# Objective - There are several redundant imports in the tests and examples that are not caught by CI because additional flags need to be passed. ## Solution - Run `cargo check --workspace --tests` and `cargo check --workspace --examples`, then fix all warnings. - Add `test-check` to CI, which will be run in the check-compiles job. This should catch future warnings for tests. Examples are already checked, but I'm not yet sure why they weren't caught. ## Discussion - Should the `--tests` and `--examples` flags be added to CI, so this is caught in the future? - If so, #12818 will need to be merged first. It was also a warning raised by checking the examples, but I chose to split off into a separate PR. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
		
			
				
	
	
		
			268 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
//! This example shows how to align the orientations of objects in 3D space along two axes using the `Transform::align` API.
 | 
						|
 | 
						|
use bevy::color::palettes::basic::{GRAY, RED, WHITE};
 | 
						|
use bevy::input::mouse::{MouseButtonInput, MouseMotion};
 | 
						|
use bevy::prelude::*;
 | 
						|
use rand::{Rng, SeedableRng};
 | 
						|
use rand_chacha::ChaCha8Rng;
 | 
						|
use std::f32::consts::PI;
 | 
						|
 | 
						|
fn main() {
 | 
						|
    App::new()
 | 
						|
        .add_plugins(DefaultPlugins)
 | 
						|
        .add_systems(Startup, setup)
 | 
						|
        .add_systems(Update, (draw_cube_axes, draw_random_axes))
 | 
						|
        .add_systems(Update, (handle_keypress, handle_mouse, rotate_cube).chain())
 | 
						|
        .run();
 | 
						|
}
 | 
						|
 | 
						|
/// This struct stores metadata for a single rotational move of the cube
 | 
						|
#[derive(Component, Default)]
 | 
						|
struct Cube {
 | 
						|
    /// The initial transform of the cube move, the starting point of interpolation
 | 
						|
    initial_transform: Transform,
 | 
						|
 | 
						|
    /// The target transform of the cube move, the endpoint of interpolation
 | 
						|
    target_transform: Transform,
 | 
						|
 | 
						|
    /// The progress of the cube move in percentage points
 | 
						|
    progress: u16,
 | 
						|
 | 
						|
    /// Whether the cube is currently in motion; allows motion to be paused
 | 
						|
    in_motion: bool,
 | 
						|
}
 | 
						|
 | 
						|
#[derive(Component)]
 | 
						|
struct RandomAxes(Vec3, Vec3);
 | 
						|
 | 
						|
#[derive(Component)]
 | 
						|
struct Instructions;
 | 
						|
 | 
						|
#[derive(Resource)]
 | 
						|
struct MousePressed(bool);
 | 
						|
 | 
						|
#[derive(Resource)]
 | 
						|
struct SeededRng(ChaCha8Rng);
 | 
						|
 | 
						|
// Setup
 | 
						|
 | 
						|
fn setup(
 | 
						|
    mut commands: Commands,
 | 
						|
    mut meshes: ResMut<Assets<Mesh>>,
 | 
						|
    mut materials: ResMut<Assets<StandardMaterial>>,
 | 
						|
) {
 | 
						|
    // We're seeding the PRNG here to make this example deterministic for testing purposes.
 | 
						|
    // This isn't strictly required in practical use unless you need your app to be deterministic.
 | 
						|
    let mut seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
 | 
						|
 | 
						|
    // A camera looking at the origin
 | 
						|
    commands.spawn(Camera3dBundle {
 | 
						|
        transform: Transform::from_xyz(3., 2.5, 4.).looking_at(Vec3::ZERO, Vec3::Y),
 | 
						|
        ..default()
 | 
						|
    });
 | 
						|
 | 
						|
    // A plane that we can sit on top of
 | 
						|
    commands.spawn(PbrBundle {
 | 
						|
        transform: Transform::from_xyz(0., -2., 0.),
 | 
						|
        mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
 | 
						|
        material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
 | 
						|
        ..default()
 | 
						|
    });
 | 
						|
 | 
						|
    // A light source
 | 
						|
    commands.spawn(PointLightBundle {
 | 
						|
        point_light: PointLight {
 | 
						|
            shadows_enabled: true,
 | 
						|
            ..default()
 | 
						|
        },
 | 
						|
        transform: Transform::from_xyz(4.0, 7.0, -4.0),
 | 
						|
        ..default()
 | 
						|
    });
 | 
						|
 | 
						|
    // Initialize random axes
 | 
						|
    let first = random_direction(&mut seeded_rng);
 | 
						|
    let second = random_direction(&mut seeded_rng);
 | 
						|
    commands.spawn(RandomAxes(first, second));
 | 
						|
 | 
						|
    // Finally, our cube that is going to rotate
 | 
						|
    commands.spawn((
 | 
						|
        PbrBundle {
 | 
						|
            mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
 | 
						|
            material: materials.add(Color::srgb(0.5, 0.5, 0.5)),
 | 
						|
            ..default()
 | 
						|
        },
 | 
						|
        Cube {
 | 
						|
            initial_transform: Transform::IDENTITY,
 | 
						|
            target_transform: random_axes_target_alignment(&RandomAxes(first, second)),
 | 
						|
            ..default()
 | 
						|
        },
 | 
						|
    ));
 | 
						|
 | 
						|
    // Instructions for the example
 | 
						|
    commands.spawn((
 | 
						|
        TextBundle::from_section(
 | 
						|
            "The bright red axis is the primary alignment axis, and it will always be\n\
 | 
						|
            made to coincide with the primary target direction (white) exactly.\n\
 | 
						|
            The fainter red axis is the secondary alignment axis, and it is made to\n\
 | 
						|
            line up with the secondary target direction (gray) as closely as possible.\n\
 | 
						|
            Press 'R' to generate random target directions.\n\
 | 
						|
            Press 'T' to align the cube to those directions.\n\
 | 
						|
            Click and drag the mouse to rotate the camera.\n\
 | 
						|
            Press 'H' to hide/show these instructions.",
 | 
						|
            TextStyle {
 | 
						|
                font_size: 20.,
 | 
						|
                ..default()
 | 
						|
            },
 | 
						|
        )
 | 
						|
        .with_style(Style {
 | 
						|
            position_type: PositionType::Absolute,
 | 
						|
            top: Val::Px(12.0),
 | 
						|
            left: Val::Px(12.0),
 | 
						|
            ..default()
 | 
						|
        }),
 | 
						|
        Instructions,
 | 
						|
    ));
 | 
						|
 | 
						|
    commands.insert_resource(MousePressed(false));
 | 
						|
    commands.insert_resource(SeededRng(seeded_rng));
 | 
						|
}
 | 
						|
 | 
						|
// Update systems
 | 
						|
 | 
						|
// Draw the main and secondary axes on the rotating cube
 | 
						|
fn draw_cube_axes(mut gizmos: Gizmos, query: Query<&Transform, With<Cube>>) {
 | 
						|
    let cube_transform = query.single();
 | 
						|
 | 
						|
    // Local X-axis arrow
 | 
						|
    let x_ends = arrow_ends(cube_transform, Vec3::X, 1.5);
 | 
						|
    gizmos.arrow(x_ends.0, x_ends.1, RED);
 | 
						|
 | 
						|
    // local Y-axis arrow
 | 
						|
    let y_ends = arrow_ends(cube_transform, Vec3::Y, 1.5);
 | 
						|
    gizmos.arrow(y_ends.0, y_ends.1, Color::srgb(0.65, 0., 0.));
 | 
						|
}
 | 
						|
 | 
						|
// Draw the randomly generated axes
 | 
						|
fn draw_random_axes(mut gizmos: Gizmos, query: Query<&RandomAxes>) {
 | 
						|
    let RandomAxes(v1, v2) = query.single();
 | 
						|
    gizmos.arrow(Vec3::ZERO, 1.5 * *v1, WHITE);
 | 
						|
    gizmos.arrow(Vec3::ZERO, 1.5 * *v2, GRAY);
 | 
						|
}
 | 
						|
 | 
						|
// Actually update the cube's transform according to its initial source and target
 | 
						|
fn rotate_cube(mut cube: Query<(&mut Cube, &mut Transform)>) {
 | 
						|
    let (mut cube, mut cube_transform) = cube.single_mut();
 | 
						|
 | 
						|
    if !cube.in_motion {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    let start = cube.initial_transform.rotation;
 | 
						|
    let end = cube.target_transform.rotation;
 | 
						|
 | 
						|
    let p: f32 = cube.progress.into();
 | 
						|
    let t = p / 100.;
 | 
						|
 | 
						|
    *cube_transform = Transform::from_rotation(start.slerp(end, t));
 | 
						|
 | 
						|
    if cube.progress == 100 {
 | 
						|
        cube.in_motion = false;
 | 
						|
    } else {
 | 
						|
        cube.progress += 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Handle user inputs from the keyboard for dynamically altering the scenario
 | 
						|
fn handle_keypress(
 | 
						|
    mut cube: Query<(&mut Cube, &Transform)>,
 | 
						|
    mut random_axes: Query<&mut RandomAxes>,
 | 
						|
    mut instructions: Query<&mut Visibility, With<Instructions>>,
 | 
						|
    keyboard: Res<ButtonInput<KeyCode>>,
 | 
						|
    mut seeded_rng: ResMut<SeededRng>,
 | 
						|
) {
 | 
						|
    let (mut cube, cube_transform) = cube.single_mut();
 | 
						|
    let mut random_axes = random_axes.single_mut();
 | 
						|
 | 
						|
    if keyboard.just_pressed(KeyCode::KeyR) {
 | 
						|
        // Randomize the target axes
 | 
						|
        let first = random_direction(&mut seeded_rng.0);
 | 
						|
        let second = random_direction(&mut seeded_rng.0);
 | 
						|
        *random_axes = RandomAxes(first, second);
 | 
						|
 | 
						|
        // Stop the cube and set it up to transform from its present orientation to the new one
 | 
						|
        cube.in_motion = false;
 | 
						|
        cube.initial_transform = *cube_transform;
 | 
						|
        cube.target_transform = random_axes_target_alignment(&random_axes);
 | 
						|
        cube.progress = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if keyboard.just_pressed(KeyCode::KeyT) {
 | 
						|
        cube.in_motion ^= true;
 | 
						|
    }
 | 
						|
 | 
						|
    if keyboard.just_pressed(KeyCode::KeyH) {
 | 
						|
        let mut instructions_viz = instructions.single_mut();
 | 
						|
        if *instructions_viz == Visibility::Hidden {
 | 
						|
            *instructions_viz = Visibility::Visible;
 | 
						|
        } else {
 | 
						|
            *instructions_viz = Visibility::Hidden;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Handle user mouse input for panning the camera around
 | 
						|
fn handle_mouse(
 | 
						|
    mut button_events: EventReader<MouseButtonInput>,
 | 
						|
    mut motion_events: EventReader<MouseMotion>,
 | 
						|
    mut camera: Query<&mut Transform, With<Camera>>,
 | 
						|
    mut mouse_pressed: ResMut<MousePressed>,
 | 
						|
) {
 | 
						|
    // Store left-pressed state in the MousePressed resource
 | 
						|
    for button_event in button_events.read() {
 | 
						|
        if button_event.button != MouseButton::Left {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        *mouse_pressed = MousePressed(button_event.state.is_pressed());
 | 
						|
    }
 | 
						|
 | 
						|
    // If the mouse is not pressed, just ignore motion events
 | 
						|
    if !mouse_pressed.0 {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    let displacement = motion_events
 | 
						|
        .read()
 | 
						|
        .fold(0., |acc, mouse_motion| acc + mouse_motion.delta.x);
 | 
						|
    let mut camera_transform = camera.single_mut();
 | 
						|
    camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-displacement / 75.));
 | 
						|
}
 | 
						|
 | 
						|
// Helper functions (i.e. non-system functions)
 | 
						|
 | 
						|
fn arrow_ends(transform: &Transform, axis: Vec3, length: f32) -> (Vec3, Vec3) {
 | 
						|
    let local_vector = length * (transform.rotation * axis);
 | 
						|
    (transform.translation, transform.translation + local_vector)
 | 
						|
}
 | 
						|
 | 
						|
fn random_direction(rng: &mut impl Rng) -> Vec3 {
 | 
						|
    let height = rng.gen::<f32>() * 2. - 1.;
 | 
						|
    let theta = rng.gen::<f32>() * 2. * PI;
 | 
						|
 | 
						|
    build_direction(height, theta)
 | 
						|
}
 | 
						|
 | 
						|
fn build_direction(height: f32, theta: f32) -> Vec3 {
 | 
						|
    let z = height;
 | 
						|
    let m = f32::acos(z).sin();
 | 
						|
    let x = theta.cos() * m;
 | 
						|
    let y = theta.sin() * m;
 | 
						|
 | 
						|
    Vec3::new(x, y, z)
 | 
						|
}
 | 
						|
 | 
						|
// This is where `Transform::align` is actually used!
 | 
						|
// Note that the choice of `Vec3::X` and `Vec3::Y` here matches the use of those in `draw_cube_axes`.
 | 
						|
fn random_axes_target_alignment(random_axes: &RandomAxes) -> Transform {
 | 
						|
    let RandomAxes(first, second) = random_axes;
 | 
						|
    Transform::IDENTITY.aligned_by(Vec3::X, *first, Vec3::Y, *second)
 | 
						|
}
 |