,
settings: &MeshAllocatorSettings,
layout: ElementLayout,
data_slot_count: u32,
) -> GeneralSlab {
let initial_slab_slot_capacity = (settings.min_slab_size.div_ceil(layout.slot_size())
as u32)
.max(offset_allocator::ext::min_allocator_size(data_slot_count));
let max_slab_slot_capacity = (settings.max_slab_size.div_ceil(layout.slot_size()) as u32)
.max(offset_allocator::ext::min_allocator_size(data_slot_count));
let mut new_slab = GeneralSlab {
allocator: Allocator::new(max_slab_slot_capacity),
buffer: None,
resident_allocations: HashMap::default(),
pending_allocations: HashMap::default(),
element_layout: layout,
current_slot_capacity: initial_slab_slot_capacity,
};
// This should never fail.
if let Some(allocation) = new_slab.allocator.allocate(data_slot_count) {
*mesh_allocation = Some(MeshAllocation {
slab_id: new_slab_id,
slab_allocation: SlabAllocation {
slot_count: data_slot_count,
allocation,
},
});
}
new_slab
}
/// Checks to see if the size of this slab is at least `new_size_in_slots`
/// and grows the slab if it isn't.
///
/// The returned [`SlabGrowthResult`] describes whether the slab needed to
/// grow and whether, if so, it was successful in doing so.
fn grow_if_necessary(
&mut self,
new_size_in_slots: u32,
settings: &MeshAllocatorSettings,
) -> SlabGrowthResult {
// Is the slab big enough already?
let initial_slot_capacity = self.current_slot_capacity;
if self.current_slot_capacity >= new_size_in_slots {
return SlabGrowthResult::NoGrowthNeeded;
}
// Try to grow in increments of `MeshAllocatorSettings::growth_factor`
// until we're big enough.
while self.current_slot_capacity < new_size_in_slots {
let new_slab_slot_capacity =
((self.current_slot_capacity as f64 * settings.growth_factor).ceil() as u32)
.min((settings.max_slab_size / self.element_layout.slot_size()) as u32);
if new_slab_slot_capacity == self.current_slot_capacity {
// The slab is full.
return SlabGrowthResult::CantGrow;
}
self.current_slot_capacity = new_slab_slot_capacity;
}
// Tell our caller what we did.
SlabGrowthResult::NeededGrowth(SlabToReallocate {
old_slot_capacity: initial_slot_capacity,
})
}
}
impl ElementLayout {
/// Creates an [`ElementLayout`] for mesh data of the given class (vertex or
/// index) with the given byte size.
fn new(class: ElementClass, size: u64) -> ElementLayout {
const {
assert!(4 == COPY_BUFFER_ALIGNMENT);
}
// this is equivalent to `4 / gcd(4,size)` but lets us not implement gcd.
// ping @atlv if above assert ever fails (likely never)
let elements_per_slot = [1, 4, 2, 4][size as usize & 3];
ElementLayout {
class,
size,
// Make sure that slot boundaries begin and end on
// `COPY_BUFFER_ALIGNMENT`-byte (4-byte) boundaries.
elements_per_slot,
}
}
fn slot_size(&self) -> u64 {
self.size * self.elements_per_slot as u64
}
/// Creates the appropriate [`ElementLayout`] for the given mesh's vertex
/// data.
fn vertex(
mesh_vertex_buffer_layouts: &mut MeshVertexBufferLayouts,
mesh: &Mesh,
) -> ElementLayout {
let mesh_vertex_buffer_layout =
mesh.get_mesh_vertex_buffer_layout(mesh_vertex_buffer_layouts);
ElementLayout::new(
ElementClass::Vertex,
mesh_vertex_buffer_layout.0.layout().array_stride,
)
}
/// Creates the appropriate [`ElementLayout`] for the given mesh's index
/// data.
fn index(mesh: &Mesh) -> Option<ElementLayout> {
let size = match mesh.indices()? {
Indices::U16(_) => 2,
Indices::U32(_) => 4,
};
Some(ElementLayout::new(ElementClass::Index, size))
}
}
impl GeneralSlab {
/// Returns true if this slab is empty.
fn is_empty(&self) -> bool {
self.resident_allocations.is_empty() && self.pending_allocations.is_empty()
}
}
/// Returns a string describing the given buffer usages.
fn buffer_usages_to_str(buffer_usages: BufferUsages) -> &'static str {
if buffer_usages.contains(BufferUsages::VERTEX) {
"vertex "
} else if buffer_usages.contains(BufferUsages::INDEX) {
"index "
} else {
""
}
}