bevy/crates/bevy_math/src/primitives/dim2.rs
Joona Aalto c62ad4b2c4
Implement bounding volumes for primitive shapes (#11336)
# Objective

Closes #10570.

#10946 added bounding volume types and traits, but didn't use them for
anything yet. This PR implements `Bounded2d` and `Bounded3d` for Bevy's
primitive shapes.

## Solution

Implement `Bounded2d` and `Bounded3d` for primitive shapes. This allows
computing AABBs and bounding circles/spheres for them.

For most shapes, there are several ways of implementing bounding
volumes. I took inspiration from [Parry's bounding
volumes](https://github.com/dimforge/parry/tree/master/src/bounding_volume),
[Inigo Quilez](http://iquilezles.org/articles/diskbbox/), and figured
out the rest myself using geometry. I tried to comment all slightly
non-trivial or unclear math to make it understandable.

Parry uses support mapping (finding the farthest point in some direction
for convex shapes) for some AABBs like cones, cylinders, and line
segments. This involves several quat operations and normalizations, so I
opted for the simpler and more efficient geometric approaches shown in
[Quilez's article](http://iquilezles.org/articles/diskbbox/).

Below you can see some of the bounding volumes working in 2D and 3D.
Note that I can't conveniently add these examples yet because they use
primitive shape meshing, which is still WIP.


https://github.com/bevyengine/bevy/assets/57632562/4465cbc6-285b-4c71-b62d-a2b3ee16f8b4


https://github.com/bevyengine/bevy/assets/57632562/94b4ac84-a092-46d7-b438-ce2e971496a4

---

## Changelog

- Implemented `Bounded2d`/`Bounded3d` for primitive shapes
- Added `from_point_cloud` method for bounding volumes (used by many
bounding implementations)
- Added `point_cloud_2d/3d_center` and `rotate_vec2` utility functions
- Added `RegularPolygon::vertices` method (used in regular polygon AABB
construction)
- Added `Triangle::circumcenter` method (used in triangle bounding
circle construction)
- Added bounding circle/sphere creation from AABBs and vice versa

## Extra

Do we want to implement `Bounded2d` for some "3D-ish" shapes too? For
example, capsules are sort of dimension-agnostic and useful for 2D, so I
think that would be good to implement. But a cylinder in 2D is just a
rectangle, and a cone is a triangle, so they wouldn't make as much sense
to me. A conical frustum would be an isosceles trapezoid, which could be
useful, but I'm not sure if computing the 2D AABB of a 3D frustum makes
semantic sense.
2024-01-18 15:55:36 +00:00

526 lines
16 KiB
Rust

use super::{InvalidDirectionError, Primitive2d, WindingOrder};
use crate::Vec2;
/// A normalized vector pointing in a direction in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Direction2d(Vec2);
impl Direction2d {
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self(Vec2::X);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self(Vec2::Y);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self(Vec2::NEG_X);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self(Vec2::NEG_Y);
/// Create a direction from a finite, nonzero [`Vec2`].
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new(value: Vec2) -> Result<Self, InvalidDirectionError> {
Self::new_and_length(value).map(|(dir, _)| dir)
}
/// Create a direction from a finite, nonzero [`Vec2`], also returning its original length.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new_and_length(value: Vec2) -> Result<(Self, f32), InvalidDirectionError> {
let length = value.length();
let direction = (length.is_finite() && length > 0.0).then_some(value / length);
direction
.map(|dir| (Self(dir), length))
.map_or(Err(InvalidDirectionError::from_length(length)), Ok)
}
/// Create a direction from its `x` and `y` components.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
pub fn from_xy(x: f32, y: f32) -> Result<Self, InvalidDirectionError> {
Self::new(Vec2::new(x, y))
}
/// Create a direction from a [`Vec2`] that is already normalized.
pub fn from_normalized(value: Vec2) -> Self {
debug_assert!(value.is_normalized());
Self(value)
}
}
impl TryFrom<Vec2> for Direction2d {
type Error = InvalidDirectionError;
fn try_from(value: Vec2) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl std::ops::Deref for Direction2d {
type Target = Vec2;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::Neg for Direction2d {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
/// A circle primitive
#[derive(Clone, Copy, Debug)]
pub struct Circle {
/// The radius of the circle
pub radius: f32,
}
impl Primitive2d for Circle {}
/// An ellipse primitive
#[derive(Clone, Copy, Debug)]
pub struct Ellipse {
/// The half "width" of the ellipse
pub half_width: f32,
/// The half "height" of the ellipse
pub half_height: f32,
}
impl Primitive2d for Ellipse {}
impl Ellipse {
/// Create a new `Ellipse` from a "width" and a "height"
pub fn new(width: f32, height: f32) -> Self {
Self {
half_width: width / 2.0,
half_height: height / 2.0,
}
}
}
/// An unbounded plane in 2D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug)]
pub struct Plane2d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Direction2d,
}
impl Primitive2d for Plane2d {}
impl Plane2d {
/// Create a new `Plane2d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline]
pub fn new(normal: Vec2) -> Self {
Self {
normal: Direction2d::new(normal).expect("normal must be nonzero and finite"),
}
}
}
/// An infinite line along a direction in 2D space.
///
/// For a finite line: [`Segment2d`]
#[derive(Clone, Copy, Debug)]
pub struct Line2d {
/// The direction of the line. The line extends infinitely in both the given direction
/// and its opposite direction
pub direction: Direction2d,
}
impl Primitive2d for Line2d {}
/// A segment of a line along a direction in 2D space.
#[doc(alias = "LineSegment2d")]
#[derive(Clone, Debug)]
pub struct Segment2d {
/// The direction of the line segment
pub direction: Direction2d,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive2d for Segment2d {}
impl Segment2d {
/// Create a line segment from a direction and full length of the segment
pub fn new(direction: Direction2d, length: f32) -> Self {
Self {
direction,
half_length: length / 2.,
}
}
/// Get a line segment and translation from two points at each end of a line segment
///
/// Panics if point1 == point2
pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) {
let diff = point2 - point1;
let length = diff.length();
(
Self::new(Direction2d::from_normalized(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
pub fn point1(&self) -> Vec2 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
pub fn point2(&self) -> Vec2 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 2D space.
///
/// For a version without generics: [`BoxedPolyline2d`]
#[derive(Clone, Debug)]
pub struct Polyline2d<const N: usize> {
/// The vertices of the polyline
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polyline2d<N> {}
impl<const N: usize> FromIterator<Vec2> for Polyline2d<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline2d<N> {
/// Create a new `Polyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 2D space, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polyline2d`]
#[derive(Clone, Debug)]
pub struct BoxedPolyline2d {
/// The vertices of the polyline
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolyline2d {}
impl FromIterator<Vec2> for BoxedPolyline2d {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolyline2d {
/// Create a new `BoxedPolyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A triangle in 2D space
#[derive(Clone, Debug, PartialEq)]
pub struct Triangle2d {
/// The vertices of the triangle
pub vertices: [Vec2; 3],
}
impl Primitive2d for Triangle2d {}
impl Triangle2d {
/// Create a new `Triangle2d` from points `a`, `b`, and `c`
pub fn new(a: Vec2, b: Vec2, c: Vec2) -> Self {
Self {
vertices: [a, b, c],
}
}
/// Get the [`WindingOrder`] of the triangle
#[doc(alias = "orientation")]
pub fn winding_order(&self) -> WindingOrder {
let [a, b, c] = self.vertices;
let area = (b - a).perp_dot(c - a);
if area > f32::EPSILON {
WindingOrder::CounterClockwise
} else if area < -f32::EPSILON {
WindingOrder::Clockwise
} else {
WindingOrder::Invalid
}
}
/// Compute the circle passing through all three vertices of the triangle.
/// The vector in the returned tuple is the circumcenter.
pub fn circumcircle(&self) -> (Circle, Vec2) {
// We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations.
//
// A = (0, 0)
// *
// / \
// / \
// / \
// / \
// / U \
// / \
// *-------------*
// B C
let a = self.vertices[0];
let (b, c) = (self.vertices[1] - a, self.vertices[2] - a);
let b_length_sq = b.length_squared();
let c_length_sq = c.length_squared();
// Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2
let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip();
let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq);
let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq);
let u = Vec2::new(ux, uy);
// Compute true circumcenter and circumradius, adding the tip coordinate so that
// A is translated back to its actual coordinate.
let center = u + a;
let radius = u.length();
(Circle { radius }, center)
}
/// Reverse the [`WindingOrder`] of the triangle
/// by swapping the second and third vertices
pub fn reverse(&mut self) {
self.vertices.swap(1, 2);
}
}
/// A rectangle primitive
#[doc(alias = "Quad")]
#[derive(Clone, Copy, Debug)]
pub struct Rectangle {
/// The half width of the rectangle
pub half_width: f32,
/// The half height of the rectangle
pub half_height: f32,
}
impl Primitive2d for Rectangle {}
impl Rectangle {
/// Create a rectangle from a full width and height
pub fn new(width: f32, height: f32) -> Self {
Self::from_size(Vec2::new(width, height))
}
/// Create a rectangle from a given full size
pub fn from_size(size: Vec2) -> Self {
Self {
half_width: size.x / 2.,
half_height: size.y / 2.,
}
}
}
/// A polygon with N vertices.
///
/// For a version without generics: [`BoxedPolygon`]
#[derive(Clone, Debug)]
pub struct Polygon<const N: usize> {
/// The vertices of the `Polygon`
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polygon<N> {}
impl<const N: usize> FromIterator<Vec2> for Polygon<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polygon<N> {
/// Create a new `Polygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon with a variable number of vertices, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polygon`]
#[derive(Clone, Debug)]
pub struct BoxedPolygon {
/// The vertices of the `BoxedPolygon`
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolygon {}
impl FromIterator<Vec2> for BoxedPolygon {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolygon {
/// Create a new `BoxedPolygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon where all vertices lie on a circle, equally far apart.
#[derive(Clone, Copy, Debug)]
pub struct RegularPolygon {
/// The circumcircle on which all vertices lie
pub circumcircle: Circle,
/// The number of sides
pub sides: usize,
}
impl Primitive2d for RegularPolygon {}
impl RegularPolygon {
/// Create a new `RegularPolygon`
/// from the radius of the circumcircle and number of sides
///
/// # Panics
///
/// Panics if `circumcircle_radius` is non-positive
pub fn new(circumcircle_radius: f32, sides: usize) -> Self {
assert!(circumcircle_radius > 0.0);
Self {
circumcircle: Circle {
radius: circumcircle_radius,
},
sides,
}
}
/// Returns an iterator over the vertices of the regular polygon,
/// rotated counterclockwise by the given angle in radians.
///
/// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`.
pub fn vertices(self, rotation: f32) -> impl IntoIterator<Item = Vec2> {
// Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0)
let start_angle = rotation + std::f32::consts::FRAC_PI_2;
let step = std::f32::consts::TAU / self.sides as f32;
(0..self.sides).map(move |i| {
let theta = start_angle + i as f32 * step;
let (sin, cos) = theta.sin_cos();
Vec2::new(cos, sin) * self.circumcircle.radius
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn direction_creation() {
assert_eq!(Direction2d::new(Vec2::X * 12.5), Ok(Direction2d::X));
assert_eq!(
Direction2d::new(Vec2::new(0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Direction2d::new(Vec2::new(f32::INFINITY, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Direction2d::new(Vec2::new(f32::NEG_INFINITY, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Direction2d::new(Vec2::new(f32::NAN, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(
Direction2d::new_and_length(Vec2::X * 6.5),
Ok((Direction2d::from_normalized(Vec2::X), 6.5))
);
}
#[test]
fn triangle_winding_order() {
let mut cw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-0.5, -1.2),
Vec2::new(-1.0, -1.0),
);
assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise);
let ccw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-1.0, -1.0),
Vec2::new(-0.5, -1.2),
);
assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise);
// The clockwise triangle should be the same as the counterclockwise
// triangle when reversed
cw_triangle.reverse();
assert_eq!(cw_triangle, ccw_triangle);
let invalid_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(0.0, -1.0),
Vec2::new(0.0, -1.2),
);
assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid);
}
#[test]
fn triangle_circumcenter() {
let triangle = Triangle2d::new(
Vec2::new(10.0, 2.0),
Vec2::new(-5.0, -3.0),
Vec2::new(2.0, -1.0),
);
let (Circle { radius }, circumcenter) = triangle.circumcircle();
// Calculated with external calculator
assert_eq!(radius, 98.34887);
assert_eq!(circumcenter, Vec2::new(-28.5, 92.5));
}
#[test]
fn regular_polygon_vertices() {
let polygon = RegularPolygon::new(1.0, 4);
// Regular polygons have a vertex at the top by default
let mut vertices = polygon.vertices(0.0).into_iter();
assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7);
// Rotate by 45 degrees, forming an axis-aligned square
let mut rotated_vertices = polygon.vertices(std::f32::consts::FRAC_PI_4).into_iter();
// Distance from the origin to the middle of a side, derived using Pythagorean theorem
let side_sistance = std::f32::consts::FRAC_1_SQRT_2;
assert!(
(rotated_vertices.next().unwrap() - Vec2::new(-side_sistance, side_sistance)).length()
< 1e-7,
);
}
}