bevy/crates/bevy_ecs/src/lib.rs
James Liu dfea88c64d Basic adaptive batching for parallel query iteration (#4777)
# Objective
Fixes #3184. Fixes #6640. Fixes #4798. Using `Query::par_for_each(_mut)` currently requires a `batch_size` parameter, which affects how it chunks up large archetypes and tables into smaller chunks to run in parallel. Tuning this value is difficult, as the performance characteristics entirely depends on the state of the `World` it's being run on. Typically, users will just use a flat constant and just tune it by hand until it performs well in some benchmarks. However, this is both error prone and risks overfitting the tuning on that benchmark.

This PR proposes a naive automatic batch-size computation based on the current state of the `World`.

## Background
`Query::par_for_each(_mut)` schedules a new Task for every archetype or table that it matches. Archetypes/tables larger than the batch size are chunked into smaller tasks. Assuming every entity matched by the query has an identical workload, this makes the worst case scenario involve using a batch size equal to the size of the largest matched archetype or table. Conversely, a batch size of `max {archetype, table} size / thread count * COUNT_PER_THREAD` is likely the sweetspot where the overhead of scheduling tasks is minimized, at least not without grouping small archetypes/tables together.

There is also likely a strict minimum batch size below which the overhead of scheduling these tasks is heavier than running the entire thing single-threaded.

## Solution

- [x] Remove the `batch_size` from `Query(State)::par_for_each`  and friends.
- [x] Add a check to compute `batch_size = max {archeytpe/table} size / thread count  * COUNT_PER_THREAD`
- [x] ~~Panic if thread count is 0.~~ Defer to `for_each` if the thread count is 1 or less.
- [x] Early return if there is no matched table/archetype. 
- [x] Add override option for users have queries that strongly violate the initial assumption that all iterated entities have an equal workload.

---

## Changelog
Changed: `Query::par_for_each(_mut)` has been changed to `Query::par_iter(_mut)` and will now automatically try to produce a batch size for callers based on the current `World` state.

## Migration Guide
The `batch_size` parameter for `Query(State)::par_for_each(_mut)` has been removed. These calls will automatically compute a batch size for you. Remove these parameters from all calls to these functions.

Before:
```rust
fn parallel_system(query: Query<&MyComponent>) {
   query.par_for_each(32, |comp| {
        ...
   });
}
```

After:

```rust
fn parallel_system(query: Query<&MyComponent>) {
   query.par_iter().for_each(|comp| {
        ...
   });
}
```

Co-authored-by: Arnav Choubey <56453634+x-52@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Corey Farwell <coreyf@rwell.org>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
2023-01-20 08:47:20 +00:00

1729 lines
54 KiB
Rust

#![warn(clippy::undocumented_unsafe_blocks)]
#![doc = include_str!("../README.md")]
#[cfg(target_pointer_width = "16")]
compile_error!("bevy_ecs cannot safely compile for a 16-bit platform.");
pub mod archetype;
pub mod bundle;
pub mod change_detection;
pub mod component;
pub mod entity;
pub mod event;
pub mod query;
#[cfg(feature = "bevy_reflect")]
pub mod reflect;
pub mod schedule;
pub mod schedule_v3;
pub mod storage;
pub mod system;
pub mod world;
pub use bevy_ptr as ptr;
/// Most commonly used re-exported types.
pub mod prelude {
#[doc(hidden)]
#[cfg(feature = "bevy_reflect")]
pub use crate::reflect::{ReflectComponent, ReflectResource};
#[doc(hidden)]
pub use crate::{
bundle::Bundle,
change_detection::{DetectChanges, DetectChangesMut},
component::Component,
entity::Entity,
event::{EventReader, EventWriter, Events},
query::{Added, AnyOf, ChangeTrackers, Changed, Or, QueryState, With, Without},
schedule::{
IntoSystemDescriptor, RunCriteria, RunCriteriaDescriptorCoercion, RunCriteriaLabel,
Schedule, Stage, StageLabel, State, SystemLabel, SystemSet, SystemStage,
},
system::{
adapter as system_adapter,
adapter::{dbg, error, ignore, info, unwrap, warn},
Commands, In, IntoPipeSystem, IntoSystem, Local, NonSend, NonSendMut, ParallelCommands,
ParamSet, Query, RemovedComponents, Res, ResMut, Resource, System, SystemParamFunction,
},
world::{FromWorld, Mut, World},
};
}
pub use bevy_ecs_macros::all_tuples;
#[cfg(test)]
mod tests {
use crate as bevy_ecs;
use crate::prelude::Or;
use crate::{
bundle::Bundle,
component::{Component, ComponentId},
entity::Entity,
query::{
Added, ChangeTrackers, Changed, FilteredAccess, ReadOnlyWorldQuery, With, Without,
},
system::Resource,
world::{Mut, World},
};
use bevy_tasks::{ComputeTaskPool, TaskPool};
use std::{
any::TypeId,
marker::PhantomData,
sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
},
};
#[derive(Component, Resource, Debug, PartialEq, Eq, Clone, Copy)]
struct A(usize);
#[derive(Component, Debug, PartialEq, Eq, Clone, Copy)]
struct B(usize);
#[derive(Component, Debug, PartialEq, Eq, Clone, Copy)]
struct C;
#[derive(Default)]
struct NonSendA(usize, PhantomData<*mut ()>);
#[derive(Component, Clone, Debug)]
struct DropCk(Arc<AtomicUsize>);
impl DropCk {
fn new_pair() -> (Self, Arc<AtomicUsize>) {
let atomic = Arc::new(AtomicUsize::new(0));
(DropCk(atomic.clone()), atomic)
}
}
impl Drop for DropCk {
fn drop(&mut self) {
self.0.as_ref().fetch_add(1, Ordering::Relaxed);
}
}
#[derive(Component, Clone, Debug)]
#[component(storage = "SparseSet")]
struct DropCkSparse(DropCk);
#[derive(Component, Copy, Clone, PartialEq, Eq, Debug)]
#[component(storage = "Table")]
struct TableStored(&'static str);
#[derive(Component, Copy, Clone, PartialEq, Eq, Debug)]
#[component(storage = "SparseSet")]
struct SparseStored(u32);
#[test]
fn random_access() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), SparseStored(123))).id();
let f = world
.spawn((TableStored("def"), SparseStored(456), A(1)))
.id();
assert_eq!(world.get::<TableStored>(e).unwrap().0, "abc");
assert_eq!(world.get::<SparseStored>(e).unwrap().0, 123);
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 456);
// test archetype get_mut()
world.get_mut::<TableStored>(e).unwrap().0 = "xyz";
assert_eq!(world.get::<TableStored>(e).unwrap().0, "xyz");
// test sparse set get_mut()
world.get_mut::<SparseStored>(f).unwrap().0 = 42;
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 42);
}
#[test]
fn bundle_derive() {
let mut world = World::new();
#[derive(Bundle, PartialEq, Debug)]
struct FooBundle {
x: TableStored,
y: SparseStored,
}
let mut ids = Vec::new();
<FooBundle as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(
ids,
&[
world.init_component::<TableStored>(),
world.init_component::<SparseStored>(),
]
);
let e1 = world
.spawn(FooBundle {
x: TableStored("abc"),
y: SparseStored(123),
})
.id();
let e2 = world
.spawn((TableStored("def"), SparseStored(456), A(1)))
.id();
assert_eq!(world.get::<TableStored>(e1).unwrap().0, "abc");
assert_eq!(world.get::<SparseStored>(e1).unwrap().0, 123);
assert_eq!(world.get::<TableStored>(e2).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(e2).unwrap().0, 456);
// test archetype get_mut()
world.get_mut::<TableStored>(e1).unwrap().0 = "xyz";
assert_eq!(world.get::<TableStored>(e1).unwrap().0, "xyz");
// test sparse set get_mut()
world.get_mut::<SparseStored>(e2).unwrap().0 = 42;
assert_eq!(world.get::<SparseStored>(e2).unwrap().0, 42);
assert_eq!(
world.entity_mut(e1).remove::<FooBundle>().unwrap(),
FooBundle {
x: TableStored("xyz"),
y: SparseStored(123),
}
);
#[derive(Bundle, PartialEq, Debug)]
struct NestedBundle {
a: A,
foo: FooBundle,
b: B,
}
let mut ids = Vec::new();
<NestedBundle as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(
ids,
&[
world.init_component::<A>(),
world.init_component::<TableStored>(),
world.init_component::<SparseStored>(),
world.init_component::<B>(),
]
);
let e3 = world
.spawn(NestedBundle {
a: A(1),
foo: FooBundle {
x: TableStored("ghi"),
y: SparseStored(789),
},
b: B(2),
})
.id();
assert_eq!(world.get::<TableStored>(e3).unwrap().0, "ghi");
assert_eq!(world.get::<SparseStored>(e3).unwrap().0, 789);
assert_eq!(world.get::<A>(e3).unwrap().0, 1);
assert_eq!(world.get::<B>(e3).unwrap().0, 2);
assert_eq!(
world.entity_mut(e3).remove::<NestedBundle>().unwrap(),
NestedBundle {
a: A(1),
foo: FooBundle {
x: TableStored("ghi"),
y: SparseStored(789),
},
b: B(2),
}
);
#[derive(Default, Component, PartialEq, Debug)]
struct Ignored;
#[derive(Bundle, PartialEq, Debug)]
struct BundleWithIgnored {
c: C,
#[bundle(ignore)]
ignored: Ignored,
}
let mut ids = Vec::new();
<BundleWithIgnored as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(ids, &[world.init_component::<C>(),]);
let e4 = world
.spawn(BundleWithIgnored {
c: C,
ignored: Ignored,
})
.id();
assert_eq!(world.get::<C>(e4).unwrap(), &C);
assert_eq!(world.get::<Ignored>(e4), None);
assert_eq!(
world.entity_mut(e4).remove::<BundleWithIgnored>().unwrap(),
BundleWithIgnored {
c: C,
ignored: Ignored,
}
);
}
#[test]
fn despawn_table_storage() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
assert_eq!(world.entities.len(), 2);
assert!(world.despawn(e));
assert_eq!(world.entities.len(), 1);
assert!(world.get::<TableStored>(e).is_none());
assert!(world.get::<A>(e).is_none());
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<A>(f).unwrap().0, 456);
}
#[test]
fn despawn_mixed_storage() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), SparseStored(123))).id();
let f = world.spawn((TableStored("def"), SparseStored(456))).id();
assert_eq!(world.entities.len(), 2);
assert!(world.despawn(e));
assert_eq!(world.entities.len(), 1);
assert!(world.get::<TableStored>(e).is_none());
assert!(world.get::<SparseStored>(e).is_none());
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 456);
}
#[test]
fn query_all() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
let ents = world
.query::<(Entity, &A, &TableStored)>()
.iter(&world)
.map(|(e, &i, &s)| (e, i, s))
.collect::<Vec<_>>();
assert_eq!(
ents,
&[
(e, A(123), TableStored("abc")),
(f, A(456), TableStored("def"))
]
);
}
#[test]
fn query_all_for_each() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
let mut results = Vec::new();
world
.query::<(Entity, &A, &TableStored)>()
.for_each(&world, |(e, &i, &s)| results.push((e, i, s)));
assert_eq!(
results,
&[
(e, A(123), TableStored("abc")),
(f, A(456), TableStored("def"))
]
);
}
#[test]
fn query_single_component() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = world
.query::<(Entity, &A)>()
.iter(&world)
.map(|(e, &i)| (e, i))
.collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123)), (f, A(456))]);
}
#[test]
fn stateful_query_handles_new_archetype() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let mut query = world.query::<(Entity, &A)>();
let ents = query.iter(&world).map(|(e, &i)| (e, i)).collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123))]);
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = query.iter(&world).map(|(e, &i)| (e, i)).collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123)), (f, A(456))]);
}
#[test]
fn query_single_component_for_each() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let mut results = Vec::new();
world
.query::<(Entity, &A)>()
.for_each(&world, |(e, &i)| results.push((e, i)));
assert_eq!(results, &[(e, A(123)), (f, A(456))]);
}
#[test]
fn par_for_each_dense() {
ComputeTaskPool::init(TaskPool::default);
let mut world = World::new();
let e1 = world.spawn(A(1)).id();
let e2 = world.spawn(A(2)).id();
let e3 = world.spawn(A(3)).id();
let e4 = world.spawn((A(4), B(1))).id();
let e5 = world.spawn((A(5), B(1))).id();
let results = Arc::new(Mutex::new(Vec::new()));
world
.query::<(Entity, &A)>()
.par_iter(&world)
.for_each(|(e, &A(i))| {
results.lock().unwrap().push((e, i));
});
results.lock().unwrap().sort();
assert_eq!(
&*results.lock().unwrap(),
&[(e1, 1), (e2, 2), (e3, 3), (e4, 4), (e5, 5)]
);
}
#[test]
fn par_for_each_sparse() {
ComputeTaskPool::init(TaskPool::default);
let mut world = World::new();
let e1 = world.spawn(SparseStored(1)).id();
let e2 = world.spawn(SparseStored(2)).id();
let e3 = world.spawn(SparseStored(3)).id();
let e4 = world.spawn((SparseStored(4), A(1))).id();
let e5 = world.spawn((SparseStored(5), A(1))).id();
let results = Arc::new(Mutex::new(Vec::new()));
world
.query::<(Entity, &SparseStored)>()
.par_iter(&world)
.for_each(|(e, &SparseStored(i))| results.lock().unwrap().push((e, i)));
results.lock().unwrap().sort();
assert_eq!(
&*results.lock().unwrap(),
&[(e1, 1), (e2, 2), (e3, 3), (e4, 4), (e5, 5)]
);
}
#[test]
fn query_missing_component() {
let mut world = World::new();
world.spawn((TableStored("abc"), A(123)));
world.spawn((TableStored("def"), A(456)));
assert!(world.query::<(&B, &A)>().iter(&world).next().is_none());
}
#[test]
fn query_sparse_component() {
let mut world = World::new();
world.spawn((TableStored("abc"), A(123)));
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = world
.query::<(Entity, &B)>()
.iter(&world)
.map(|(e, &b)| (e, b))
.collect::<Vec<_>>();
assert_eq!(ents, &[(f, B(1))]);
}
#[test]
fn query_filter_with() {
let mut world = World::new();
world.spawn((A(123), B(1)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, With<B>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(123)]);
}
#[test]
fn query_filter_with_for_each() {
let mut world = World::new();
world.spawn((A(123), B(1)));
world.spawn(A(456));
let mut results = Vec::new();
world
.query_filtered::<&A, With<B>>()
.for_each(&world, |i| results.push(*i));
assert_eq!(results, vec![A(123)]);
}
#[test]
fn query_filter_with_sparse() {
let mut world = World::new();
world.spawn((A(123), SparseStored(321)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, With<SparseStored>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(123)]);
}
#[test]
fn query_filter_with_sparse_for_each() {
let mut world = World::new();
world.spawn((A(123), SparseStored(321)));
world.spawn(A(456));
let mut results = Vec::new();
world
.query_filtered::<&A, With<SparseStored>>()
.for_each(&world, |i| results.push(*i));
assert_eq!(results, vec![A(123)]);
}
#[test]
fn query_filter_without() {
let mut world = World::new();
world.spawn((A(123), B(321)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, Without<B>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(456)]);
}
#[test]
fn query_optional_component_table() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
// this should be skipped
world.spawn(TableStored("abc"));
let ents = world
.query::<(Entity, Option<&B>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<Vec<_>>();
assert_eq!(ents, &[(e, None, A(123)), (f, Some(B(1)), A(456))]);
}
#[test]
fn query_optional_component_sparse() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world
.spawn((TableStored("def"), A(456), SparseStored(1)))
.id();
// this should be skipped
// world.spawn(SparseStored(1));
let ents = world
.query::<(Entity, Option<&SparseStored>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<Vec<_>>();
assert_eq!(
ents,
&[(e, None, A(123)), (f, Some(SparseStored(1)), A(456))]
);
}
#[test]
fn query_optional_component_sparse_no_match() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
// // this should be skipped
world.spawn(TableStored("abc"));
let ents = world
.query::<(Entity, Option<&SparseStored>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<Vec<_>>();
assert_eq!(ents, &[(e, None, A(123)), (f, None, A(456))]);
}
#[test]
fn add_remove_components() {
let mut world = World::new();
let e1 = world.spawn((A(1), B(3), TableStored("abc"))).id();
let e2 = world.spawn((A(2), B(4), TableStored("xyz"))).id();
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<Vec<_>>(),
&[(e1, A(1), B(3)), (e2, A(2), B(4))]
);
assert_eq!(world.entity_mut(e1).remove::<A>(), Some(A(1)));
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<Vec<_>>(),
&[(e2, A(2), B(4))]
);
assert_eq!(
world
.query::<(Entity, &B, &TableStored)>()
.iter(&world)
.map(|(e, &B(b), &TableStored(s))| (e, b, s))
.collect::<Vec<_>>(),
&[(e2, 4, "xyz"), (e1, 3, "abc")]
);
world.entity_mut(e1).insert(A(43));
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<Vec<_>>(),
&[(e2, A(2), B(4)), (e1, A(43), B(3))]
);
world.entity_mut(e1).insert(C);
assert_eq!(
world
.query::<(Entity, &C)>()
.iter(&world)
.map(|(e, &f)| (e, f))
.collect::<Vec<_>>(),
&[(e1, C)]
);
}
#[test]
fn table_add_remove_many() {
let mut world = World::default();
#[cfg(miri)]
let (mut entities, to) = {
let to = 10;
(Vec::with_capacity(to), to)
};
#[cfg(not(miri))]
let (mut entities, to) = {
let to = 10_000;
(Vec::with_capacity(to), to)
};
for _ in 0..to {
entities.push(world.spawn(B(0)).id());
}
for (i, entity) in entities.iter().cloned().enumerate() {
world.entity_mut(entity).insert(A(i));
}
for (i, entity) in entities.iter().cloned().enumerate() {
assert_eq!(world.entity_mut(entity).remove::<A>(), Some(A(i)));
}
}
#[test]
fn sparse_set_add_remove_many() {
let mut world = World::default();
let mut entities = Vec::with_capacity(1000);
for _ in 0..4 {
entities.push(world.spawn(A(2)).id());
}
for (i, entity) in entities.iter().cloned().enumerate() {
world.entity_mut(entity).insert(SparseStored(i as u32));
}
for (i, entity) in entities.iter().cloned().enumerate() {
assert_eq!(
world.entity_mut(entity).remove::<SparseStored>(),
Some(SparseStored(i as u32))
);
}
}
#[test]
fn remove_missing() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
assert!(world.entity_mut(e).remove::<B>().is_none());
}
#[test]
fn spawn_batch() {
let mut world = World::new();
world.spawn_batch((0..100).map(|x| (A(x), TableStored("abc"))));
let values = world
.query::<&A>()
.iter(&world)
.map(|v| v.0)
.collect::<Vec<_>>();
let expected = (0..100).collect::<Vec<_>>();
assert_eq!(values, expected);
}
#[test]
fn query_get() {
let mut world = World::new();
let a = world.spawn((TableStored("abc"), A(123))).id();
let b = world.spawn((TableStored("def"), A(456))).id();
let c = world.spawn((TableStored("ghi"), A(789), B(1))).id();
let mut i32_query = world.query::<&A>();
assert_eq!(i32_query.get(&world, a).unwrap().0, 123);
assert_eq!(i32_query.get(&world, b).unwrap().0, 456);
let mut i32_bool_query = world.query::<(&A, &B)>();
assert!(i32_bool_query.get(&world, a).is_err());
assert_eq!(i32_bool_query.get(&world, c).unwrap(), (&A(789), &B(1)));
assert!(world.despawn(a));
assert!(i32_query.get(&world, a).is_err());
}
#[test]
fn query_get_works_across_sparse_removal() {
// Regression test for: https://github.com/bevyengine/bevy/issues/6623
let mut world = World::new();
let a = world.spawn((TableStored("abc"), SparseStored(123))).id();
let b = world.spawn((TableStored("def"), SparseStored(456))).id();
let c = world
.spawn((TableStored("ghi"), SparseStored(789), B(1)))
.id();
let mut query = world.query::<&TableStored>();
assert_eq!(query.get(&world, a).unwrap(), &TableStored("abc"));
assert_eq!(query.get(&world, b).unwrap(), &TableStored("def"));
assert_eq!(query.get(&world, c).unwrap(), &TableStored("ghi"));
world.entity_mut(b).remove::<SparseStored>();
world.entity_mut(c).remove::<SparseStored>();
assert_eq!(query.get(&world, a).unwrap(), &TableStored("abc"));
assert_eq!(query.get(&world, b).unwrap(), &TableStored("def"));
assert_eq!(query.get(&world, c).unwrap(), &TableStored("ghi"));
}
#[test]
fn remove_tracking() {
let mut world = World::new();
let a = world.spawn((SparseStored(0), A(123))).id();
let b = world.spawn((SparseStored(1), A(123))).id();
world.entity_mut(a).despawn();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a],
"despawning results in 'removed component' state for table components"
);
assert_eq!(
world.removed::<SparseStored>().collect::<Vec<_>>(),
&[a],
"despawning results in 'removed component' state for sparse set components"
);
world.entity_mut(b).insert(B(1));
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a],
"archetype moves does not result in 'removed component' state"
);
world.entity_mut(b).remove::<A>();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a, b],
"removing a component results in a 'removed component' state"
);
world.clear_trackers();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[],
"clearning trackers clears removals"
);
assert_eq!(
world.removed::<SparseStored>().collect::<Vec<_>>(),
&[],
"clearning trackers clears removals"
);
assert_eq!(
world.removed::<B>().collect::<Vec<_>>(),
&[],
"clearning trackers clears removals"
);
// TODO: uncomment when world.clear() is implemented
// let c = world.spawn(("abc", 123)).id();
// let d = world.spawn(("abc", 123)).id();
// world.clear();
// assert_eq!(
// world.removed::<i32>(),
// &[c, d],
// "world clears result in 'removed component' states"
// );
// assert_eq!(
// world.removed::<&'static str>(),
// &[c, d, b],
// "world clears result in 'removed component' states"
// );
// assert_eq!(
// world.removed::<f64>(),
// &[b],
// "world clears result in 'removed component' states"
// );
}
#[test]
fn added_tracking() {
let mut world = World::new();
let a = world.spawn(A(123)).id();
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
1
);
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
1
);
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_ok());
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_ok());
world.clear_trackers();
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
0
);
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
0
);
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_err());
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_err());
}
#[test]
fn added_queries() {
let mut world = World::default();
let e1 = world.spawn(A(0)).id();
fn get_added<Com: Component>(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, Added<Com>>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_added::<A>(&mut world), vec![e1]);
world.entity_mut(e1).insert(B(0));
assert_eq!(get_added::<A>(&mut world), vec![e1]);
assert_eq!(get_added::<B>(&mut world), vec![e1]);
world.clear_trackers();
assert!(get_added::<A>(&mut world).is_empty());
let e2 = world.spawn((A(1), B(1))).id();
assert_eq!(get_added::<A>(&mut world), vec![e2]);
assert_eq!(get_added::<B>(&mut world), vec![e2]);
let added = world
.query_filtered::<Entity, (Added<A>, Added<B>)>()
.iter(&world)
.collect::<Vec<Entity>>();
assert_eq!(added, vec![e2]);
}
#[test]
fn changed_trackers() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
let e2 = world.spawn((A(0), B(0))).id();
let e3 = world.spawn((A(0), B(0))).id();
world.spawn((A(0), B(0)));
world.clear_trackers();
for (i, mut a) in world.query::<&mut A>().iter_mut(&mut world).enumerate() {
if i % 2 == 0 {
a.0 += 1;
}
}
fn get_filtered<F: ReadOnlyWorldQuery>(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, F>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_filtered::<Changed<A>>(&mut world), vec![e1, e3]);
// ensure changing an entity's archetypes also moves its changed state
world.entity_mut(e1).insert(C);
assert_eq!(get_filtered::<Changed<A>>(&mut world), vec![e3, e1], "changed entities list should not change (although the order will due to archetype moves)");
// spawning a new A entity should not change existing changed state
world.entity_mut(e1).insert((A(0), B(0)));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
vec![e3, e1],
"changed entities list should not change"
);
// removing an unchanged entity should not change changed state
assert!(world.despawn(e2));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
vec![e3, e1],
"changed entities list should not change"
);
// removing a changed entity should remove it from enumeration
assert!(world.despawn(e1));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
vec![e3],
"e1 should no longer be returned"
);
world.clear_trackers();
assert!(get_filtered::<Changed<A>>(&mut world).is_empty());
let e4 = world.spawn_empty().id();
world.entity_mut(e4).insert(A(0));
assert_eq!(get_filtered::<Changed<A>>(&mut world), vec![e4]);
assert_eq!(get_filtered::<Added<A>>(&mut world), vec![e4]);
world.entity_mut(e4).insert(A(1));
assert_eq!(get_filtered::<Changed<A>>(&mut world), vec![e4]);
world.clear_trackers();
// ensure inserting multiple components set changed state for all components and set added
// state for non existing components even when changing archetype.
world.entity_mut(e4).insert((A(0), B(0)));
assert!(get_filtered::<Added<A>>(&mut world).is_empty());
assert_eq!(get_filtered::<Changed<A>>(&mut world), vec![e4]);
assert_eq!(get_filtered::<Added<B>>(&mut world), vec![e4]);
assert_eq!(get_filtered::<Changed<B>>(&mut world), vec![e4]);
}
#[test]
fn changed_trackers_sparse() {
let mut world = World::default();
let e1 = world.spawn(SparseStored(0)).id();
let e2 = world.spawn(SparseStored(0)).id();
let e3 = world.spawn(SparseStored(0)).id();
world.spawn(SparseStored(0));
world.clear_trackers();
for (i, mut a) in world
.query::<&mut SparseStored>()
.iter_mut(&mut world)
.enumerate()
{
if i % 2 == 0 {
a.0 += 1;
}
}
fn get_filtered<F: ReadOnlyWorldQuery>(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, F>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
vec![e1, e3]
);
// ensure changing an entity's archetypes also moves its changed state
world.entity_mut(e1).insert(C);
assert_eq!(get_filtered::<Changed<SparseStored>>(&mut world), vec![e3, e1], "changed entities list should not change (although the order will due to archetype moves)");
// spawning a new SparseStored entity should not change existing changed state
world.entity_mut(e1).insert(SparseStored(0));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
vec![e3, e1],
"changed entities list should not change"
);
// removing an unchanged entity should not change changed state
assert!(world.despawn(e2));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
vec![e3, e1],
"changed entities list should not change"
);
// removing a changed entity should remove it from enumeration
assert!(world.despawn(e1));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
vec![e3],
"e1 should no longer be returned"
);
world.clear_trackers();
assert!(get_filtered::<Changed<SparseStored>>(&mut world).is_empty());
let e4 = world.spawn_empty().id();
world.entity_mut(e4).insert(SparseStored(0));
assert_eq!(get_filtered::<Changed<SparseStored>>(&mut world), vec![e4]);
assert_eq!(get_filtered::<Added<SparseStored>>(&mut world), vec![e4]);
world.entity_mut(e4).insert(A(1));
assert_eq!(get_filtered::<Changed<SparseStored>>(&mut world), vec![e4]);
world.clear_trackers();
// ensure inserting multiple components set changed state for all components and set added
// state for non existing components even when changing archetype.
world.entity_mut(e4).insert(SparseStored(0));
assert!(get_filtered::<Added<SparseStored>>(&mut world).is_empty());
assert_eq!(get_filtered::<Changed<SparseStored>>(&mut world), vec![e4]);
}
#[test]
fn empty_spawn() {
let mut world = World::default();
let e = world.spawn_empty().id();
let mut e_mut = world.entity_mut(e);
e_mut.insert(A(0));
assert_eq!(e_mut.get::<A>().unwrap(), &A(0));
}
#[test]
fn reserve_and_spawn() {
let mut world = World::default();
let e = world.entities().reserve_entity();
world.flush();
let mut e_mut = world.entity_mut(e);
e_mut.insert(A(0));
assert_eq!(e_mut.get::<A>().unwrap(), &A(0));
}
#[test]
fn changed_query() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
fn get_changed(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, Changed<A>>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_changed(&mut world), vec![e1]);
world.clear_trackers();
assert_eq!(get_changed(&mut world), vec![]);
*world.get_mut(e1).unwrap() = A(1);
assert_eq!(get_changed(&mut world), vec![e1]);
}
#[test]
fn resource() {
use crate::system::Resource;
#[derive(Resource, PartialEq, Debug)]
struct Num(i32);
#[derive(Resource, PartialEq, Debug)]
struct BigNum(u64);
let mut world = World::default();
assert!(world.get_resource::<Num>().is_none());
assert!(!world.contains_resource::<Num>());
assert!(!world.is_resource_added::<Num>());
assert!(!world.is_resource_changed::<Num>());
world.insert_resource(Num(123));
let resource_id = world
.components()
.get_resource_id(TypeId::of::<Num>())
.unwrap();
let archetype_component_id = world.storages().resources.get(resource_id).unwrap().id();
assert_eq!(world.resource::<Num>().0, 123);
assert!(world.contains_resource::<Num>());
assert!(world.is_resource_added::<Num>());
assert!(world.is_resource_changed::<Num>());
world.insert_resource(BigNum(456));
assert_eq!(world.resource::<BigNum>().0, 456u64);
world.insert_resource(BigNum(789));
assert_eq!(world.resource::<BigNum>().0, 789);
{
let mut value = world.resource_mut::<BigNum>();
assert_eq!(value.0, 789);
value.0 = 10;
}
assert_eq!(
world.resource::<BigNum>().0,
10,
"resource changes are preserved"
);
assert_eq!(
world.remove_resource::<BigNum>(),
Some(BigNum(10)),
"removed resource has the correct value"
);
assert_eq!(
world.get_resource::<BigNum>(),
None,
"removed resource no longer exists"
);
assert_eq!(
world.remove_resource::<BigNum>(),
None,
"double remove returns nothing"
);
world.insert_resource(BigNum(1));
assert_eq!(
world.get_resource::<BigNum>(),
Some(&BigNum(1)),
"re-inserting resources works"
);
assert_eq!(
world.get_resource::<Num>(),
Some(&Num(123)),
"other resources are unaffected"
);
let current_resource_id = world
.components()
.get_resource_id(TypeId::of::<Num>())
.unwrap();
assert_eq!(
resource_id, current_resource_id,
"resource id does not change after removing / re-adding"
);
let current_archetype_component_id =
world.storages().resources.get(resource_id).unwrap().id();
assert_eq!(
archetype_component_id, current_archetype_component_id,
"resource archetype component id does not change after removing / re-adding"
);
}
#[test]
fn remove_intersection() {
let mut world = World::default();
let e1 = world.spawn((A(1), B(1), TableStored("a"))).id();
let mut e = world.entity_mut(e1);
assert_eq!(e.get::<TableStored>(), Some(&TableStored("a")));
assert_eq!(e.get::<A>(), Some(&A(1)));
assert_eq!(e.get::<B>(), Some(&B(1)));
assert_eq!(
e.get::<C>(),
None,
"C is not in the entity, so it should not exist"
);
e.remove_intersection::<(A, B, C)>();
assert_eq!(
e.get::<TableStored>(),
Some(&TableStored("a")),
"TableStored is not in the removed bundle, so it should exist"
);
assert_eq!(
e.get::<A>(),
None,
"Num is in the removed bundle, so it should not exist"
);
assert_eq!(
e.get::<B>(),
None,
"f64 is in the removed bundle, so it should not exist"
);
assert_eq!(
e.get::<C>(),
None,
"usize is in the removed bundle, so it should not exist"
);
}
#[test]
fn remove() {
let mut world = World::default();
world.spawn((A(1), B(1), TableStored("1")));
let e2 = world.spawn((A(2), B(2), TableStored("2"))).id();
world.spawn((A(3), B(3), TableStored("3")));
let mut query = world.query::<(&B, &TableStored)>();
let results = query
.iter(&world)
.map(|(a, b)| (a.0, b.0))
.collect::<Vec<_>>();
assert_eq!(results, vec![(1, "1"), (2, "2"), (3, "3"),]);
let removed_bundle = world.entity_mut(e2).remove::<(B, TableStored)>().unwrap();
assert_eq!(removed_bundle, (B(2), TableStored("2")));
let results = query
.iter(&world)
.map(|(a, b)| (a.0, b.0))
.collect::<Vec<_>>();
assert_eq!(results, vec![(1, "1"), (3, "3"),]);
let mut a_query = world.query::<&A>();
let results = a_query.iter(&world).map(|a| a.0).collect::<Vec<_>>();
assert_eq!(results, vec![1, 3, 2]);
let entity_ref = world.entity(e2);
assert_eq!(
entity_ref.get::<A>(),
Some(&A(2)),
"A is not in the removed bundle, so it should exist"
);
assert_eq!(
entity_ref.get::<B>(),
None,
"B is in the removed bundle, so it should not exist"
);
assert_eq!(
entity_ref.get::<TableStored>(),
None,
"TableStored is in the removed bundle, so it should not exist"
);
}
#[test]
fn non_send_resource() {
let mut world = World::default();
world.insert_non_send_resource(123i32);
world.insert_non_send_resource(456i64);
assert_eq!(*world.non_send_resource::<i32>(), 123);
assert_eq!(*world.non_send_resource_mut::<i64>(), 456);
}
#[test]
fn non_send_resource_points_to_distinct_data() {
let mut world = World::default();
world.insert_resource(A(123));
world.insert_non_send_resource(A(456));
assert_eq!(*world.resource::<A>(), A(123));
assert_eq!(*world.non_send_resource::<A>(), A(456));
}
#[test]
#[should_panic]
fn non_send_resource_panic() {
let mut world = World::default();
world.insert_non_send_resource(0i32);
std::thread::spawn(move || {
let _ = world.non_send_resource_mut::<i32>();
})
.join()
.unwrap();
}
#[test]
fn trackers_query() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
world.spawn(B(0));
let mut trackers_query = world.query::<Option<ChangeTrackers<A>>>();
let trackers = trackers_query.iter(&world).collect::<Vec<_>>();
let a_trackers = trackers[0].as_ref().unwrap();
assert!(trackers[1].is_none());
assert!(a_trackers.is_added());
assert!(a_trackers.is_changed());
world.clear_trackers();
let trackers = trackers_query.iter(&world).collect::<Vec<_>>();
let a_trackers = trackers[0].as_ref().unwrap();
assert!(!a_trackers.is_added());
assert!(!a_trackers.is_changed());
*world.get_mut(e1).unwrap() = A(1);
let trackers = trackers_query.iter(&world).collect::<Vec<_>>();
let a_trackers = trackers[0].as_ref().unwrap();
assert!(!a_trackers.is_added());
assert!(a_trackers.is_changed());
}
#[test]
fn exact_size_query() {
let mut world = World::default();
world.spawn((A(0), B(0)));
world.spawn((A(0), B(0)));
world.spawn((A(0), B(0), C));
world.spawn(C);
let mut query = world.query::<(&A, &B)>();
assert_eq!(query.iter(&world).len(), 3);
}
#[test]
#[should_panic]
fn duplicate_components_panic() {
let mut world = World::new();
world.spawn((A(1), A(2)));
}
#[test]
#[should_panic]
fn ref_and_mut_query_panic() {
let mut world = World::new();
world.query::<(&A, &mut A)>();
}
#[test]
#[should_panic]
fn mut_and_ref_query_panic() {
let mut world = World::new();
world.query::<(&mut A, &A)>();
}
#[test]
#[should_panic]
fn mut_and_mut_query_panic() {
let mut world = World::new();
world.query::<(&mut A, &mut A)>();
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_iter() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
query.iter(&world_a);
query.iter(&world_b);
}
#[test]
fn query_filters_dont_collide_with_fetches() {
let mut world = World::new();
world.query_filtered::<&mut A, Changed<A>>();
}
#[test]
fn filtered_query_access() {
let mut world = World::new();
let query = world.query_filtered::<&mut A, Changed<B>>();
let mut expected = FilteredAccess::<ComponentId>::default();
let a_id = world.components.get_id(TypeId::of::<A>()).unwrap();
let b_id = world.components.get_id(TypeId::of::<B>()).unwrap();
expected.add_write(a_id);
expected.add_read(b_id);
assert!(
query.component_access.eq(&expected),
"ComponentId access from query fetch and query filter should be combined"
);
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_get() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
let _ = query.get(&world_a, Entity::from_raw(0));
let _ = query.get(&world_b, Entity::from_raw(0));
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_for_each() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
query.for_each(&world_a, |_| {});
query.for_each(&world_b, |_| {});
}
#[test]
fn resource_scope() {
let mut world = World::default();
world.insert_resource(A(0));
world.resource_scope(|world: &mut World, mut value: Mut<A>| {
value.0 += 1;
assert!(!world.contains_resource::<A>());
});
assert_eq!(world.resource::<A>().0, 1);
}
#[test]
#[should_panic(
expected = "Attempted to access or drop non-send resource bevy_ecs::tests::NonSendA from thread"
)]
fn non_send_resource_drop_from_different_thread() {
let mut world = World::default();
world.insert_non_send_resource(NonSendA::default());
let thread = std::thread::spawn(move || {
// Dropping the non-send resource on a different thread
// Should result in a panic
drop(world);
});
if let Err(err) = thread.join() {
std::panic::resume_unwind(err);
}
}
#[test]
fn non_send_resource_drop_from_same_thread() {
let mut world = World::default();
world.insert_non_send_resource(NonSendA::default());
drop(world);
}
#[test]
fn insert_overwrite_drop() {
let (dropck1, dropped1) = DropCk::new_pair();
let (dropck2, dropped2) = DropCk::new_pair();
let mut world = World::default();
world.spawn(dropck1).insert(dropck2);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 0);
drop(world);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 1);
}
#[test]
fn insert_overwrite_drop_sparse() {
let (dropck1, dropped1) = DropCk::new_pair();
let (dropck2, dropped2) = DropCk::new_pair();
let mut world = World::default();
world
.spawn(DropCkSparse(dropck1))
.insert(DropCkSparse(dropck2));
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 0);
drop(world);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 1);
}
#[test]
fn clear_entities() {
let mut world = World::default();
world.insert_resource(A(0));
world.spawn(A(1));
world.spawn(SparseStored(1));
let mut q1 = world.query::<&A>();
let mut q2 = world.query::<&SparseStored>();
assert_eq!(q1.iter(&world).len(), 1);
assert_eq!(q2.iter(&world).len(), 1);
assert_eq!(world.entities().len(), 2);
world.clear_entities();
assert_eq!(
q1.iter(&world).len(),
0,
"world should not contain table components"
);
assert_eq!(
q2.iter(&world).len(),
0,
"world should not contain sparse set components"
);
assert_eq!(
world.entities().len(),
0,
"world should not have any entities"
);
assert_eq!(
world.resource::<A>().0,
0,
"world should still contain resources"
);
}
#[test]
fn test_is_archetypal_size_hints() {
let mut world = World::default();
macro_rules! query_min_size {
($query:ty, $filter:ty) => {
world
.query_filtered::<$query, $filter>()
.iter(&world)
.size_hint()
.0
};
}
world.spawn((A(1), B(1), C));
world.spawn((A(1), C));
world.spawn((A(1), B(1)));
world.spawn((B(1), C));
world.spawn(A(1));
world.spawn(C);
assert_eq!(2, query_min_size![(), (With<A>, Without<B>)],);
assert_eq!(3, query_min_size![&B, Or<(With<A>, With<C>)>],);
assert_eq!(1, query_min_size![&B, (With<A>, With<C>)],);
assert_eq!(1, query_min_size![(&A, &B), With<C>],);
assert_eq!(4, query_min_size![&A, ()], "Simple Archetypal");
assert_eq!(4, query_min_size![ChangeTrackers<A>, ()],);
// All the following should set minimum size to 0, as it's impossible to predict
// how many entites the filters will trim.
assert_eq!(0, query_min_size![(), Added<A>], "Simple Added");
assert_eq!(0, query_min_size![(), Changed<A>], "Simple Changed");
assert_eq!(0, query_min_size![(&A, &B), Changed<A>],);
assert_eq!(0, query_min_size![&A, (Changed<A>, With<B>)],);
assert_eq!(0, query_min_size![(&A, &B), Or<(Changed<A>, Changed<B>)>],);
}
#[test]
fn reserve_entities_across_worlds() {
let mut world_a = World::default();
let mut world_b = World::default();
let e1 = world_a.spawn(A(1)).id();
let e2 = world_a.spawn(A(2)).id();
let e3 = world_a.entities().reserve_entity();
world_a.flush();
let world_a_max_entities = world_a.entities().len();
world_b.entities.reserve_entities(world_a_max_entities);
world_b.entities.flush_as_invalid();
let e4 = world_b.spawn(A(4)).id();
assert_eq!(
e4,
Entity::new(3, 0),
"new entity is created immediately after world_a's max entity"
);
assert!(world_b.get::<A>(e1).is_none());
assert!(world_b.get_entity(e1).is_none());
assert!(world_b.get::<A>(e2).is_none());
assert!(world_b.get_entity(e2).is_none());
assert!(world_b.get::<A>(e3).is_none());
assert!(world_b.get_entity(e3).is_none());
world_b.get_or_spawn(e1).unwrap().insert(B(1));
assert_eq!(
world_b.get::<B>(e1),
Some(&B(1)),
"spawning into 'world_a' entities works"
);
world_b.get_or_spawn(e4).unwrap().insert(B(4));
assert_eq!(
world_b.get::<B>(e4),
Some(&B(4)),
"spawning into existing `world_b` entities works"
);
assert_eq!(
world_b.get::<A>(e4),
Some(&A(4)),
"spawning into existing `world_b` entities works"
);
let e4_mismatched_generation = Entity::new(3, 1);
assert!(
world_b.get_or_spawn(e4_mismatched_generation).is_none(),
"attempting to spawn on top of an entity with a mismatched entity generation fails"
);
assert_eq!(
world_b.get::<B>(e4),
Some(&B(4)),
"failed mismatched spawn doesn't change existing entity"
);
assert_eq!(
world_b.get::<A>(e4),
Some(&A(4)),
"failed mismatched spawn doesn't change existing entity"
);
let high_non_existent_entity = Entity::new(6, 0);
world_b
.get_or_spawn(high_non_existent_entity)
.unwrap()
.insert(B(10));
assert_eq!(
world_b.get::<B>(high_non_existent_entity),
Some(&B(10)),
"inserting into newly allocated high / non-continous entity id works"
);
let high_non_existent_but_reserved_entity = Entity::new(5, 0);
assert!(
world_b.get_entity(high_non_existent_but_reserved_entity).is_none(),
"entities between high-newly allocated entity and continuous block of existing entities don't exist"
);
let reserved_entities = vec![
world_b.entities().reserve_entity(),
world_b.entities().reserve_entity(),
world_b.entities().reserve_entity(),
world_b.entities().reserve_entity(),
];
assert_eq!(
reserved_entities,
vec![
Entity::new(5, 0),
Entity::new(4, 0),
Entity::new(7, 0),
Entity::new(8, 0),
],
"space between original entities and high entities is used for new entity ids"
);
}
#[test]
fn insert_or_spawn_batch() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let values = vec![(e0, (B(0), C)), (e1, (B(1), C))];
world.insert_or_spawn_batch(values).unwrap();
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"existing component was preserved"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"pre-existing entity received correct B component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"new entity was spawned and received correct B component"
);
assert_eq!(
world.get::<C>(e0),
Some(&C),
"pre-existing entity received C component"
);
assert_eq!(
world.get::<C>(e1),
Some(&C),
"new entity was spawned and received C component"
);
}
#[test]
fn insert_or_spawn_batch_invalid() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let e2 = world.spawn_empty().id();
let invalid_e2 = Entity::new(e2.index(), 1);
let values = vec![(e0, (B(0), C)), (e1, (B(1), C)), (invalid_e2, (B(2), C))];
let result = world.insert_or_spawn_batch(values);
assert_eq!(
result,
Err(vec![invalid_e2]),
"e2 failed to be spawned or inserted into"
);
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"existing component was preserved"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"pre-existing entity received correct B component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"new entity was spawned and received correct B component"
);
assert_eq!(
world.get::<C>(e0),
Some(&C),
"pre-existing entity received C component"
);
assert_eq!(
world.get::<C>(e1),
Some(&C),
"new entity was spawned and received C component"
);
}
}