bevy/crates/bevy_math/src/isometry.rs
François Mockers 4fe57767fc
make bevy math publishable (#17727)
# Objective

- bevy_math fails to publish because of the self dev-dependency
- it's used to enable the `approx` feature in tests

## Solution

- Don't specify a version in the dev-dependency. dependencies without a
version are ignored by cargo when publishing
- Gate all the tests that depend on the `approx` feature so that it
doesn't fail to compile when not enabled
- Also gate an import that wasn't used without `bevy_reflect`

## Testing

- with at least cargo 1.84: `cargo package -p bevy_math`
- `cd target/package/bevy_math_* && cargo test`
2025-02-10 22:15:53 +00:00

689 lines
21 KiB
Rust

//! Isometry types for expressing rigid motions in two and three dimensions.
use crate::{Affine2, Affine3, Affine3A, Dir2, Dir3, Mat3, Mat3A, Quat, Rot2, Vec2, Vec3, Vec3A};
use core::ops::Mul;
#[cfg(feature = "approx")]
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// An isometry in two dimensions, representing a rotation followed by a translation.
/// This can often be useful for expressing relative positions and transformations from one position to another.
///
/// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
/// and belongs to the special [Euclidean group] SE(2). This includes translation and rotation, but excludes reflection.
///
/// For the three-dimensional version, see [`Isometry3d`].
///
/// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
///
/// # Example
///
/// Isometries can be created from a given translation and rotation:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
/// ```
///
/// Or from separate parts:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
/// let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
/// ```
///
/// The isometries can be used to transform points:
///
/// ```
/// # use approx::assert_abs_diff_eq;
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
/// let point = Vec2::new(4.0, 4.0);
///
/// // These are equivalent
/// let result = iso.transform_point(point);
/// let result = iso * point;
///
/// assert_eq!(result, Vec2::new(-2.0, 5.0));
/// ```
///
/// Isometries can also be composed together:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// # let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
/// # let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
/// # let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
/// #
/// assert_eq!(iso1 * iso2, iso);
/// ```
///
/// One common operation is to compute an isometry representing the relative positions of two objects
/// for things like intersection tests. This can be done with an inverse transformation:
///
/// ```
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
/// #
/// let circle_iso = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
/// let rectangle_iso = Isometry2d::from_rotation(Rot2::degrees(90.0));
///
/// // Compute the relative position and orientation between the two shapes
/// let relative_iso = circle_iso.inverse() * rectangle_iso;
///
/// // Or alternatively, to skip an extra rotation operation:
/// let relative_iso = circle_iso.inverse_mul(rectangle_iso);
/// ```
#[derive(Copy, Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Isometry2d {
/// The rotational part of a two-dimensional isometry.
pub rotation: Rot2,
/// The translational part of a two-dimensional isometry.
pub translation: Vec2,
}
impl Isometry2d {
/// The identity isometry which represents the rigid motion of not doing anything.
pub const IDENTITY: Self = Isometry2d {
rotation: Rot2::IDENTITY,
translation: Vec2::ZERO,
};
/// Create a two-dimensional isometry from a rotation and a translation.
#[inline]
pub fn new(translation: Vec2, rotation: Rot2) -> Self {
Isometry2d {
rotation,
translation,
}
}
/// Create a two-dimensional isometry from a rotation.
#[inline]
pub fn from_rotation(rotation: Rot2) -> Self {
Isometry2d {
rotation,
translation: Vec2::ZERO,
}
}
/// Create a two-dimensional isometry from a translation.
#[inline]
pub fn from_translation(translation: Vec2) -> Self {
Isometry2d {
rotation: Rot2::IDENTITY,
translation,
}
}
/// Create a two-dimensional isometry from a translation with the given `x` and `y` components.
#[inline]
pub fn from_xy(x: f32, y: f32) -> Self {
Isometry2d {
rotation: Rot2::IDENTITY,
translation: Vec2::new(x, y),
}
}
/// The inverse isometry that undoes this one.
#[inline]
pub fn inverse(&self) -> Self {
let inv_rot = self.rotation.inverse();
Isometry2d {
rotation: inv_rot,
translation: inv_rot * -self.translation,
}
}
/// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
///
/// If the same isometry is used multiple times, it is more efficient to instead compute
/// the inverse once and use that for each transformation.
#[inline]
pub fn inverse_mul(&self, rhs: Self) -> Self {
let inv_rot = self.rotation.inverse();
let delta_translation = rhs.translation - self.translation;
Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
}
/// Transform a point by rotating and translating it using this isometry.
#[inline]
pub fn transform_point(&self, point: Vec2) -> Vec2 {
self.rotation * point + self.translation
}
/// Transform a point by rotating and translating it using the inverse of this isometry.
///
/// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
/// If the same isometry is used multiple times, it is more efficient to instead compute
/// the inverse once and use that for each transformation.
#[inline]
pub fn inverse_transform_point(&self, point: Vec2) -> Vec2 {
self.rotation.inverse() * (point - self.translation)
}
}
impl From<Isometry2d> for Affine2 {
#[inline]
fn from(iso: Isometry2d) -> Self {
Affine2 {
matrix2: iso.rotation.into(),
translation: iso.translation,
}
}
}
impl From<Vec2> for Isometry2d {
#[inline]
fn from(translation: Vec2) -> Self {
Isometry2d::from_translation(translation)
}
}
impl From<Rot2> for Isometry2d {
#[inline]
fn from(rotation: Rot2) -> Self {
Isometry2d::from_rotation(rotation)
}
}
impl Mul for Isometry2d {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Isometry2d {
rotation: self.rotation * rhs.rotation,
translation: self.rotation * rhs.translation + self.translation,
}
}
}
impl Mul<Vec2> for Isometry2d {
type Output = Vec2;
#[inline]
fn mul(self, rhs: Vec2) -> Self::Output {
self.transform_point(rhs)
}
}
impl Mul<Dir2> for Isometry2d {
type Output = Dir2;
#[inline]
fn mul(self, rhs: Dir2) -> Self::Output {
self.rotation * rhs
}
}
#[cfg(feature = "approx")]
impl AbsDiffEq for Isometry2d {
type Epsilon = <f32 as AbsDiffEq>::Epsilon;
fn default_epsilon() -> Self::Epsilon {
f32::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.rotation.abs_diff_eq(&other.rotation, epsilon)
&& self.translation.abs_diff_eq(other.translation, epsilon)
}
}
#[cfg(feature = "approx")]
impl RelativeEq for Isometry2d {
fn default_max_relative() -> Self::Epsilon {
Self::default_epsilon()
}
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
&& self
.translation
.relative_eq(&other.translation, epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl UlpsEq for Isometry2d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
&& self
.translation
.ulps_eq(&other.translation, epsilon, max_ulps)
}
}
/// An isometry in three dimensions, representing a rotation followed by a translation.
/// This can often be useful for expressing relative positions and transformations from one position to another.
///
/// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
/// and belongs to the special [Euclidean group] SE(3). This includes translation and rotation, but excludes reflection.
///
/// For the two-dimensional version, see [`Isometry2d`].
///
/// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
///
/// # Example
///
/// Isometries can be created from a given translation and rotation:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
/// ```
///
/// Or from separate parts:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
/// let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
/// ```
///
/// The isometries can be used to transform points:
///
/// ```
/// # use approx::assert_relative_eq;
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
/// let point = Vec3::new(4.0, 4.0, 4.0);
///
/// // These are equivalent
/// let result = iso.transform_point(point);
/// let result = iso * point;
///
/// assert_relative_eq!(result, Vec3::new(-2.0, 5.0, 7.0));
/// ```
///
/// Isometries can also be composed together:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// # let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
/// # let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
/// # let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
/// #
/// assert_eq!(iso1 * iso2, iso);
/// ```
///
/// One common operation is to compute an isometry representing the relative positions of two objects
/// for things like intersection tests. This can be done with an inverse transformation:
///
/// ```
/// # use bevy_math::{Isometry3d, Quat, Vec3};
/// # use std::f32::consts::FRAC_PI_2;
/// #
/// let sphere_iso = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
/// let cuboid_iso = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
///
/// // Compute the relative position and orientation between the two shapes
/// let relative_iso = sphere_iso.inverse() * cuboid_iso;
///
/// // Or alternatively, to skip an extra rotation operation:
/// let relative_iso = sphere_iso.inverse_mul(cuboid_iso);
/// ```
#[derive(Copy, Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Isometry3d {
/// The rotational part of a three-dimensional isometry.
pub rotation: Quat,
/// The translational part of a three-dimensional isometry.
pub translation: Vec3A,
}
impl Isometry3d {
/// The identity isometry which represents the rigid motion of not doing anything.
pub const IDENTITY: Self = Isometry3d {
rotation: Quat::IDENTITY,
translation: Vec3A::ZERO,
};
/// Create a three-dimensional isometry from a rotation and a translation.
#[inline]
pub fn new(translation: impl Into<Vec3A>, rotation: Quat) -> Self {
Isometry3d {
rotation,
translation: translation.into(),
}
}
/// Create a three-dimensional isometry from a rotation.
#[inline]
pub fn from_rotation(rotation: Quat) -> Self {
Isometry3d {
rotation,
translation: Vec3A::ZERO,
}
}
/// Create a three-dimensional isometry from a translation.
#[inline]
pub fn from_translation(translation: impl Into<Vec3A>) -> Self {
Isometry3d {
rotation: Quat::IDENTITY,
translation: translation.into(),
}
}
/// Create a three-dimensional isometry from a translation with the given `x`, `y`, and `z` components.
#[inline]
pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
Isometry3d {
rotation: Quat::IDENTITY,
translation: Vec3A::new(x, y, z),
}
}
/// The inverse isometry that undoes this one.
#[inline]
pub fn inverse(&self) -> Self {
let inv_rot = self.rotation.inverse();
Isometry3d {
rotation: inv_rot,
translation: inv_rot * -self.translation,
}
}
/// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
///
/// If the same isometry is used multiple times, it is more efficient to instead compute
/// the inverse once and use that for each transformation.
#[inline]
pub fn inverse_mul(&self, rhs: Self) -> Self {
let inv_rot = self.rotation.inverse();
let delta_translation = rhs.translation - self.translation;
Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
}
/// Transform a point by rotating and translating it using this isometry.
#[inline]
pub fn transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
self.rotation * point.into() + self.translation
}
/// Transform a point by rotating and translating it using the inverse of this isometry.
///
/// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
/// If the same isometry is used multiple times, it is more efficient to instead compute
/// the inverse once and use that for each transformation.
#[inline]
pub fn inverse_transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
self.rotation.inverse() * (point.into() - self.translation)
}
}
impl From<Isometry3d> for Affine3 {
#[inline]
fn from(iso: Isometry3d) -> Self {
Affine3 {
matrix3: Mat3::from_quat(iso.rotation),
translation: iso.translation.into(),
}
}
}
impl From<Isometry3d> for Affine3A {
#[inline]
fn from(iso: Isometry3d) -> Self {
Affine3A {
matrix3: Mat3A::from_quat(iso.rotation),
translation: iso.translation,
}
}
}
impl From<Vec3> for Isometry3d {
#[inline]
fn from(translation: Vec3) -> Self {
Isometry3d::from_translation(translation)
}
}
impl From<Vec3A> for Isometry3d {
#[inline]
fn from(translation: Vec3A) -> Self {
Isometry3d::from_translation(translation)
}
}
impl From<Quat> for Isometry3d {
#[inline]
fn from(rotation: Quat) -> Self {
Isometry3d::from_rotation(rotation)
}
}
impl Mul for Isometry3d {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Isometry3d {
rotation: self.rotation * rhs.rotation,
translation: self.rotation * rhs.translation + self.translation,
}
}
}
impl Mul<Vec3A> for Isometry3d {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Self::Output {
self.transform_point(rhs)
}
}
impl Mul<Vec3> for Isometry3d {
type Output = Vec3;
#[inline]
fn mul(self, rhs: Vec3) -> Self::Output {
self.transform_point(rhs).into()
}
}
impl Mul<Dir3> for Isometry3d {
type Output = Dir3;
#[inline]
fn mul(self, rhs: Dir3) -> Self::Output {
self.rotation * rhs
}
}
#[cfg(feature = "approx")]
impl AbsDiffEq for Isometry3d {
type Epsilon = <f32 as AbsDiffEq>::Epsilon;
fn default_epsilon() -> Self::Epsilon {
f32::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.rotation.abs_diff_eq(other.rotation, epsilon)
&& self.translation.abs_diff_eq(other.translation, epsilon)
}
}
#[cfg(feature = "approx")]
impl RelativeEq for Isometry3d {
fn default_max_relative() -> Self::Epsilon {
Self::default_epsilon()
}
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
&& self
.translation
.relative_eq(&other.translation, epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl UlpsEq for Isometry3d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
&& self
.translation
.ulps_eq(&other.translation, epsilon, max_ulps)
}
}
#[cfg(test)]
#[cfg(feature = "approx")]
mod tests {
use super::*;
use crate::{vec2, vec3, vec3a};
use approx::assert_abs_diff_eq;
use core::f32::consts::{FRAC_PI_2, FRAC_PI_3};
#[test]
fn mul_2d() {
let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
let iso2 = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
let expected = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
assert_abs_diff_eq!(iso1 * iso2, expected);
}
#[test]
fn inverse_mul_2d() {
let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
let iso2 = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
let expected = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
}
#[test]
fn mul_3d() {
let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
let iso2 = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
let expected = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
assert_abs_diff_eq!(iso1 * iso2, expected);
}
#[test]
fn inverse_mul_3d() {
let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
let iso2 = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
let expected = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
}
#[test]
fn identity_2d() {
let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
assert_abs_diff_eq!(Isometry2d::IDENTITY * iso, iso);
assert_abs_diff_eq!(iso * Isometry2d::IDENTITY, iso);
}
#[test]
fn identity_3d() {
let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
assert_abs_diff_eq!(Isometry3d::IDENTITY * iso, iso);
assert_abs_diff_eq!(iso * Isometry3d::IDENTITY, iso);
}
#[test]
fn inverse_2d() {
let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
let inv = iso.inverse();
assert_abs_diff_eq!(iso * inv, Isometry2d::IDENTITY);
assert_abs_diff_eq!(inv * iso, Isometry2d::IDENTITY);
}
#[test]
fn inverse_3d() {
let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
let inv = iso.inverse();
assert_abs_diff_eq!(iso * inv, Isometry3d::IDENTITY);
assert_abs_diff_eq!(inv * iso, Isometry3d::IDENTITY);
}
#[test]
fn transform_2d() {
let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
let point = vec2(1.0, 1.0);
assert_abs_diff_eq!(vec2(-0.5, 0.5), iso * point);
}
#[test]
fn inverse_transform_2d() {
let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
let point = vec2(-0.5, 0.5);
assert_abs_diff_eq!(vec2(1.0, 1.0), iso.inverse_transform_point(point));
}
#[test]
fn transform_3d() {
let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
let point = vec3(1.0, 1.0, 1.0);
assert_abs_diff_eq!(vec3(2.0, 1.0, -1.0), iso * point);
}
#[test]
fn inverse_transform_3d() {
let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
let point = vec3(2.0, 1.0, -1.0);
assert_abs_diff_eq!(vec3a(1.0, 1.0, 1.0), iso.inverse_transform_point(point));
}
}