
# Objective - bevy_math fails to publish because of the self dev-dependency - it's used to enable the `approx` feature in tests ## Solution - Don't specify a version in the dev-dependency. dependencies without a version are ignored by cargo when publishing - Gate all the tests that depend on the `approx` feature so that it doesn't fail to compile when not enabled - Also gate an import that wasn't used without `bevy_reflect` ## Testing - with at least cargo 1.84: `cargo package -p bevy_math` - `cd target/package/bevy_math_* && cargo test`
689 lines
21 KiB
Rust
689 lines
21 KiB
Rust
//! Isometry types for expressing rigid motions in two and three dimensions.
|
|
|
|
use crate::{Affine2, Affine3, Affine3A, Dir2, Dir3, Mat3, Mat3A, Quat, Rot2, Vec2, Vec3, Vec3A};
|
|
use core::ops::Mul;
|
|
|
|
#[cfg(feature = "approx")]
|
|
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
|
|
|
#[cfg(feature = "bevy_reflect")]
|
|
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
|
|
#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
|
|
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
|
|
|
|
/// An isometry in two dimensions, representing a rotation followed by a translation.
|
|
/// This can often be useful for expressing relative positions and transformations from one position to another.
|
|
///
|
|
/// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
|
|
/// and belongs to the special [Euclidean group] SE(2). This includes translation and rotation, but excludes reflection.
|
|
///
|
|
/// For the three-dimensional version, see [`Isometry3d`].
|
|
///
|
|
/// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Isometries can be created from a given translation and rotation:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
|
|
/// #
|
|
/// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
|
|
/// ```
|
|
///
|
|
/// Or from separate parts:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
|
|
/// #
|
|
/// let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
|
|
/// let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
|
|
/// ```
|
|
///
|
|
/// The isometries can be used to transform points:
|
|
///
|
|
/// ```
|
|
/// # use approx::assert_abs_diff_eq;
|
|
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
|
|
/// #
|
|
/// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
|
|
/// let point = Vec2::new(4.0, 4.0);
|
|
///
|
|
/// // These are equivalent
|
|
/// let result = iso.transform_point(point);
|
|
/// let result = iso * point;
|
|
///
|
|
/// assert_eq!(result, Vec2::new(-2.0, 5.0));
|
|
/// ```
|
|
///
|
|
/// Isometries can also be composed together:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
|
|
/// #
|
|
/// # let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
|
|
/// # let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
|
|
/// # let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
|
|
/// #
|
|
/// assert_eq!(iso1 * iso2, iso);
|
|
/// ```
|
|
///
|
|
/// One common operation is to compute an isometry representing the relative positions of two objects
|
|
/// for things like intersection tests. This can be done with an inverse transformation:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry2d, Rot2, Vec2};
|
|
/// #
|
|
/// let circle_iso = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
|
|
/// let rectangle_iso = Isometry2d::from_rotation(Rot2::degrees(90.0));
|
|
///
|
|
/// // Compute the relative position and orientation between the two shapes
|
|
/// let relative_iso = circle_iso.inverse() * rectangle_iso;
|
|
///
|
|
/// // Or alternatively, to skip an extra rotation operation:
|
|
/// let relative_iso = circle_iso.inverse_mul(rectangle_iso);
|
|
/// ```
|
|
#[derive(Copy, Clone, Default, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "bevy_reflect",
|
|
derive(Reflect),
|
|
reflect(Debug, PartialEq, Default)
|
|
)]
|
|
#[cfg_attr(
|
|
all(feature = "serialize", feature = "bevy_reflect"),
|
|
reflect(Serialize, Deserialize)
|
|
)]
|
|
pub struct Isometry2d {
|
|
/// The rotational part of a two-dimensional isometry.
|
|
pub rotation: Rot2,
|
|
/// The translational part of a two-dimensional isometry.
|
|
pub translation: Vec2,
|
|
}
|
|
|
|
impl Isometry2d {
|
|
/// The identity isometry which represents the rigid motion of not doing anything.
|
|
pub const IDENTITY: Self = Isometry2d {
|
|
rotation: Rot2::IDENTITY,
|
|
translation: Vec2::ZERO,
|
|
};
|
|
|
|
/// Create a two-dimensional isometry from a rotation and a translation.
|
|
#[inline]
|
|
pub fn new(translation: Vec2, rotation: Rot2) -> Self {
|
|
Isometry2d {
|
|
rotation,
|
|
translation,
|
|
}
|
|
}
|
|
|
|
/// Create a two-dimensional isometry from a rotation.
|
|
#[inline]
|
|
pub fn from_rotation(rotation: Rot2) -> Self {
|
|
Isometry2d {
|
|
rotation,
|
|
translation: Vec2::ZERO,
|
|
}
|
|
}
|
|
|
|
/// Create a two-dimensional isometry from a translation.
|
|
#[inline]
|
|
pub fn from_translation(translation: Vec2) -> Self {
|
|
Isometry2d {
|
|
rotation: Rot2::IDENTITY,
|
|
translation,
|
|
}
|
|
}
|
|
|
|
/// Create a two-dimensional isometry from a translation with the given `x` and `y` components.
|
|
#[inline]
|
|
pub fn from_xy(x: f32, y: f32) -> Self {
|
|
Isometry2d {
|
|
rotation: Rot2::IDENTITY,
|
|
translation: Vec2::new(x, y),
|
|
}
|
|
}
|
|
|
|
/// The inverse isometry that undoes this one.
|
|
#[inline]
|
|
pub fn inverse(&self) -> Self {
|
|
let inv_rot = self.rotation.inverse();
|
|
Isometry2d {
|
|
rotation: inv_rot,
|
|
translation: inv_rot * -self.translation,
|
|
}
|
|
}
|
|
|
|
/// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
|
|
///
|
|
/// If the same isometry is used multiple times, it is more efficient to instead compute
|
|
/// the inverse once and use that for each transformation.
|
|
#[inline]
|
|
pub fn inverse_mul(&self, rhs: Self) -> Self {
|
|
let inv_rot = self.rotation.inverse();
|
|
let delta_translation = rhs.translation - self.translation;
|
|
Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
|
|
}
|
|
|
|
/// Transform a point by rotating and translating it using this isometry.
|
|
#[inline]
|
|
pub fn transform_point(&self, point: Vec2) -> Vec2 {
|
|
self.rotation * point + self.translation
|
|
}
|
|
|
|
/// Transform a point by rotating and translating it using the inverse of this isometry.
|
|
///
|
|
/// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
|
|
/// If the same isometry is used multiple times, it is more efficient to instead compute
|
|
/// the inverse once and use that for each transformation.
|
|
#[inline]
|
|
pub fn inverse_transform_point(&self, point: Vec2) -> Vec2 {
|
|
self.rotation.inverse() * (point - self.translation)
|
|
}
|
|
}
|
|
|
|
impl From<Isometry2d> for Affine2 {
|
|
#[inline]
|
|
fn from(iso: Isometry2d) -> Self {
|
|
Affine2 {
|
|
matrix2: iso.rotation.into(),
|
|
translation: iso.translation,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Vec2> for Isometry2d {
|
|
#[inline]
|
|
fn from(translation: Vec2) -> Self {
|
|
Isometry2d::from_translation(translation)
|
|
}
|
|
}
|
|
|
|
impl From<Rot2> for Isometry2d {
|
|
#[inline]
|
|
fn from(rotation: Rot2) -> Self {
|
|
Isometry2d::from_rotation(rotation)
|
|
}
|
|
}
|
|
|
|
impl Mul for Isometry2d {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self::Output {
|
|
Isometry2d {
|
|
rotation: self.rotation * rhs.rotation,
|
|
translation: self.rotation * rhs.translation + self.translation,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Mul<Vec2> for Isometry2d {
|
|
type Output = Vec2;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Vec2) -> Self::Output {
|
|
self.transform_point(rhs)
|
|
}
|
|
}
|
|
|
|
impl Mul<Dir2> for Isometry2d {
|
|
type Output = Dir2;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Dir2) -> Self::Output {
|
|
self.rotation * rhs
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "approx")]
|
|
impl AbsDiffEq for Isometry2d {
|
|
type Epsilon = <f32 as AbsDiffEq>::Epsilon;
|
|
|
|
fn default_epsilon() -> Self::Epsilon {
|
|
f32::default_epsilon()
|
|
}
|
|
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
self.rotation.abs_diff_eq(&other.rotation, epsilon)
|
|
&& self.translation.abs_diff_eq(other.translation, epsilon)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "approx")]
|
|
impl RelativeEq for Isometry2d {
|
|
fn default_max_relative() -> Self::Epsilon {
|
|
Self::default_epsilon()
|
|
}
|
|
|
|
fn relative_eq(
|
|
&self,
|
|
other: &Self,
|
|
epsilon: Self::Epsilon,
|
|
max_relative: Self::Epsilon,
|
|
) -> bool {
|
|
self.rotation
|
|
.relative_eq(&other.rotation, epsilon, max_relative)
|
|
&& self
|
|
.translation
|
|
.relative_eq(&other.translation, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "approx")]
|
|
impl UlpsEq for Isometry2d {
|
|
fn default_max_ulps() -> u32 {
|
|
4
|
|
}
|
|
|
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
|
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
|
|
&& self
|
|
.translation
|
|
.ulps_eq(&other.translation, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
/// An isometry in three dimensions, representing a rotation followed by a translation.
|
|
/// This can often be useful for expressing relative positions and transformations from one position to another.
|
|
///
|
|
/// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
|
|
/// and belongs to the special [Euclidean group] SE(3). This includes translation and rotation, but excludes reflection.
|
|
///
|
|
/// For the two-dimensional version, see [`Isometry2d`].
|
|
///
|
|
/// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Isometries can be created from a given translation and rotation:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry3d, Quat, Vec3};
|
|
/// # use std::f32::consts::FRAC_PI_2;
|
|
/// #
|
|
/// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
|
|
/// ```
|
|
///
|
|
/// Or from separate parts:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry3d, Quat, Vec3};
|
|
/// # use std::f32::consts::FRAC_PI_2;
|
|
/// #
|
|
/// let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
|
|
/// let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
|
|
/// ```
|
|
///
|
|
/// The isometries can be used to transform points:
|
|
///
|
|
/// ```
|
|
/// # use approx::assert_relative_eq;
|
|
/// # use bevy_math::{Isometry3d, Quat, Vec3};
|
|
/// # use std::f32::consts::FRAC_PI_2;
|
|
/// #
|
|
/// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
|
|
/// let point = Vec3::new(4.0, 4.0, 4.0);
|
|
///
|
|
/// // These are equivalent
|
|
/// let result = iso.transform_point(point);
|
|
/// let result = iso * point;
|
|
///
|
|
/// assert_relative_eq!(result, Vec3::new(-2.0, 5.0, 7.0));
|
|
/// ```
|
|
///
|
|
/// Isometries can also be composed together:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry3d, Quat, Vec3};
|
|
/// # use std::f32::consts::FRAC_PI_2;
|
|
/// #
|
|
/// # let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
|
|
/// # let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
|
|
/// # let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
|
|
/// #
|
|
/// assert_eq!(iso1 * iso2, iso);
|
|
/// ```
|
|
///
|
|
/// One common operation is to compute an isometry representing the relative positions of two objects
|
|
/// for things like intersection tests. This can be done with an inverse transformation:
|
|
///
|
|
/// ```
|
|
/// # use bevy_math::{Isometry3d, Quat, Vec3};
|
|
/// # use std::f32::consts::FRAC_PI_2;
|
|
/// #
|
|
/// let sphere_iso = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
|
|
/// let cuboid_iso = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
|
|
///
|
|
/// // Compute the relative position and orientation between the two shapes
|
|
/// let relative_iso = sphere_iso.inverse() * cuboid_iso;
|
|
///
|
|
/// // Or alternatively, to skip an extra rotation operation:
|
|
/// let relative_iso = sphere_iso.inverse_mul(cuboid_iso);
|
|
/// ```
|
|
#[derive(Copy, Clone, Default, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "bevy_reflect",
|
|
derive(Reflect),
|
|
reflect(Debug, PartialEq, Default)
|
|
)]
|
|
#[cfg_attr(
|
|
all(feature = "serialize", feature = "bevy_reflect"),
|
|
reflect(Serialize, Deserialize)
|
|
)]
|
|
pub struct Isometry3d {
|
|
/// The rotational part of a three-dimensional isometry.
|
|
pub rotation: Quat,
|
|
/// The translational part of a three-dimensional isometry.
|
|
pub translation: Vec3A,
|
|
}
|
|
|
|
impl Isometry3d {
|
|
/// The identity isometry which represents the rigid motion of not doing anything.
|
|
pub const IDENTITY: Self = Isometry3d {
|
|
rotation: Quat::IDENTITY,
|
|
translation: Vec3A::ZERO,
|
|
};
|
|
|
|
/// Create a three-dimensional isometry from a rotation and a translation.
|
|
#[inline]
|
|
pub fn new(translation: impl Into<Vec3A>, rotation: Quat) -> Self {
|
|
Isometry3d {
|
|
rotation,
|
|
translation: translation.into(),
|
|
}
|
|
}
|
|
|
|
/// Create a three-dimensional isometry from a rotation.
|
|
#[inline]
|
|
pub fn from_rotation(rotation: Quat) -> Self {
|
|
Isometry3d {
|
|
rotation,
|
|
translation: Vec3A::ZERO,
|
|
}
|
|
}
|
|
|
|
/// Create a three-dimensional isometry from a translation.
|
|
#[inline]
|
|
pub fn from_translation(translation: impl Into<Vec3A>) -> Self {
|
|
Isometry3d {
|
|
rotation: Quat::IDENTITY,
|
|
translation: translation.into(),
|
|
}
|
|
}
|
|
|
|
/// Create a three-dimensional isometry from a translation with the given `x`, `y`, and `z` components.
|
|
#[inline]
|
|
pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
|
|
Isometry3d {
|
|
rotation: Quat::IDENTITY,
|
|
translation: Vec3A::new(x, y, z),
|
|
}
|
|
}
|
|
|
|
/// The inverse isometry that undoes this one.
|
|
#[inline]
|
|
pub fn inverse(&self) -> Self {
|
|
let inv_rot = self.rotation.inverse();
|
|
Isometry3d {
|
|
rotation: inv_rot,
|
|
translation: inv_rot * -self.translation,
|
|
}
|
|
}
|
|
|
|
/// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
|
|
///
|
|
/// If the same isometry is used multiple times, it is more efficient to instead compute
|
|
/// the inverse once and use that for each transformation.
|
|
#[inline]
|
|
pub fn inverse_mul(&self, rhs: Self) -> Self {
|
|
let inv_rot = self.rotation.inverse();
|
|
let delta_translation = rhs.translation - self.translation;
|
|
Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
|
|
}
|
|
|
|
/// Transform a point by rotating and translating it using this isometry.
|
|
#[inline]
|
|
pub fn transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
|
|
self.rotation * point.into() + self.translation
|
|
}
|
|
|
|
/// Transform a point by rotating and translating it using the inverse of this isometry.
|
|
///
|
|
/// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
|
|
/// If the same isometry is used multiple times, it is more efficient to instead compute
|
|
/// the inverse once and use that for each transformation.
|
|
#[inline]
|
|
pub fn inverse_transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
|
|
self.rotation.inverse() * (point.into() - self.translation)
|
|
}
|
|
}
|
|
|
|
impl From<Isometry3d> for Affine3 {
|
|
#[inline]
|
|
fn from(iso: Isometry3d) -> Self {
|
|
Affine3 {
|
|
matrix3: Mat3::from_quat(iso.rotation),
|
|
translation: iso.translation.into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Isometry3d> for Affine3A {
|
|
#[inline]
|
|
fn from(iso: Isometry3d) -> Self {
|
|
Affine3A {
|
|
matrix3: Mat3A::from_quat(iso.rotation),
|
|
translation: iso.translation,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Vec3> for Isometry3d {
|
|
#[inline]
|
|
fn from(translation: Vec3) -> Self {
|
|
Isometry3d::from_translation(translation)
|
|
}
|
|
}
|
|
|
|
impl From<Vec3A> for Isometry3d {
|
|
#[inline]
|
|
fn from(translation: Vec3A) -> Self {
|
|
Isometry3d::from_translation(translation)
|
|
}
|
|
}
|
|
|
|
impl From<Quat> for Isometry3d {
|
|
#[inline]
|
|
fn from(rotation: Quat) -> Self {
|
|
Isometry3d::from_rotation(rotation)
|
|
}
|
|
}
|
|
|
|
impl Mul for Isometry3d {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self::Output {
|
|
Isometry3d {
|
|
rotation: self.rotation * rhs.rotation,
|
|
translation: self.rotation * rhs.translation + self.translation,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Mul<Vec3A> for Isometry3d {
|
|
type Output = Vec3A;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Vec3A) -> Self::Output {
|
|
self.transform_point(rhs)
|
|
}
|
|
}
|
|
|
|
impl Mul<Vec3> for Isometry3d {
|
|
type Output = Vec3;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Vec3) -> Self::Output {
|
|
self.transform_point(rhs).into()
|
|
}
|
|
}
|
|
|
|
impl Mul<Dir3> for Isometry3d {
|
|
type Output = Dir3;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Dir3) -> Self::Output {
|
|
self.rotation * rhs
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "approx")]
|
|
impl AbsDiffEq for Isometry3d {
|
|
type Epsilon = <f32 as AbsDiffEq>::Epsilon;
|
|
|
|
fn default_epsilon() -> Self::Epsilon {
|
|
f32::default_epsilon()
|
|
}
|
|
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
self.rotation.abs_diff_eq(other.rotation, epsilon)
|
|
&& self.translation.abs_diff_eq(other.translation, epsilon)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "approx")]
|
|
impl RelativeEq for Isometry3d {
|
|
fn default_max_relative() -> Self::Epsilon {
|
|
Self::default_epsilon()
|
|
}
|
|
|
|
fn relative_eq(
|
|
&self,
|
|
other: &Self,
|
|
epsilon: Self::Epsilon,
|
|
max_relative: Self::Epsilon,
|
|
) -> bool {
|
|
self.rotation
|
|
.relative_eq(&other.rotation, epsilon, max_relative)
|
|
&& self
|
|
.translation
|
|
.relative_eq(&other.translation, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "approx")]
|
|
impl UlpsEq for Isometry3d {
|
|
fn default_max_ulps() -> u32 {
|
|
4
|
|
}
|
|
|
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
|
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
|
|
&& self
|
|
.translation
|
|
.ulps_eq(&other.translation, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
#[cfg(feature = "approx")]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::{vec2, vec3, vec3a};
|
|
use approx::assert_abs_diff_eq;
|
|
use core::f32::consts::{FRAC_PI_2, FRAC_PI_3};
|
|
|
|
#[test]
|
|
fn mul_2d() {
|
|
let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
|
|
let iso2 = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
|
|
let expected = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
|
|
assert_abs_diff_eq!(iso1 * iso2, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn inverse_mul_2d() {
|
|
let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
|
|
let iso2 = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
|
|
let expected = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
|
|
assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
|
|
}
|
|
|
|
#[test]
|
|
fn mul_3d() {
|
|
let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
|
|
let iso2 = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
|
|
let expected = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
|
|
assert_abs_diff_eq!(iso1 * iso2, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn inverse_mul_3d() {
|
|
let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
|
|
let iso2 = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
|
|
let expected = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
|
|
assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
|
|
}
|
|
|
|
#[test]
|
|
fn identity_2d() {
|
|
let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
|
|
assert_abs_diff_eq!(Isometry2d::IDENTITY * iso, iso);
|
|
assert_abs_diff_eq!(iso * Isometry2d::IDENTITY, iso);
|
|
}
|
|
|
|
#[test]
|
|
fn identity_3d() {
|
|
let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
|
|
assert_abs_diff_eq!(Isometry3d::IDENTITY * iso, iso);
|
|
assert_abs_diff_eq!(iso * Isometry3d::IDENTITY, iso);
|
|
}
|
|
|
|
#[test]
|
|
fn inverse_2d() {
|
|
let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
|
|
let inv = iso.inverse();
|
|
assert_abs_diff_eq!(iso * inv, Isometry2d::IDENTITY);
|
|
assert_abs_diff_eq!(inv * iso, Isometry2d::IDENTITY);
|
|
}
|
|
|
|
#[test]
|
|
fn inverse_3d() {
|
|
let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
|
|
let inv = iso.inverse();
|
|
assert_abs_diff_eq!(iso * inv, Isometry3d::IDENTITY);
|
|
assert_abs_diff_eq!(inv * iso, Isometry3d::IDENTITY);
|
|
}
|
|
|
|
#[test]
|
|
fn transform_2d() {
|
|
let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
|
|
let point = vec2(1.0, 1.0);
|
|
assert_abs_diff_eq!(vec2(-0.5, 0.5), iso * point);
|
|
}
|
|
|
|
#[test]
|
|
fn inverse_transform_2d() {
|
|
let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
|
|
let point = vec2(-0.5, 0.5);
|
|
assert_abs_diff_eq!(vec2(1.0, 1.0), iso.inverse_transform_point(point));
|
|
}
|
|
|
|
#[test]
|
|
fn transform_3d() {
|
|
let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
|
|
let point = vec3(1.0, 1.0, 1.0);
|
|
assert_abs_diff_eq!(vec3(2.0, 1.0, -1.0), iso * point);
|
|
}
|
|
|
|
#[test]
|
|
fn inverse_transform_3d() {
|
|
let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
|
|
let point = vec3(2.0, 1.0, -1.0);
|
|
assert_abs_diff_eq!(vec3a(1.0, 1.0, 1.0), iso.inverse_transform_point(point));
|
|
}
|
|
}
|