
# Objective Closes #19564. The current `Event` trait looks like this: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The `Event` trait is used by both buffered events (`EventReader`/`EventWriter`) and observer events. If they are observer events, they can optionally be targeted at specific `Entity`s or `ComponentId`s, and can even be propagated to other entities. However, there has long been a desire to split the trait semantically for a variety of reasons, see #14843, #14272, and #16031 for discussion. Some reasons include: - It's very uncommon to use a single event type as both a buffered event and targeted observer event. They are used differently and tend to have distinct semantics. - A common footgun is using buffered events with observers or event readers with observer events, as there is no type-level error that prevents this kind of misuse. - #19440 made `Trigger::target` return an `Option<Entity>`. This *seriously* hurts ergonomics for the general case of entity observers, as you need to `.unwrap()` each time. If we could statically determine whether the event is expected to have an entity target, this would be unnecessary. There's really two main ways that we can categorize events: push vs. pull (i.e. "observer event" vs. "buffered event") and global vs. targeted: | | Push | Pull | | ------------ | --------------- | --------------------------- | | **Global** | Global observer | `EventReader`/`EventWriter` | | **Targeted** | Entity observer | - | There are many ways to approach this, each with their tradeoffs. Ultimately, we kind of want to split events both ways: - A type-level distinction between observer events and buffered events, to prevent people from using the wrong kind of event in APIs - A statically designated entity target for observer events to avoid accidentally using untargeted events for targeted APIs This PR achieves these goals by splitting event traits into `Event`, `EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait implemented by all events. ## `Event`, `EntityEvent`, and `BufferedEvent` `Event` is now a very simple trait shared by all events. ```rust pub trait Event: Send + Sync + 'static { // Required for observer APIs fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` You can call `trigger` for *any* event, and use a global observer for listening to the event. ```rust #[derive(Event)] struct Speak { message: String, } // ... app.add_observer(|trigger: On<Speak>| { println!("{}", trigger.message); }); // ... commands.trigger(Speak { message: "Y'all like these reworked events?".to_string(), }); ``` To allow an event to be targeted at entities and even propagated further, you can additionally implement the `EntityEvent` trait: ```rust pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This lets you call `trigger_targets`, and to use targeted observer APIs like `EntityCommands::observe`: ```rust #[derive(Event, EntityEvent)] #[entity_event(traversal = &'static ChildOf, auto_propagate)] struct Damage { amount: f32, } // ... let enemy = commands.spawn((Enemy, Health(100.0))).id(); // Spawn some armor as a child of the enemy entity. // When the armor takes damage, it will bubble the event up to the enemy. let armor_piece = commands .spawn((ArmorPiece, Health(25.0), ChildOf(enemy))) .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| { // Note: `On::target` only exists because this is an `EntityEvent`. let mut health = query.get(trigger.target()).unwrap(); health.0 -= trigger.amount(); }); commands.trigger_targets(Damage { amount: 10.0 }, armor_piece); ``` > [!NOTE] > You *can* still also trigger an `EntityEvent` without targets using `trigger`. We probably *could* make this an either-or thing, but I'm not sure that's actually desirable. To allow an event to be used with the buffered API, you can implement `BufferedEvent`: ```rust pub trait BufferedEvent: Event {} ``` The event can then be used with `EventReader`/`EventWriter`: ```rust #[derive(Event, BufferedEvent)] struct Message(String); fn write_hello(mut writer: EventWriter<Message>) { writer.write(Message("I hope these examples are alright".to_string())); } fn read_messages(mut reader: EventReader<Message>) { // Process all buffered events of type `Message`. for Message(message) in reader.read() { println!("{message}"); } } ``` In summary: - Need a basic event you can trigger and observe? Derive `Event`! - Need the event to be targeted at an entity? Derive `EntityEvent`! - Need the event to be buffered and support the `EventReader`/`EventWriter` API? Derive `BufferedEvent`! ## Alternatives I'll now cover some of the alternative approaches I have considered and briefly explored. I made this section collapsible since it ended up being quite long :P <details> <summary>Expand this to see alternatives</summary> ### 1. Unified `Event` Trait One option is not to have *three* separate traits (`Event`, `EntityEvent`, `BufferedEvent`), and to instead just use associated constants on `Event` to determine whether an event supports targeting and buffering or not: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; const BUFFERED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` Methods can then use bounds like `where E: Event<TARGETED = true>` or `where E: Event<BUFFERED = true>` to limit APIs to specific kinds of events. This would keep everything under one `Event` trait, but I don't think it's necessarily a good idea. It makes APIs harder to read, and docs can't easily refer to specific types of events. You can also create weird invariants: what if you specify `TARGETED = false`, but have `Traversal` and/or `AUTO_PROPAGATE` enabled? ### 2. `Event` and `Trigger` Another option is to only split the traits between buffered events and observer events, since that is the main thing people have been asking for, and they have the largest API difference. If we did this, I think we would need to make the terms *clearly* separate. We can't really use `Event` and `BufferedEvent` as the names, since it would be strange that `BufferedEvent` doesn't implement `Event`. Something like `ObserverEvent` and `BufferedEvent` could work, but it'd be more verbose. For this approach, I would instead keep `Event` for the current `EventReader`/`EventWriter` API, and call the observer event a `Trigger`, since the "trigger" terminology is already used in the observer context within Bevy (both as a noun and a verb). This is also what a long [bikeshed on Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791) seemed to land on at the end of last year. ```rust // For `EventReader`/`EventWriter` pub trait Event: Send + Sync + 'static {} // For observers pub trait Trigger: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The problem is that "event" is just a really good term for something that "happens". Observers are rapidly becoming the more prominent API, so it'd be weird to give them the `Trigger` name and leave the good `Event` name for the less common API. So, even though a split like this seems neat on the surface, I think it ultimately wouldn't really work. We want to keep the `Event` name for observer events, and there is no good alternative for the buffered variant. (`Message` was suggested, but saying stuff like "sends a collision message" is weird.) ### 3. `GlobalEvent` + `TargetedEvent` What if instead of focusing on the buffered vs. observed split, we *only* make a distinction between global and targeted events? ```rust // A shared event trait to allow global observers to work pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For buffered events and non-targeted observer events pub trait GlobalEvent: Event {} // For targeted observer events pub trait TargetedEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is actually the first approach I implemented, and it has the neat characteristic that you can only use non-targeted APIs like `trigger` with a `GlobalEvent` and targeted APIs like `trigger_targets` with a `TargetedEvent`. You have full control over whether the entity should or should not have a target, as they are fully distinct at the type-level. However, there's a few problems: - There is no type-level indication of whether a `GlobalEvent` supports buffered events or just non-targeted observer events - An `Event` on its own does literally nothing, it's just a shared trait required to make global observers accept both non-targeted and targeted events - If an event is both a `GlobalEvent` and `TargetedEvent`, global observers again have ambiguity on whether an event has a target or not, undermining some of the benefits - The names are not ideal ### 4. `Event` and `EntityEvent` We can fix some of the problems of Alternative 3 by accepting that targeted events can also be used in non-targeted contexts, and simply having the `Event` and `EntityEvent` traits: ```rust // For buffered events and non-targeted observer events pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For targeted observer events pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is essentially identical to this PR, just without a dedicated `BufferedEvent`. The remaining major "problem" is that there is still zero type-level indication of whether an `Event` event *actually* supports the buffered API. This leads us to the solution proposed in this PR, using `Event`, `EntityEvent`, and `BufferedEvent`. </details> ## Conclusion The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR aims to solve all the common problems with Bevy's current event model while keeping the "weirdness" factor minimal. It splits in terms of both the push vs. pull *and* global vs. targeted aspects, while maintaining a shared concept for an "event". ### Why I Like This - The term "event" remains as a single concept for all the different kinds of events in Bevy. - Despite all event types being "events", they use fundamentally different APIs. Instead of assuming that you can use an event type with any pattern (when only one is typically supported), you explicitly opt in to each one with dedicated traits. - Using separate traits for each type of event helps with documentation and clearer function signatures. - I can safely make assumptions on expected usage. - If I see that an event is an `EntityEvent`, I can assume that I can use `observe` on it and get targeted events. - If I see that an event is a `BufferedEvent`, I can assume that I can use `EventReader` to read events. - If I see both `EntityEvent` and `BufferedEvent`, I can assume that both APIs are supported. In summary: This allows for a unified concept for events, while limiting the different ways to use them with opt-in traits. No more guess-work involved when using APIs. ### Problems? - Because `BufferedEvent` implements `Event` (for more consistent semantics etc.), you can still use all buffered events for non-targeted observers. I think this is fine/good. The important part is that if you see that an event implements `BufferedEvent`, you know that the `EventReader`/`EventWriter` API should be supported. Whether it *also* supports other APIs is secondary. - I currently only support `trigger_targets` for an `EntityEvent`. However, you can technically target components too, without targeting any entities. I consider that such a niche and advanced use case that it's not a huge problem to only support it for `EntityEvent`s, but we could also split `trigger_targets` into `trigger_entities` and `trigger_components` if we wanted to (or implement components as entities :P). - You can still trigger an `EntityEvent` *without* targets. I consider this correct, since `Event` implements the non-targeted behavior, and it'd be weird if implementing another trait *removed* behavior. However, it does mean that global observers for entity events can technically return `Entity::PLACEHOLDER` again (since I got rid of the `Option<Entity>` added in #19440 for ergonomics). I think that's enough of an edge case that it's not a huge problem, but it is worth keeping in mind. - ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type currently duplicates the `Event` implementation, so you instead need to manually implement one of them.~~ Changed to always requiring `Event` to be derived. ## Related Work There are plans to implement multi-event support for observers, especially for UI contexts. [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508) API looked like this: ```rust // Truncated for brevity trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` I believe this shouldn't be in conflict with this PR. If anything, this PR might *help* achieve the multi-event pattern for entity observers with fewer footguns: by statically enforcing that all of these events are `EntityEvent`s in the context of `EntityCommands::observe`, we can avoid misuse or weird cases where *some* events inside the trigger are targeted while others are not.
173 lines
5.9 KiB
Rust
173 lines
5.9 KiB
Rust
//! This example illustrates how to transfer log events from the [`Layer`] to Bevy's ECS.
|
|
//!
|
|
//! The way we will do this is via a [`mpsc`] channel. [`mpsc`] channels allow 2 unrelated
|
|
//! parts of the program to communicate (in this case, [`Layer`]s and Bevy's ECS).
|
|
//!
|
|
//! Inside the `custom_layer` function we will create a [`mpsc::Sender`] and a [`mpsc::Receiver`] from a
|
|
//! [`mpsc::channel`]. The [`Sender`](mpsc::Sender) will go into the `AdvancedLayer` and the [`Receiver`](mpsc::Receiver) will
|
|
//! go into a non-send resource called `LogEvents` (It has to be non-send because [`Receiver`](mpsc::Receiver) is [`!Sync`](Sync)).
|
|
//! From there we will use `transfer_log_events` to transfer log events from `LogEvents` to an ECS event called `LogEvent`.
|
|
//!
|
|
//! Finally, after all that we can access the `LogEvent` event from our systems and use it.
|
|
//! In this example we build a simple log viewer.
|
|
|
|
use std::sync::mpsc;
|
|
|
|
use bevy::{
|
|
log::{
|
|
tracing::{self, Subscriber},
|
|
tracing_subscriber::{self, Layer},
|
|
BoxedLayer, Level,
|
|
},
|
|
prelude::*,
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins.set(bevy::log::LogPlugin {
|
|
// Show logs all the way up to the trace level, but only for logs
|
|
// produced by this example.
|
|
level: Level::TRACE,
|
|
filter: "warn,log_layers_ecs=trace".to_string(),
|
|
custom_layer,
|
|
..default()
|
|
}))
|
|
.add_systems(Startup, (log_system, setup))
|
|
.add_systems(Update, print_logs)
|
|
.run();
|
|
}
|
|
|
|
/// A basic message. This is what we will be sending from the [`CaptureLayer`] to [`CapturedLogEvents`] non-send resource.
|
|
#[derive(Debug, Event, BufferedEvent)]
|
|
struct LogEvent {
|
|
message: String,
|
|
level: Level,
|
|
}
|
|
|
|
/// This non-send resource temporarily stores [`LogEvent`]s before they are
|
|
/// written to [`Events<LogEvent>`] by [`transfer_log_events`].
|
|
#[derive(Deref, DerefMut)]
|
|
struct CapturedLogEvents(mpsc::Receiver<LogEvent>);
|
|
|
|
/// Transfers information from the `LogEvents` resource to [`Events<LogEvent>`](LogEvent).
|
|
fn transfer_log_events(
|
|
receiver: NonSend<CapturedLogEvents>,
|
|
mut log_events: EventWriter<LogEvent>,
|
|
) {
|
|
// Make sure to use `try_iter()` and not `iter()` to prevent blocking.
|
|
log_events.write_batch(receiver.try_iter());
|
|
}
|
|
|
|
/// This is the [`Layer`] that we will use to capture log events and then send them to Bevy's
|
|
/// ECS via its [`mpsc::Sender`].
|
|
struct CaptureLayer {
|
|
sender: mpsc::Sender<LogEvent>,
|
|
}
|
|
impl<S: Subscriber> Layer<S> for CaptureLayer {
|
|
fn on_event(
|
|
&self,
|
|
event: &tracing::Event<'_>,
|
|
_ctx: tracing_subscriber::layer::Context<'_, S>,
|
|
) {
|
|
// In order to obtain the log message, we have to create a struct that implements
|
|
// Visit and holds a reference to our string. Then we use the `record` method and
|
|
// the struct to modify the reference to hold the message string.
|
|
let mut message = None;
|
|
event.record(&mut CaptureLayerVisitor(&mut message));
|
|
if let Some(message) = message {
|
|
let metadata = event.metadata();
|
|
|
|
self.sender
|
|
.send(LogEvent {
|
|
message,
|
|
level: *metadata.level(),
|
|
})
|
|
.expect("LogEvents resource no longer exists!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A [`Visit`](tracing::field::Visit)or that records log messages that are transferred to [`CaptureLayer`].
|
|
struct CaptureLayerVisitor<'a>(&'a mut Option<String>);
|
|
impl tracing::field::Visit for CaptureLayerVisitor<'_> {
|
|
fn record_debug(&mut self, field: &tracing::field::Field, value: &dyn std::fmt::Debug) {
|
|
// This if statement filters out unneeded events sometimes show up
|
|
if field.name() == "message" {
|
|
*self.0 = Some(format!("{value:?}"));
|
|
}
|
|
}
|
|
}
|
|
fn custom_layer(app: &mut App) -> Option<BoxedLayer> {
|
|
let (sender, receiver) = mpsc::channel();
|
|
|
|
let layer = CaptureLayer { sender };
|
|
let resource = CapturedLogEvents(receiver);
|
|
|
|
app.insert_non_send_resource(resource);
|
|
app.add_event::<LogEvent>();
|
|
app.add_systems(Update, transfer_log_events);
|
|
|
|
Some(layer.boxed())
|
|
}
|
|
|
|
fn log_system() {
|
|
// Here is how you write new logs at each "log level" (in "most important" to
|
|
// "least important" order)
|
|
error!("Something failed");
|
|
warn!("Something bad happened that isn't a failure, but thats worth calling out");
|
|
info!("Helpful information that is worth printing by default");
|
|
debug!("Helpful for debugging");
|
|
trace!("Very noisy");
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct LogViewerRoot;
|
|
|
|
fn setup(mut commands: Commands) {
|
|
commands.spawn(Camera2d);
|
|
|
|
commands.spawn((
|
|
Node {
|
|
width: Val::Vw(100.0),
|
|
height: Val::Vh(100.0),
|
|
flex_direction: FlexDirection::Column,
|
|
padding: UiRect::all(Val::Px(12.)),
|
|
..default()
|
|
},
|
|
LogViewerRoot,
|
|
));
|
|
}
|
|
|
|
// This is how we can read our LogEvents.
|
|
// In this example we are reading the LogEvents and inserting them as text into our log viewer.
|
|
fn print_logs(
|
|
mut events: EventReader<LogEvent>,
|
|
mut commands: Commands,
|
|
log_viewer_root: Single<Entity, With<LogViewerRoot>>,
|
|
) {
|
|
let root_entity = *log_viewer_root;
|
|
|
|
commands.entity(root_entity).with_children(|child| {
|
|
for event in events.read() {
|
|
child.spawn(Text::default()).with_children(|child| {
|
|
child.spawn((
|
|
TextSpan::new(format!("{:5} ", event.level)),
|
|
TextColor(level_color(&event.level)),
|
|
));
|
|
child.spawn(TextSpan::new(&event.message));
|
|
});
|
|
}
|
|
});
|
|
}
|
|
|
|
fn level_color(level: &Level) -> Color {
|
|
use bevy::color::palettes::tailwind::*;
|
|
Color::from(match *level {
|
|
Level::WARN => ORANGE_400,
|
|
Level::ERROR => RED_400,
|
|
Level::INFO => GREEN_400,
|
|
Level::TRACE => PURPLE_400,
|
|
Level::DEBUG => BLUE_400,
|
|
})
|
|
}
|