 d70595b667
			
		
	
	
		d70595b667
		
			
		
	
	
	
	
		
			
			# Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
		
			
				
	
	
		
			2446 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			2446 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use core::mem::{self, size_of};
 | |
| 
 | |
| use allocator::MeshAllocator;
 | |
| use bevy_asset::{load_internal_asset, AssetId};
 | |
| use bevy_core_pipeline::{
 | |
|     core_3d::{AlphaMask3d, Opaque3d, Transmissive3d, Transparent3d, CORE_3D_DEPTH_FORMAT},
 | |
|     deferred::{AlphaMask3dDeferred, Opaque3dDeferred},
 | |
|     prepass::MotionVectorPrepass,
 | |
| };
 | |
| use bevy_derive::{Deref, DerefMut};
 | |
| use bevy_ecs::{
 | |
|     entity::EntityHashMap,
 | |
|     prelude::*,
 | |
|     query::ROQueryItem,
 | |
|     system::{lifetimeless::*, SystemParamItem, SystemState},
 | |
| };
 | |
| use bevy_math::{Affine3, Rect, UVec2, Vec3, Vec4};
 | |
| use bevy_render::{
 | |
|     batching::{
 | |
|         gpu_preprocessing::{
 | |
|             self, GpuPreprocessingSupport, IndirectParameters, IndirectParametersBuffer,
 | |
|         },
 | |
|         no_gpu_preprocessing, GetBatchData, GetFullBatchData, NoAutomaticBatching,
 | |
|     },
 | |
|     camera::Camera,
 | |
|     mesh::*,
 | |
|     primitives::Aabb,
 | |
|     render_asset::RenderAssets,
 | |
|     render_phase::{
 | |
|         BinnedRenderPhasePlugin, PhaseItem, RenderCommand, RenderCommandResult,
 | |
|         SortedRenderPhasePlugin, TrackedRenderPass,
 | |
|     },
 | |
|     render_resource::*,
 | |
|     renderer::{RenderDevice, RenderQueue},
 | |
|     texture::{BevyDefault, DefaultImageSampler, ImageSampler, TextureFormatPixelInfo},
 | |
|     view::{
 | |
|         prepare_view_targets, GpuCulling, RenderVisibilityRanges, ViewTarget, ViewUniformOffset,
 | |
|         ViewVisibility, VisibilityRange,
 | |
|     },
 | |
|     Extract,
 | |
| };
 | |
| use bevy_transform::components::GlobalTransform;
 | |
| use bevy_utils::{
 | |
|     tracing::{error, warn},
 | |
|     Entry, HashMap, Parallel,
 | |
| };
 | |
| 
 | |
| use bytemuck::{Pod, Zeroable};
 | |
| use nonmax::{NonMaxU16, NonMaxU32};
 | |
| use static_assertions::const_assert_eq;
 | |
| 
 | |
| use crate::{
 | |
|     render::{
 | |
|         morph::{
 | |
|             extract_morphs, no_automatic_morph_batching, prepare_morphs, MorphIndices,
 | |
|             MorphUniforms,
 | |
|         },
 | |
|         skin::no_automatic_skin_batching,
 | |
|     },
 | |
|     *,
 | |
| };
 | |
| 
 | |
| use self::irradiance_volume::IRRADIANCE_VOLUMES_ARE_USABLE;
 | |
| 
 | |
| /// Provides support for rendering 3D meshes.
 | |
| #[derive(Default)]
 | |
| pub struct MeshRenderPlugin {
 | |
|     /// Whether we're building [`MeshUniform`]s on GPU.
 | |
|     ///
 | |
|     /// This requires compute shader support and so will be forcibly disabled if
 | |
|     /// the platform doesn't support those.
 | |
|     pub use_gpu_instance_buffer_builder: bool,
 | |
| }
 | |
| 
 | |
| pub const FORWARD_IO_HANDLE: Handle<Shader> = Handle::weak_from_u128(2645551199423808407);
 | |
| pub const MESH_VIEW_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(8140454348013264787);
 | |
| pub const MESH_VIEW_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(9076678235888822571);
 | |
| pub const MESH_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(2506024101911992377);
 | |
| pub const MESH_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(16831548636314682308);
 | |
| pub const MESH_FUNCTIONS_HANDLE: Handle<Shader> = Handle::weak_from_u128(6300874327833745635);
 | |
| pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
 | |
| pub const SKINNING_HANDLE: Handle<Shader> = Handle::weak_from_u128(13215291596265391738);
 | |
| pub const MORPH_HANDLE: Handle<Shader> = Handle::weak_from_u128(970982813587607345);
 | |
| 
 | |
| /// How many textures are allowed in the view bind group layout (`@group(0)`) before
 | |
| /// broader compatibility with WebGL and WebGPU is at risk, due to the minimum guaranteed
 | |
| /// values for `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) and `maxSampledTexturesPerShaderStage` (in WebGPU),
 | |
| /// currently both at 16.
 | |
| ///
 | |
| /// We use 10 here because it still leaves us, in a worst case scenario, with 6 textures for the other bind groups.
 | |
| ///
 | |
| /// See: <https://gpuweb.github.io/gpuweb/#limits>
 | |
| #[cfg(debug_assertions)]
 | |
| pub const MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES: usize = 10;
 | |
| 
 | |
| impl Plugin for MeshRenderPlugin {
 | |
|     fn build(&self, app: &mut App) {
 | |
|         load_internal_asset!(app, FORWARD_IO_HANDLE, "forward_io.wgsl", Shader::from_wgsl);
 | |
|         load_internal_asset!(
 | |
|             app,
 | |
|             MESH_VIEW_TYPES_HANDLE,
 | |
|             "mesh_view_types.wgsl",
 | |
|             Shader::from_wgsl_with_defs,
 | |
|             vec![
 | |
|                 ShaderDefVal::UInt(
 | |
|                     "MAX_DIRECTIONAL_LIGHTS".into(),
 | |
|                     MAX_DIRECTIONAL_LIGHTS as u32
 | |
|                 ),
 | |
|                 ShaderDefVal::UInt(
 | |
|                     "MAX_CASCADES_PER_LIGHT".into(),
 | |
|                     MAX_CASCADES_PER_LIGHT as u32,
 | |
|                 )
 | |
|             ]
 | |
|         );
 | |
|         load_internal_asset!(
 | |
|             app,
 | |
|             MESH_VIEW_BINDINGS_HANDLE,
 | |
|             "mesh_view_bindings.wgsl",
 | |
|             Shader::from_wgsl
 | |
|         );
 | |
|         load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl);
 | |
|         load_internal_asset!(
 | |
|             app,
 | |
|             MESH_FUNCTIONS_HANDLE,
 | |
|             "mesh_functions.wgsl",
 | |
|             Shader::from_wgsl
 | |
|         );
 | |
|         load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
 | |
|         load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl);
 | |
|         load_internal_asset!(app, MORPH_HANDLE, "morph.wgsl", Shader::from_wgsl);
 | |
| 
 | |
|         app.add_systems(
 | |
|             PostUpdate,
 | |
|             (no_automatic_skin_batching, no_automatic_morph_batching),
 | |
|         )
 | |
|         .add_plugins((
 | |
|             BinnedRenderPhasePlugin::<Opaque3d, MeshPipeline>::default(),
 | |
|             BinnedRenderPhasePlugin::<AlphaMask3d, MeshPipeline>::default(),
 | |
|             BinnedRenderPhasePlugin::<Shadow, MeshPipeline>::default(),
 | |
|             BinnedRenderPhasePlugin::<Opaque3dDeferred, MeshPipeline>::default(),
 | |
|             BinnedRenderPhasePlugin::<AlphaMask3dDeferred, MeshPipeline>::default(),
 | |
|             SortedRenderPhasePlugin::<Transmissive3d, MeshPipeline>::default(),
 | |
|             SortedRenderPhasePlugin::<Transparent3d, MeshPipeline>::default(),
 | |
|         ));
 | |
| 
 | |
|         if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
 | |
|             render_app
 | |
|                 .init_resource::<MeshBindGroups>()
 | |
|                 .init_resource::<SkinUniforms>()
 | |
|                 .init_resource::<SkinIndices>()
 | |
|                 .init_resource::<MorphUniforms>()
 | |
|                 .init_resource::<MorphIndices>()
 | |
|                 .init_resource::<MeshCullingDataBuffer>()
 | |
|                 .add_systems(
 | |
|                     ExtractSchedule,
 | |
|                     (
 | |
|                         extract_skins,
 | |
|                         extract_morphs,
 | |
|                         gpu_preprocessing::clear_batched_gpu_instance_buffers::<MeshPipeline>
 | |
|                             .before(ExtractMeshesSet),
 | |
|                     ),
 | |
|                 )
 | |
|                 .add_systems(
 | |
|                     Render,
 | |
|                     (
 | |
|                         set_mesh_motion_vector_flags.before(RenderSet::Queue),
 | |
|                         prepare_skins.in_set(RenderSet::PrepareResources),
 | |
|                         prepare_morphs.in_set(RenderSet::PrepareResources),
 | |
|                         prepare_mesh_bind_group.in_set(RenderSet::PrepareBindGroups),
 | |
|                         prepare_mesh_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
 | |
|                         no_gpu_preprocessing::clear_batched_cpu_instance_buffers::<MeshPipeline>
 | |
|                             .in_set(RenderSet::Cleanup)
 | |
|                             .after(RenderSet::Render),
 | |
|                     ),
 | |
|                 );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn finish(&self, app: &mut App) {
 | |
|         let mut mesh_bindings_shader_defs = Vec::with_capacity(1);
 | |
| 
 | |
|         if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
 | |
|             render_app.init_resource::<GpuPreprocessingSupport>();
 | |
| 
 | |
|             let gpu_preprocessing_support =
 | |
|                 render_app.world().resource::<GpuPreprocessingSupport>();
 | |
|             let use_gpu_instance_buffer_builder = self.use_gpu_instance_buffer_builder
 | |
|                 && *gpu_preprocessing_support != GpuPreprocessingSupport::None;
 | |
| 
 | |
|             let render_mesh_instances = RenderMeshInstances::new(use_gpu_instance_buffer_builder);
 | |
|             render_app.insert_resource(render_mesh_instances);
 | |
| 
 | |
|             if use_gpu_instance_buffer_builder {
 | |
|                 render_app
 | |
|                     .init_resource::<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>()
 | |
|                     .init_resource::<RenderMeshInstanceGpuQueues>()
 | |
|                     .add_systems(
 | |
|                         ExtractSchedule,
 | |
|                         extract_meshes_for_gpu_building.in_set(ExtractMeshesSet),
 | |
|                     )
 | |
|                     .add_systems(
 | |
|                         Render,
 | |
|                         (
 | |
|                             gpu_preprocessing::write_batched_instance_buffers::<MeshPipeline>
 | |
|                                 .in_set(RenderSet::PrepareResourcesFlush),
 | |
|                             gpu_preprocessing::delete_old_work_item_buffers::<MeshPipeline>
 | |
|                                 .in_set(RenderSet::ManageViews)
 | |
|                                 .after(prepare_view_targets),
 | |
|                             collect_meshes_for_gpu_building
 | |
|                                 .in_set(RenderSet::PrepareAssets)
 | |
|                                 .after(allocator::allocate_and_free_meshes),
 | |
|                         ),
 | |
|                     );
 | |
|             } else {
 | |
|                 let render_device = render_app.world().resource::<RenderDevice>();
 | |
|                 let cpu_batched_instance_buffer =
 | |
|                     no_gpu_preprocessing::BatchedInstanceBuffer::<MeshUniform>::new(render_device);
 | |
|                 render_app
 | |
|                     .insert_resource(cpu_batched_instance_buffer)
 | |
|                     .add_systems(
 | |
|                         ExtractSchedule,
 | |
|                         extract_meshes_for_cpu_building.in_set(ExtractMeshesSet),
 | |
|                     )
 | |
|                     .add_systems(
 | |
|                         Render,
 | |
|                         no_gpu_preprocessing::write_batched_instance_buffer::<MeshPipeline>
 | |
|                             .in_set(RenderSet::PrepareResourcesFlush),
 | |
|                     );
 | |
|             };
 | |
| 
 | |
|             let render_device = render_app.world().resource::<RenderDevice>();
 | |
|             if let Some(per_object_buffer_batch_size) =
 | |
|                 GpuArrayBuffer::<MeshUniform>::batch_size(render_device)
 | |
|             {
 | |
|                 mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
 | |
|                     "PER_OBJECT_BUFFER_BATCH_SIZE".into(),
 | |
|                     per_object_buffer_batch_size,
 | |
|                 ));
 | |
|             }
 | |
| 
 | |
|             render_app
 | |
|                 .init_resource::<MeshPipelineViewLayouts>()
 | |
|                 .init_resource::<MeshPipeline>();
 | |
|         }
 | |
| 
 | |
|         // Load the mesh_bindings shader module here as it depends on runtime information about
 | |
|         // whether storage buffers are supported, or the maximum uniform buffer binding size.
 | |
|         load_internal_asset!(
 | |
|             app,
 | |
|             MESH_BINDINGS_HANDLE,
 | |
|             "mesh_bindings.wgsl",
 | |
|             Shader::from_wgsl_with_defs,
 | |
|             mesh_bindings_shader_defs
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[derive(Component)]
 | |
| pub struct MeshTransforms {
 | |
|     pub world_from_local: Affine3,
 | |
|     pub previous_world_from_local: Affine3,
 | |
|     pub flags: u32,
 | |
| }
 | |
| 
 | |
| #[derive(ShaderType, Clone)]
 | |
| pub struct MeshUniform {
 | |
|     // Affine 4x3 matrices transposed to 3x4
 | |
|     pub world_from_local: [Vec4; 3],
 | |
|     pub previous_world_from_local: [Vec4; 3],
 | |
|     // 3x3 matrix packed in mat2x4 and f32 as:
 | |
|     //   [0].xyz, [1].x,
 | |
|     //   [1].yz, [2].xy
 | |
|     //   [2].z
 | |
|     pub local_from_world_transpose_a: [Vec4; 2],
 | |
|     pub local_from_world_transpose_b: f32,
 | |
|     pub flags: u32,
 | |
|     // Four 16-bit unsigned normalized UV values packed into a `UVec2`:
 | |
|     //
 | |
|     //                         <--- MSB                   LSB --->
 | |
|     //                         +---- min v ----+ +---- min u ----+
 | |
|     //     lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
 | |
|     //                         +---- max v ----+ +---- max u ----+
 | |
|     //     lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
 | |
|     //
 | |
|     // (MSB: most significant bit; LSB: least significant bit.)
 | |
|     pub lightmap_uv_rect: UVec2,
 | |
|     /// The index of this mesh's first vertex in the vertex buffer.
 | |
|     ///
 | |
|     /// Multiple meshes can be packed into a single vertex buffer (see
 | |
|     /// [`MeshAllocator`]). This value stores the offset of the first vertex in
 | |
|     /// this mesh in that buffer.
 | |
|     pub first_vertex_index: u32,
 | |
|     /// Padding.
 | |
|     pub pad_a: u32,
 | |
|     /// Padding.
 | |
|     pub pad_b: u32,
 | |
|     /// Padding.
 | |
|     pub pad_c: u32,
 | |
| }
 | |
| 
 | |
| /// Information that has to be transferred from CPU to GPU in order to produce
 | |
| /// the full [`MeshUniform`].
 | |
| ///
 | |
| /// This is essentially a subset of the fields in [`MeshUniform`] above.
 | |
| #[derive(ShaderType, Pod, Zeroable, Clone, Copy)]
 | |
| #[repr(C)]
 | |
| pub struct MeshInputUniform {
 | |
|     /// Affine 4x3 matrix transposed to 3x4.
 | |
|     pub world_from_local: [Vec4; 3],
 | |
|     /// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
 | |
|     ///
 | |
|     /// ```text
 | |
|     ///                         <--- MSB                   LSB --->
 | |
|     ///                         +---- min v ----+ +---- min u ----+
 | |
|     ///     lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
 | |
|     ///                         +---- max v ----+ +---- max u ----+
 | |
|     ///     lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
 | |
|     ///
 | |
|     /// (MSB: most significant bit; LSB: least significant bit.)
 | |
|     /// ```
 | |
|     pub lightmap_uv_rect: UVec2,
 | |
|     /// Various [`MeshFlags`].
 | |
|     pub flags: u32,
 | |
|     /// The index of this mesh's [`MeshInputUniform`] in the previous frame's
 | |
|     /// buffer, if applicable.
 | |
|     ///
 | |
|     /// This is used for TAA. If not present, this will be `u32::MAX`.
 | |
|     pub previous_input_index: u32,
 | |
|     /// The index of this mesh's first vertex in the vertex buffer.
 | |
|     ///
 | |
|     /// Multiple meshes can be packed into a single vertex buffer (see
 | |
|     /// [`MeshAllocator`]). This value stores the offset of the first vertex in
 | |
|     /// this mesh in that buffer.
 | |
|     pub first_vertex_index: u32,
 | |
|     /// Padding.
 | |
|     pub pad_a: u32,
 | |
|     /// Padding.
 | |
|     pub pad_b: u32,
 | |
|     /// Padding.
 | |
|     pub pad_c: u32,
 | |
| }
 | |
| 
 | |
| /// Information about each mesh instance needed to cull it on GPU.
 | |
| ///
 | |
| /// This consists of its axis-aligned bounding box (AABB).
 | |
| #[derive(ShaderType, Pod, Zeroable, Clone, Copy)]
 | |
| #[repr(C)]
 | |
| pub struct MeshCullingData {
 | |
|     /// The 3D center of the AABB in model space, padded with an extra unused
 | |
|     /// float value.
 | |
|     pub aabb_center: Vec4,
 | |
|     /// The 3D extents of the AABB in model space, divided by two, padded with
 | |
|     /// an extra unused float value.
 | |
|     pub aabb_half_extents: Vec4,
 | |
| }
 | |
| 
 | |
| /// A GPU buffer that holds the information needed to cull meshes on GPU.
 | |
| ///
 | |
| /// At the moment, this simply holds each mesh's AABB.
 | |
| ///
 | |
| /// To avoid wasting CPU time in the CPU culling case, this buffer will be empty
 | |
| /// if GPU culling isn't in use.
 | |
| #[derive(Resource, Deref, DerefMut)]
 | |
| pub struct MeshCullingDataBuffer(RawBufferVec<MeshCullingData>);
 | |
| 
 | |
| impl MeshUniform {
 | |
|     pub fn new(
 | |
|         mesh_transforms: &MeshTransforms,
 | |
|         first_vertex_index: u32,
 | |
|         maybe_lightmap_uv_rect: Option<Rect>,
 | |
|     ) -> Self {
 | |
|         let (local_from_world_transpose_a, local_from_world_transpose_b) =
 | |
|             mesh_transforms.world_from_local.inverse_transpose_3x3();
 | |
|         Self {
 | |
|             world_from_local: mesh_transforms.world_from_local.to_transpose(),
 | |
|             previous_world_from_local: mesh_transforms.previous_world_from_local.to_transpose(),
 | |
|             lightmap_uv_rect: pack_lightmap_uv_rect(maybe_lightmap_uv_rect),
 | |
|             local_from_world_transpose_a,
 | |
|             local_from_world_transpose_b,
 | |
|             flags: mesh_transforms.flags,
 | |
|             first_vertex_index,
 | |
|             pad_a: 0,
 | |
|             pad_b: 0,
 | |
|             pad_c: 0,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_types.wgsl!
 | |
| bitflags::bitflags! {
 | |
|     /// Various flags and tightly-packed values on a mesh.
 | |
|     ///
 | |
|     /// Flags grow from the top bit down; other values grow from the bottom bit
 | |
|     /// up.
 | |
|     #[repr(transparent)]
 | |
|     pub struct MeshFlags: u32 {
 | |
|         /// Bitmask for the 16-bit index into the LOD array.
 | |
|         ///
 | |
|         /// This will be `u16::MAX` if this mesh has no LOD.
 | |
|         const LOD_INDEX_MASK              = (1 << 16) - 1;
 | |
|         const SHADOW_RECEIVER             = 1 << 29;
 | |
|         const TRANSMITTED_SHADOW_RECEIVER = 1 << 30;
 | |
|         // Indicates the sign of the determinant of the 3x3 model matrix. If the sign is positive,
 | |
|         // then the flag should be set, else it should not be set.
 | |
|         const SIGN_DETERMINANT_MODEL_3X3  = 1 << 31;
 | |
|         const NONE                        = 0;
 | |
|         const UNINITIALIZED               = 0xFFFFFFFF;
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl MeshFlags {
 | |
|     fn from_components(
 | |
|         transform: &GlobalTransform,
 | |
|         lod_index: Option<NonMaxU16>,
 | |
|         not_shadow_receiver: bool,
 | |
|         transmitted_receiver: bool,
 | |
|     ) -> MeshFlags {
 | |
|         let mut mesh_flags = if not_shadow_receiver {
 | |
|             MeshFlags::empty()
 | |
|         } else {
 | |
|             MeshFlags::SHADOW_RECEIVER
 | |
|         };
 | |
|         if transmitted_receiver {
 | |
|             mesh_flags |= MeshFlags::TRANSMITTED_SHADOW_RECEIVER;
 | |
|         }
 | |
|         if transform.affine().matrix3.determinant().is_sign_positive() {
 | |
|             mesh_flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
 | |
|         }
 | |
| 
 | |
|         let lod_index_bits = match lod_index {
 | |
|             None => u16::MAX,
 | |
|             Some(lod_index) => u16::from(lod_index),
 | |
|         };
 | |
|         mesh_flags |=
 | |
|             MeshFlags::from_bits_retain((lod_index_bits as u32) << MeshFlags::LOD_INDEX_SHIFT);
 | |
| 
 | |
|         mesh_flags
 | |
|     }
 | |
| 
 | |
|     /// The first bit of the LOD index.
 | |
|     pub const LOD_INDEX_SHIFT: u32 = 0;
 | |
| }
 | |
| 
 | |
| bitflags::bitflags! {
 | |
|     /// Various useful flags for [`RenderMeshInstance`]s.
 | |
|     #[derive(Clone, Copy)]
 | |
|     pub struct RenderMeshInstanceFlags: u8 {
 | |
|         /// The mesh casts shadows.
 | |
|         const SHADOW_CASTER           = 1 << 0;
 | |
|         /// The mesh can participate in automatic batching.
 | |
|         const AUTOMATIC_BATCHING      = 1 << 1;
 | |
|         /// The mesh had a transform last frame and so is eligible for motion
 | |
|         /// vector computation.
 | |
|         const HAS_PREVIOUS_TRANSFORM  = 1 << 2;
 | |
|         /// The mesh had a skin last frame and so that skin should be taken into
 | |
|         /// account for motion vector computation.
 | |
|         const HAS_PREVIOUS_SKIN       = 1 << 3;
 | |
|         /// The mesh had morph targets last frame and so they should be taken
 | |
|         /// into account for motion vector computation.
 | |
|         const HAS_PREVIOUS_MORPH      = 1 << 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// CPU data that the render world keeps for each entity, when *not* using GPU
 | |
| /// mesh uniform building.
 | |
| #[derive(Deref, DerefMut)]
 | |
| pub struct RenderMeshInstanceCpu {
 | |
|     /// Data shared between both the CPU mesh uniform building and the GPU mesh
 | |
|     /// uniform building paths.
 | |
|     #[deref]
 | |
|     pub shared: RenderMeshInstanceShared,
 | |
|     /// The transform of the mesh.
 | |
|     ///
 | |
|     /// This will be written into the [`MeshUniform`] at the appropriate time.
 | |
|     pub transforms: MeshTransforms,
 | |
| }
 | |
| 
 | |
| /// CPU data that the render world needs to keep for each entity that contains a
 | |
| /// mesh when using GPU mesh uniform building.
 | |
| #[derive(Deref, DerefMut)]
 | |
| pub struct RenderMeshInstanceGpu {
 | |
|     /// Data shared between both the CPU mesh uniform building and the GPU mesh
 | |
|     /// uniform building paths.
 | |
|     #[deref]
 | |
|     pub shared: RenderMeshInstanceShared,
 | |
|     /// The translation of the mesh.
 | |
|     ///
 | |
|     /// This is the only part of the transform that we have to keep on CPU (for
 | |
|     /// distance sorting).
 | |
|     pub translation: Vec3,
 | |
|     /// The index of the [`MeshInputUniform`] in the buffer.
 | |
|     pub current_uniform_index: NonMaxU32,
 | |
| }
 | |
| 
 | |
| /// CPU data that the render world needs to keep about each entity that contains
 | |
| /// a mesh.
 | |
| pub struct RenderMeshInstanceShared {
 | |
|     /// The [`AssetId`] of the mesh.
 | |
|     pub mesh_asset_id: AssetId<Mesh>,
 | |
|     /// A slot for the material bind group ID.
 | |
|     ///
 | |
|     /// This is filled in during [`crate::material::queue_material_meshes`].
 | |
|     pub material_bind_group_id: AtomicMaterialBindGroupId,
 | |
|     /// Various flags.
 | |
|     pub flags: RenderMeshInstanceFlags,
 | |
| }
 | |
| 
 | |
| /// Information that is gathered during the parallel portion of mesh extraction
 | |
| /// when GPU mesh uniform building is enabled.
 | |
| ///
 | |
| /// From this, the [`MeshInputUniform`] and [`RenderMeshInstanceGpu`] are
 | |
| /// prepared.
 | |
| pub struct RenderMeshInstanceGpuBuilder {
 | |
|     /// Data that will be placed on the [`RenderMeshInstanceGpu`].
 | |
|     pub shared: RenderMeshInstanceShared,
 | |
|     /// The current transform.
 | |
|     pub world_from_local: Affine3,
 | |
|     /// Four 16-bit unsigned normalized UV values packed into a [`UVec2`]:
 | |
|     ///
 | |
|     /// ```text
 | |
|     ///                         <--- MSB                   LSB --->
 | |
|     ///                         +---- min v ----+ +---- min u ----+
 | |
|     ///     lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
 | |
|     ///                         +---- max v ----+ +---- max u ----+
 | |
|     ///     lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
 | |
|     ///
 | |
|     /// (MSB: most significant bit; LSB: least significant bit.)
 | |
|     /// ```
 | |
|     pub lightmap_uv_rect: UVec2,
 | |
|     /// The index of the previous mesh input.
 | |
|     pub previous_input_index: Option<NonMaxU32>,
 | |
|     /// Various flags.
 | |
|     pub mesh_flags: MeshFlags,
 | |
| }
 | |
| 
 | |
| /// The per-thread queues used during [`extract_meshes_for_gpu_building`].
 | |
| ///
 | |
| /// There are two varieties of these: one for when culling happens on CPU and
 | |
| /// one for when culling happens on GPU. Having the two varieties avoids wasting
 | |
| /// space if GPU culling is disabled.
 | |
| #[derive(Default)]
 | |
| pub enum RenderMeshInstanceGpuQueue {
 | |
|     /// The default value.
 | |
|     ///
 | |
|     /// This becomes [`RenderMeshInstanceGpuQueue::CpuCulling`] or
 | |
|     /// [`RenderMeshInstanceGpuQueue::GpuCulling`] once extraction starts.
 | |
|     #[default]
 | |
|     None,
 | |
|     /// The version of [`RenderMeshInstanceGpuQueue`] that omits the
 | |
|     /// [`MeshCullingData`], so that we don't waste space when GPU
 | |
|     /// culling is disabled.
 | |
|     CpuCulling(Vec<(Entity, RenderMeshInstanceGpuBuilder)>),
 | |
|     /// The version of [`RenderMeshInstanceGpuQueue`] that contains the
 | |
|     /// [`MeshCullingData`], used when any view has GPU culling
 | |
|     /// enabled.
 | |
|     GpuCulling(Vec<(Entity, RenderMeshInstanceGpuBuilder, MeshCullingData)>),
 | |
| }
 | |
| 
 | |
| /// The per-thread queues containing mesh instances, populated during the
 | |
| /// extract phase.
 | |
| ///
 | |
| /// These are filled in [`extract_meshes_for_gpu_building`] and consumed in
 | |
| /// [`collect_meshes_for_gpu_building`].
 | |
| #[derive(Resource, Default, Deref, DerefMut)]
 | |
| pub struct RenderMeshInstanceGpuQueues(Parallel<RenderMeshInstanceGpuQueue>);
 | |
| 
 | |
| impl RenderMeshInstanceShared {
 | |
|     fn from_components(
 | |
|         previous_transform: Option<&PreviousGlobalTransform>,
 | |
|         handle: &Handle<Mesh>,
 | |
|         not_shadow_caster: bool,
 | |
|         no_automatic_batching: bool,
 | |
|     ) -> Self {
 | |
|         let mut mesh_instance_flags = RenderMeshInstanceFlags::empty();
 | |
|         mesh_instance_flags.set(RenderMeshInstanceFlags::SHADOW_CASTER, !not_shadow_caster);
 | |
|         mesh_instance_flags.set(
 | |
|             RenderMeshInstanceFlags::AUTOMATIC_BATCHING,
 | |
|             !no_automatic_batching,
 | |
|         );
 | |
|         mesh_instance_flags.set(
 | |
|             RenderMeshInstanceFlags::HAS_PREVIOUS_TRANSFORM,
 | |
|             previous_transform.is_some(),
 | |
|         );
 | |
| 
 | |
|         RenderMeshInstanceShared {
 | |
|             mesh_asset_id: handle.id(),
 | |
| 
 | |
|             flags: mesh_instance_flags,
 | |
|             material_bind_group_id: AtomicMaterialBindGroupId::default(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns true if this entity is eligible to participate in automatic
 | |
|     /// batching.
 | |
|     #[inline]
 | |
|     pub fn should_batch(&self) -> bool {
 | |
|         self.flags
 | |
|             .contains(RenderMeshInstanceFlags::AUTOMATIC_BATCHING)
 | |
|             && self.material_bind_group_id.get().is_some()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Information that the render world keeps about each entity that contains a
 | |
| /// mesh.
 | |
| ///
 | |
| /// The set of information needed is different depending on whether CPU or GPU
 | |
| /// [`MeshUniform`] building is in use.
 | |
| #[derive(Resource)]
 | |
| pub enum RenderMeshInstances {
 | |
|     /// Information needed when using CPU mesh instance data building.
 | |
|     CpuBuilding(RenderMeshInstancesCpu),
 | |
|     /// Information needed when using GPU mesh instance data building.
 | |
|     GpuBuilding(RenderMeshInstancesGpu),
 | |
| }
 | |
| 
 | |
| /// Information that the render world keeps about each entity that contains a
 | |
| /// mesh, when using CPU mesh instance data building.
 | |
| #[derive(Default, Deref, DerefMut)]
 | |
| pub struct RenderMeshInstancesCpu(EntityHashMap<RenderMeshInstanceCpu>);
 | |
| 
 | |
| /// Information that the render world keeps about each entity that contains a
 | |
| /// mesh, when using GPU mesh instance data building.
 | |
| #[derive(Default, Deref, DerefMut)]
 | |
| pub struct RenderMeshInstancesGpu(EntityHashMap<RenderMeshInstanceGpu>);
 | |
| 
 | |
| impl RenderMeshInstances {
 | |
|     /// Creates a new [`RenderMeshInstances`] instance.
 | |
|     fn new(use_gpu_instance_buffer_builder: bool) -> RenderMeshInstances {
 | |
|         if use_gpu_instance_buffer_builder {
 | |
|             RenderMeshInstances::GpuBuilding(RenderMeshInstancesGpu::default())
 | |
|         } else {
 | |
|             RenderMeshInstances::CpuBuilding(RenderMeshInstancesCpu::default())
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns the ID of the mesh asset attached to the given entity, if any.
 | |
|     pub(crate) fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
 | |
|         match *self {
 | |
|             RenderMeshInstances::CpuBuilding(ref instances) => instances.mesh_asset_id(entity),
 | |
|             RenderMeshInstances::GpuBuilding(ref instances) => instances.mesh_asset_id(entity),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Constructs [`RenderMeshQueueData`] for the given entity, if it has a
 | |
|     /// mesh attached.
 | |
|     pub fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
 | |
|         match *self {
 | |
|             RenderMeshInstances::CpuBuilding(ref instances) => {
 | |
|                 instances.render_mesh_queue_data(entity)
 | |
|             }
 | |
|             RenderMeshInstances::GpuBuilding(ref instances) => {
 | |
|                 instances.render_mesh_queue_data(entity)
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Inserts the given flags into the CPU or GPU render mesh instance data
 | |
|     /// for the given mesh as appropriate.
 | |
|     fn insert_mesh_instance_flags(&mut self, entity: Entity, flags: RenderMeshInstanceFlags) {
 | |
|         match *self {
 | |
|             RenderMeshInstances::CpuBuilding(ref mut instances) => {
 | |
|                 instances.insert_mesh_instance_flags(entity, flags);
 | |
|             }
 | |
|             RenderMeshInstances::GpuBuilding(ref mut instances) => {
 | |
|                 instances.insert_mesh_instance_flags(entity, flags);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl RenderMeshInstancesCpu {
 | |
|     fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
 | |
|         self.get(&entity)
 | |
|             .map(|render_mesh_instance| render_mesh_instance.mesh_asset_id)
 | |
|     }
 | |
| 
 | |
|     fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
 | |
|         self.get(&entity)
 | |
|             .map(|render_mesh_instance| RenderMeshQueueData {
 | |
|                 shared: &render_mesh_instance.shared,
 | |
|                 translation: render_mesh_instance.transforms.world_from_local.translation,
 | |
|             })
 | |
|     }
 | |
| 
 | |
|     /// Inserts the given flags into the render mesh instance data for the given
 | |
|     /// mesh.
 | |
|     fn insert_mesh_instance_flags(&mut self, entity: Entity, flags: RenderMeshInstanceFlags) {
 | |
|         if let Some(instance) = self.get_mut(&entity) {
 | |
|             instance.flags.insert(flags);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl RenderMeshInstancesGpu {
 | |
|     fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
 | |
|         self.get(&entity)
 | |
|             .map(|render_mesh_instance| render_mesh_instance.mesh_asset_id)
 | |
|     }
 | |
| 
 | |
|     fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
 | |
|         self.get(&entity)
 | |
|             .map(|render_mesh_instance| RenderMeshQueueData {
 | |
|                 shared: &render_mesh_instance.shared,
 | |
|                 translation: render_mesh_instance.translation,
 | |
|             })
 | |
|     }
 | |
| 
 | |
|     /// Inserts the given flags into the render mesh instance data for the given
 | |
|     /// mesh.
 | |
|     fn insert_mesh_instance_flags(&mut self, entity: Entity, flags: RenderMeshInstanceFlags) {
 | |
|         if let Some(instance) = self.get_mut(&entity) {
 | |
|             instance.flags.insert(flags);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl RenderMeshInstanceGpuQueue {
 | |
|     /// Clears out a [`RenderMeshInstanceGpuQueue`], creating or recreating it
 | |
|     /// as necessary.
 | |
|     ///
 | |
|     /// `any_gpu_culling` should be set to true if any view has GPU culling
 | |
|     /// enabled.
 | |
|     fn init(&mut self, any_gpu_culling: bool) {
 | |
|         match (any_gpu_culling, &mut *self) {
 | |
|             (true, RenderMeshInstanceGpuQueue::GpuCulling(queue)) => queue.clear(),
 | |
|             (true, _) => *self = RenderMeshInstanceGpuQueue::GpuCulling(vec![]),
 | |
|             (false, RenderMeshInstanceGpuQueue::CpuCulling(queue)) => queue.clear(),
 | |
|             (false, _) => *self = RenderMeshInstanceGpuQueue::CpuCulling(vec![]),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Adds a new mesh to this queue.
 | |
|     fn push(
 | |
|         &mut self,
 | |
|         entity: Entity,
 | |
|         instance_builder: RenderMeshInstanceGpuBuilder,
 | |
|         culling_data_builder: Option<MeshCullingData>,
 | |
|     ) {
 | |
|         match (&mut *self, culling_data_builder) {
 | |
|             (&mut RenderMeshInstanceGpuQueue::CpuCulling(ref mut queue), None) => {
 | |
|                 queue.push((entity, instance_builder));
 | |
|             }
 | |
|             (
 | |
|                 &mut RenderMeshInstanceGpuQueue::GpuCulling(ref mut queue),
 | |
|                 Some(culling_data_builder),
 | |
|             ) => {
 | |
|                 queue.push((entity, instance_builder, culling_data_builder));
 | |
|             }
 | |
|             (_, None) => {
 | |
|                 *self = RenderMeshInstanceGpuQueue::CpuCulling(vec![(entity, instance_builder)]);
 | |
|             }
 | |
|             (_, Some(culling_data_builder)) => {
 | |
|                 *self = RenderMeshInstanceGpuQueue::GpuCulling(vec![(
 | |
|                     entity,
 | |
|                     instance_builder,
 | |
|                     culling_data_builder,
 | |
|                 )]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl RenderMeshInstanceGpuBuilder {
 | |
|     /// Flushes this mesh instance to the [`RenderMeshInstanceGpu`] and
 | |
|     /// [`MeshInputUniform`] tables.
 | |
|     fn add_to(
 | |
|         self,
 | |
|         entity: Entity,
 | |
|         render_mesh_instances: &mut EntityHashMap<RenderMeshInstanceGpu>,
 | |
|         current_input_buffer: &mut RawBufferVec<MeshInputUniform>,
 | |
|         mesh_allocator: &MeshAllocator,
 | |
|     ) -> usize {
 | |
|         let first_vertex_index = match mesh_allocator.mesh_vertex_slice(&self.shared.mesh_asset_id)
 | |
|         {
 | |
|             Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
 | |
|             None => 0,
 | |
|         };
 | |
| 
 | |
|         // Push the mesh input uniform.
 | |
|         let current_uniform_index = current_input_buffer.push(MeshInputUniform {
 | |
|             world_from_local: self.world_from_local.to_transpose(),
 | |
|             lightmap_uv_rect: self.lightmap_uv_rect,
 | |
|             flags: self.mesh_flags.bits(),
 | |
|             previous_input_index: match self.previous_input_index {
 | |
|                 Some(previous_input_index) => previous_input_index.into(),
 | |
|                 None => u32::MAX,
 | |
|             },
 | |
|             first_vertex_index,
 | |
|             pad_a: 0,
 | |
|             pad_b: 0,
 | |
|             pad_c: 0,
 | |
|         });
 | |
| 
 | |
|         // Record the [`RenderMeshInstance`].
 | |
|         render_mesh_instances.insert(
 | |
|             entity,
 | |
|             RenderMeshInstanceGpu {
 | |
|                 translation: self.world_from_local.translation,
 | |
|                 shared: self.shared,
 | |
|                 current_uniform_index: (current_uniform_index as u32)
 | |
|                     .try_into()
 | |
|                     .unwrap_or_default(),
 | |
|             },
 | |
|         );
 | |
| 
 | |
|         current_uniform_index
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl MeshCullingData {
 | |
|     /// Returns a new [`MeshCullingData`] initialized with the given AABB.
 | |
|     ///
 | |
|     /// If no AABB is provided, an infinitely-large one is conservatively
 | |
|     /// chosen.
 | |
|     fn new(aabb: Option<&Aabb>) -> Self {
 | |
|         match aabb {
 | |
|             Some(aabb) => MeshCullingData {
 | |
|                 aabb_center: aabb.center.extend(0.0),
 | |
|                 aabb_half_extents: aabb.half_extents.extend(0.0),
 | |
|             },
 | |
|             None => MeshCullingData {
 | |
|                 aabb_center: Vec3::ZERO.extend(0.0),
 | |
|                 aabb_half_extents: Vec3::INFINITY.extend(0.0),
 | |
|             },
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Flushes this mesh instance culling data to the
 | |
|     /// [`MeshCullingDataBuffer`].
 | |
|     fn add_to(&self, mesh_culling_data_buffer: &mut MeshCullingDataBuffer) -> usize {
 | |
|         mesh_culling_data_buffer.push(*self)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Default for MeshCullingDataBuffer {
 | |
|     #[inline]
 | |
|     fn default() -> Self {
 | |
|         Self(RawBufferVec::new(BufferUsages::STORAGE))
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Data that [`crate::material::queue_material_meshes`] and similar systems
 | |
| /// need in order to place entities that contain meshes in the right batch.
 | |
| #[derive(Deref)]
 | |
| pub struct RenderMeshQueueData<'a> {
 | |
|     /// General information about the mesh instance.
 | |
|     #[deref]
 | |
|     pub shared: &'a RenderMeshInstanceShared,
 | |
|     /// The translation of the mesh instance.
 | |
|     pub translation: Vec3,
 | |
| }
 | |
| 
 | |
| /// A [`SystemSet`] that encompasses both [`extract_meshes_for_cpu_building`]
 | |
| /// and [`extract_meshes_for_gpu_building`].
 | |
| #[derive(SystemSet, Clone, PartialEq, Eq, Debug, Hash)]
 | |
| pub struct ExtractMeshesSet;
 | |
| 
 | |
| /// Extracts meshes from the main world into the render world, populating the
 | |
| /// [`RenderMeshInstances`].
 | |
| ///
 | |
| /// This is the variant of the system that runs when we're *not* using GPU
 | |
| /// [`MeshUniform`] building.
 | |
| pub fn extract_meshes_for_cpu_building(
 | |
|     mut render_mesh_instances: ResMut<RenderMeshInstances>,
 | |
|     render_visibility_ranges: Res<RenderVisibilityRanges>,
 | |
|     mut render_mesh_instance_queues: Local<Parallel<Vec<(Entity, RenderMeshInstanceCpu)>>>,
 | |
|     meshes_query: Extract<
 | |
|         Query<(
 | |
|             Entity,
 | |
|             &ViewVisibility,
 | |
|             &GlobalTransform,
 | |
|             Option<&PreviousGlobalTransform>,
 | |
|             &Handle<Mesh>,
 | |
|             Has<NotShadowReceiver>,
 | |
|             Has<TransmittedShadowReceiver>,
 | |
|             Has<NotShadowCaster>,
 | |
|             Has<NoAutomaticBatching>,
 | |
|             Has<VisibilityRange>,
 | |
|         )>,
 | |
|     >,
 | |
| ) {
 | |
|     meshes_query.par_iter().for_each_init(
 | |
|         || render_mesh_instance_queues.borrow_local_mut(),
 | |
|         |queue,
 | |
|          (
 | |
|             entity,
 | |
|             view_visibility,
 | |
|             transform,
 | |
|             previous_transform,
 | |
|             handle,
 | |
|             not_shadow_receiver,
 | |
|             transmitted_receiver,
 | |
|             not_shadow_caster,
 | |
|             no_automatic_batching,
 | |
|             visibility_range,
 | |
|         )| {
 | |
|             if !view_visibility.get() {
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             let mut lod_index = None;
 | |
|             if visibility_range {
 | |
|                 lod_index = render_visibility_ranges.lod_index_for_entity(entity);
 | |
|             }
 | |
| 
 | |
|             let mesh_flags = MeshFlags::from_components(
 | |
|                 transform,
 | |
|                 lod_index,
 | |
|                 not_shadow_receiver,
 | |
|                 transmitted_receiver,
 | |
|             );
 | |
| 
 | |
|             let shared = RenderMeshInstanceShared::from_components(
 | |
|                 previous_transform,
 | |
|                 handle,
 | |
|                 not_shadow_caster,
 | |
|                 no_automatic_batching,
 | |
|             );
 | |
| 
 | |
|             let world_from_local = transform.affine();
 | |
|             queue.push((
 | |
|                 entity,
 | |
|                 RenderMeshInstanceCpu {
 | |
|                     transforms: MeshTransforms {
 | |
|                         world_from_local: (&world_from_local).into(),
 | |
|                         previous_world_from_local: (&previous_transform
 | |
|                             .map(|t| t.0)
 | |
|                             .unwrap_or(world_from_local))
 | |
|                             .into(),
 | |
|                         flags: mesh_flags.bits(),
 | |
|                     },
 | |
|                     shared,
 | |
|                 },
 | |
|             ));
 | |
|         },
 | |
|     );
 | |
| 
 | |
|     // Collect the render mesh instances.
 | |
|     let RenderMeshInstances::CpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
 | |
|     else {
 | |
|         panic!(
 | |
|             "`extract_meshes_for_cpu_building` should only be called if we're using CPU \
 | |
|             `MeshUniform` building"
 | |
|         );
 | |
|     };
 | |
| 
 | |
|     render_mesh_instances.clear();
 | |
|     for queue in render_mesh_instance_queues.iter_mut() {
 | |
|         for (entity, render_mesh_instance) in queue.drain(..) {
 | |
|             render_mesh_instances.insert_unique_unchecked(entity, render_mesh_instance);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Extracts meshes from the main world into the render world and queues
 | |
| /// [`MeshInputUniform`]s to be uploaded to the GPU.
 | |
| ///
 | |
| /// This is the variant of the system that runs when we're using GPU
 | |
| /// [`MeshUniform`] building.
 | |
| pub fn extract_meshes_for_gpu_building(
 | |
|     mut render_mesh_instances: ResMut<RenderMeshInstances>,
 | |
|     render_visibility_ranges: Res<RenderVisibilityRanges>,
 | |
|     mut render_mesh_instance_queues: ResMut<RenderMeshInstanceGpuQueues>,
 | |
|     meshes_query: Extract<
 | |
|         Query<(
 | |
|             Entity,
 | |
|             &ViewVisibility,
 | |
|             &GlobalTransform,
 | |
|             Option<&PreviousGlobalTransform>,
 | |
|             Option<&Lightmap>,
 | |
|             Option<&Aabb>,
 | |
|             &Handle<Mesh>,
 | |
|             Has<NotShadowReceiver>,
 | |
|             Has<TransmittedShadowReceiver>,
 | |
|             Has<NotShadowCaster>,
 | |
|             Has<NoAutomaticBatching>,
 | |
|             Has<VisibilityRange>,
 | |
|         )>,
 | |
|     >,
 | |
|     cameras_query: Extract<Query<(), (With<Camera>, With<GpuCulling>)>>,
 | |
| ) {
 | |
|     let any_gpu_culling = !cameras_query.is_empty();
 | |
|     for render_mesh_instance_queue in render_mesh_instance_queues.iter_mut() {
 | |
|         render_mesh_instance_queue.init(any_gpu_culling);
 | |
|     }
 | |
| 
 | |
|     // Collect render mesh instances. Build up the uniform buffer.
 | |
|     let RenderMeshInstances::GpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
 | |
|     else {
 | |
|         panic!(
 | |
|             "`extract_meshes_for_gpu_building` should only be called if we're \
 | |
|             using GPU `MeshUniform` building"
 | |
|         );
 | |
|     };
 | |
| 
 | |
|     meshes_query.par_iter().for_each_init(
 | |
|         || render_mesh_instance_queues.borrow_local_mut(),
 | |
|         |queue,
 | |
|          (
 | |
|             entity,
 | |
|             view_visibility,
 | |
|             transform,
 | |
|             previous_transform,
 | |
|             lightmap,
 | |
|             aabb,
 | |
|             handle,
 | |
|             not_shadow_receiver,
 | |
|             transmitted_receiver,
 | |
|             not_shadow_caster,
 | |
|             no_automatic_batching,
 | |
|             visibility_range,
 | |
|         )| {
 | |
|             if !view_visibility.get() {
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             let mut lod_index = None;
 | |
|             if visibility_range {
 | |
|                 lod_index = render_visibility_ranges.lod_index_for_entity(entity);
 | |
|             }
 | |
| 
 | |
|             let mesh_flags = MeshFlags::from_components(
 | |
|                 transform,
 | |
|                 lod_index,
 | |
|                 not_shadow_receiver,
 | |
|                 transmitted_receiver,
 | |
|             );
 | |
| 
 | |
|             let shared = RenderMeshInstanceShared::from_components(
 | |
|                 previous_transform,
 | |
|                 handle,
 | |
|                 not_shadow_caster,
 | |
|                 no_automatic_batching,
 | |
|             );
 | |
| 
 | |
|             let lightmap_uv_rect = pack_lightmap_uv_rect(lightmap.map(|lightmap| lightmap.uv_rect));
 | |
| 
 | |
|             let gpu_mesh_culling_data = any_gpu_culling.then(|| MeshCullingData::new(aabb));
 | |
| 
 | |
|             let previous_input_index = if shared
 | |
|                 .flags
 | |
|                 .contains(RenderMeshInstanceFlags::HAS_PREVIOUS_TRANSFORM)
 | |
|             {
 | |
|                 render_mesh_instances
 | |
|                     .get(&entity)
 | |
|                     .map(|render_mesh_instance| render_mesh_instance.current_uniform_index)
 | |
|             } else {
 | |
|                 None
 | |
|             };
 | |
| 
 | |
|             let gpu_mesh_instance_builder = RenderMeshInstanceGpuBuilder {
 | |
|                 shared,
 | |
|                 world_from_local: (&transform.affine()).into(),
 | |
|                 lightmap_uv_rect,
 | |
|                 mesh_flags,
 | |
|                 previous_input_index,
 | |
|             };
 | |
| 
 | |
|             queue.push(entity, gpu_mesh_instance_builder, gpu_mesh_culling_data);
 | |
|         },
 | |
|     );
 | |
| }
 | |
| 
 | |
| /// A system that sets the [`RenderMeshInstanceFlags`] for each mesh based on
 | |
| /// whether the previous frame had skins and/or morph targets.
 | |
| ///
 | |
| /// Ordinarily, [`RenderMeshInstanceFlags`] are set during the extraction phase.
 | |
| /// However, we can't do that for the flags related to skins and morph targets
 | |
| /// because the previous frame's skin and morph targets are the responsibility
 | |
| /// of [`extract_skins`] and [`extract_morphs`] respectively. We want to run
 | |
| /// those systems in parallel with mesh extraction for performance, so we need
 | |
| /// to defer setting of these mesh instance flags to after extraction, which
 | |
| /// this system does. An alternative to having skin- and morph-target-related
 | |
| /// data in [`RenderMeshInstanceFlags`] would be to have
 | |
| /// [`crate::material::queue_material_meshes`] check the skin and morph target
 | |
| /// tables for each mesh, but that would be too slow in the hot mesh queuing
 | |
| /// loop.
 | |
| fn set_mesh_motion_vector_flags(
 | |
|     mut render_mesh_instances: ResMut<RenderMeshInstances>,
 | |
|     skin_indices: Res<SkinIndices>,
 | |
|     morph_indices: Res<MorphIndices>,
 | |
| ) {
 | |
|     for &entity in skin_indices.prev.keys() {
 | |
|         render_mesh_instances
 | |
|             .insert_mesh_instance_flags(entity, RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN);
 | |
|     }
 | |
|     for &entity in morph_indices.prev.keys() {
 | |
|         render_mesh_instances
 | |
|             .insert_mesh_instance_flags(entity, RenderMeshInstanceFlags::HAS_PREVIOUS_MORPH);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Creates the [`RenderMeshInstanceGpu`]s and [`MeshInputUniform`]s when GPU
 | |
| /// mesh uniforms are built.
 | |
| pub fn collect_meshes_for_gpu_building(
 | |
|     render_mesh_instances: ResMut<RenderMeshInstances>,
 | |
|     batched_instance_buffers: ResMut<
 | |
|         gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>,
 | |
|     >,
 | |
|     mut mesh_culling_data_buffer: ResMut<MeshCullingDataBuffer>,
 | |
|     mut render_mesh_instance_queues: ResMut<RenderMeshInstanceGpuQueues>,
 | |
|     mesh_allocator: Res<MeshAllocator>,
 | |
| ) {
 | |
|     let RenderMeshInstances::GpuBuilding(ref mut render_mesh_instances) =
 | |
|         render_mesh_instances.into_inner()
 | |
|     else {
 | |
|         return;
 | |
|     };
 | |
| 
 | |
|     // Collect render mesh instances. Build up the uniform buffer.
 | |
| 
 | |
|     let gpu_preprocessing::BatchedInstanceBuffers {
 | |
|         ref mut current_input_buffer,
 | |
|         ref mut previous_input_buffer,
 | |
|         ..
 | |
|     } = batched_instance_buffers.into_inner();
 | |
| 
 | |
|     // Swap buffers.
 | |
|     mem::swap(current_input_buffer, previous_input_buffer);
 | |
| 
 | |
|     // Build the [`RenderMeshInstance`]s and [`MeshInputUniform`]s.
 | |
|     render_mesh_instances.clear();
 | |
| 
 | |
|     for queue in render_mesh_instance_queues.iter_mut() {
 | |
|         match *queue {
 | |
|             RenderMeshInstanceGpuQueue::None => {
 | |
|                 // This can only happen if the queue is empty.
 | |
|             }
 | |
|             RenderMeshInstanceGpuQueue::CpuCulling(ref mut queue) => {
 | |
|                 for (entity, mesh_instance_builder) in queue.drain(..) {
 | |
|                     mesh_instance_builder.add_to(
 | |
|                         entity,
 | |
|                         &mut *render_mesh_instances,
 | |
|                         current_input_buffer,
 | |
|                         &mesh_allocator,
 | |
|                     );
 | |
|                 }
 | |
|             }
 | |
|             RenderMeshInstanceGpuQueue::GpuCulling(ref mut queue) => {
 | |
|                 for (entity, mesh_instance_builder, mesh_culling_builder) in queue.drain(..) {
 | |
|                     let instance_data_index = mesh_instance_builder.add_to(
 | |
|                         entity,
 | |
|                         &mut *render_mesh_instances,
 | |
|                         current_input_buffer,
 | |
|                         &mesh_allocator,
 | |
|                     );
 | |
|                     let culling_data_index =
 | |
|                         mesh_culling_builder.add_to(&mut mesh_culling_data_buffer);
 | |
|                     debug_assert_eq!(instance_data_index, culling_data_index);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// All data needed to construct a pipeline for rendering 3D meshes.
 | |
| #[derive(Resource, Clone)]
 | |
| pub struct MeshPipeline {
 | |
|     /// A reference to all the mesh pipeline view layouts.
 | |
|     pub view_layouts: MeshPipelineViewLayouts,
 | |
|     // This dummy white texture is to be used in place of optional StandardMaterial textures
 | |
|     pub dummy_white_gpu_image: GpuImage,
 | |
|     pub clustered_forward_buffer_binding_type: BufferBindingType,
 | |
|     pub mesh_layouts: MeshLayouts,
 | |
|     /// `MeshUniform`s are stored in arrays in buffers. If storage buffers are available, they
 | |
|     /// are used and this will be `None`, otherwise uniform buffers will be used with batches
 | |
|     /// of this many `MeshUniform`s, stored at dynamic offsets within the uniform buffer.
 | |
|     /// Use code like this in custom shaders:
 | |
|     /// ```wgsl
 | |
|     /// ##ifdef PER_OBJECT_BUFFER_BATCH_SIZE
 | |
|     /// @group(1) @binding(0) var<uniform> mesh: array<Mesh, #{PER_OBJECT_BUFFER_BATCH_SIZE}u>;
 | |
|     /// ##else
 | |
|     /// @group(1) @binding(0) var<storage> mesh: array<Mesh>;
 | |
|     /// ##endif // PER_OBJECT_BUFFER_BATCH_SIZE
 | |
|     /// ```
 | |
|     pub per_object_buffer_batch_size: Option<u32>,
 | |
| 
 | |
|     /// Whether binding arrays (a.k.a. bindless textures) are usable on the
 | |
|     /// current render device.
 | |
|     ///
 | |
|     /// This affects whether reflection probes can be used.
 | |
|     pub binding_arrays_are_usable: bool,
 | |
| }
 | |
| 
 | |
| impl FromWorld for MeshPipeline {
 | |
|     fn from_world(world: &mut World) -> Self {
 | |
|         let mut system_state: SystemState<(
 | |
|             Res<RenderDevice>,
 | |
|             Res<DefaultImageSampler>,
 | |
|             Res<RenderQueue>,
 | |
|             Res<MeshPipelineViewLayouts>,
 | |
|         )> = SystemState::new(world);
 | |
|         let (render_device, default_sampler, render_queue, view_layouts) =
 | |
|             system_state.get_mut(world);
 | |
| 
 | |
|         let clustered_forward_buffer_binding_type = render_device
 | |
|             .get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
 | |
| 
 | |
|         // A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
 | |
|         let dummy_white_gpu_image = {
 | |
|             let image = Image::default();
 | |
|             let texture = render_device.create_texture(&image.texture_descriptor);
 | |
|             let sampler = match image.sampler {
 | |
|                 ImageSampler::Default => (**default_sampler).clone(),
 | |
|                 ImageSampler::Descriptor(ref descriptor) => {
 | |
|                     render_device.create_sampler(&descriptor.as_wgpu())
 | |
|                 }
 | |
|             };
 | |
| 
 | |
|             let format_size = image.texture_descriptor.format.pixel_size();
 | |
|             render_queue.write_texture(
 | |
|                 texture.as_image_copy(),
 | |
|                 &image.data,
 | |
|                 ImageDataLayout {
 | |
|                     offset: 0,
 | |
|                     bytes_per_row: Some(image.width() * format_size as u32),
 | |
|                     rows_per_image: None,
 | |
|                 },
 | |
|                 image.texture_descriptor.size,
 | |
|             );
 | |
| 
 | |
|             let texture_view = texture.create_view(&TextureViewDescriptor::default());
 | |
|             GpuImage {
 | |
|                 texture,
 | |
|                 texture_view,
 | |
|                 texture_format: image.texture_descriptor.format,
 | |
|                 sampler,
 | |
|                 size: image.size(),
 | |
|                 mip_level_count: image.texture_descriptor.mip_level_count,
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         MeshPipeline {
 | |
|             view_layouts: view_layouts.clone(),
 | |
|             clustered_forward_buffer_binding_type,
 | |
|             dummy_white_gpu_image,
 | |
|             mesh_layouts: MeshLayouts::new(&render_device),
 | |
|             per_object_buffer_batch_size: GpuArrayBuffer::<MeshUniform>::batch_size(&render_device),
 | |
|             binding_arrays_are_usable: binding_arrays_are_usable(&render_device),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl MeshPipeline {
 | |
|     pub fn get_image_texture<'a>(
 | |
|         &'a self,
 | |
|         gpu_images: &'a RenderAssets<GpuImage>,
 | |
|         handle_option: &Option<Handle<Image>>,
 | |
|     ) -> Option<(&'a TextureView, &'a Sampler)> {
 | |
|         if let Some(handle) = handle_option {
 | |
|             let gpu_image = gpu_images.get(handle)?;
 | |
|             Some((&gpu_image.texture_view, &gpu_image.sampler))
 | |
|         } else {
 | |
|             Some((
 | |
|                 &self.dummy_white_gpu_image.texture_view,
 | |
|                 &self.dummy_white_gpu_image.sampler,
 | |
|             ))
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn get_view_layout(&self, layout_key: MeshPipelineViewLayoutKey) -> &BindGroupLayout {
 | |
|         self.view_layouts.get_view_layout(layout_key)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl GetBatchData for MeshPipeline {
 | |
|     type Param = (
 | |
|         SRes<RenderMeshInstances>,
 | |
|         SRes<RenderLightmaps>,
 | |
|         SRes<RenderAssets<RenderMesh>>,
 | |
|         SRes<MeshAllocator>,
 | |
|     );
 | |
|     // The material bind group ID, the mesh ID, and the lightmap ID,
 | |
|     // respectively.
 | |
|     type CompareData = (MaterialBindGroupId, AssetId<Mesh>, Option<AssetId<Image>>);
 | |
| 
 | |
|     type BufferData = MeshUniform;
 | |
| 
 | |
|     fn get_batch_data(
 | |
|         (mesh_instances, lightmaps, _, mesh_allocator): &SystemParamItem<Self::Param>,
 | |
|         entity: Entity,
 | |
|     ) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
 | |
|         let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
 | |
|             error!(
 | |
|                 "`get_batch_data` should never be called in GPU mesh uniform \
 | |
|                 building mode"
 | |
|             );
 | |
|             return None;
 | |
|         };
 | |
|         let mesh_instance = mesh_instances.get(&entity)?;
 | |
|         let first_vertex_index =
 | |
|             match mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id) {
 | |
|                 Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
 | |
|                 None => 0,
 | |
|             };
 | |
|         let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
 | |
| 
 | |
|         Some((
 | |
|             MeshUniform::new(
 | |
|                 &mesh_instance.transforms,
 | |
|                 first_vertex_index,
 | |
|                 maybe_lightmap.map(|lightmap| lightmap.uv_rect),
 | |
|             ),
 | |
|             mesh_instance.should_batch().then_some((
 | |
|                 mesh_instance.material_bind_group_id.get(),
 | |
|                 mesh_instance.mesh_asset_id,
 | |
|                 maybe_lightmap.map(|lightmap| lightmap.image),
 | |
|             )),
 | |
|         ))
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl GetFullBatchData for MeshPipeline {
 | |
|     type BufferInputData = MeshInputUniform;
 | |
| 
 | |
|     fn get_index_and_compare_data(
 | |
|         (mesh_instances, lightmaps, _, _): &SystemParamItem<Self::Param>,
 | |
|         entity: Entity,
 | |
|     ) -> Option<(NonMaxU32, Option<Self::CompareData>)> {
 | |
|         // This should only be called during GPU building.
 | |
|         let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
 | |
|             error!(
 | |
|                 "`get_index_and_compare_data` should never be called in CPU mesh uniform building \
 | |
|                 mode"
 | |
|             );
 | |
|             return None;
 | |
|         };
 | |
| 
 | |
|         let mesh_instance = mesh_instances.get(&entity)?;
 | |
|         let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
 | |
| 
 | |
|         Some((
 | |
|             mesh_instance.current_uniform_index,
 | |
|             mesh_instance.should_batch().then_some((
 | |
|                 mesh_instance.material_bind_group_id.get(),
 | |
|                 mesh_instance.mesh_asset_id,
 | |
|                 maybe_lightmap.map(|lightmap| lightmap.image),
 | |
|             )),
 | |
|         ))
 | |
|     }
 | |
| 
 | |
|     fn get_binned_batch_data(
 | |
|         (mesh_instances, lightmaps, _, mesh_allocator): &SystemParamItem<Self::Param>,
 | |
|         entity: Entity,
 | |
|     ) -> Option<Self::BufferData> {
 | |
|         let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
 | |
|             error!(
 | |
|                 "`get_binned_batch_data` should never be called in GPU mesh uniform building mode"
 | |
|             );
 | |
|             return None;
 | |
|         };
 | |
|         let mesh_instance = mesh_instances.get(&entity)?;
 | |
|         let first_vertex_index =
 | |
|             match mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id) {
 | |
|                 Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
 | |
|                 None => 0,
 | |
|             };
 | |
|         let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
 | |
| 
 | |
|         Some(MeshUniform::new(
 | |
|             &mesh_instance.transforms,
 | |
|             first_vertex_index,
 | |
|             maybe_lightmap.map(|lightmap| lightmap.uv_rect),
 | |
|         ))
 | |
|     }
 | |
| 
 | |
|     fn get_binned_index(
 | |
|         (mesh_instances, _, _, _): &SystemParamItem<Self::Param>,
 | |
|         entity: Entity,
 | |
|     ) -> Option<NonMaxU32> {
 | |
|         // This should only be called during GPU building.
 | |
|         let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
 | |
|             error!(
 | |
|                 "`get_binned_index` should never be called in CPU mesh uniform \
 | |
|                 building mode"
 | |
|             );
 | |
|             return None;
 | |
|         };
 | |
| 
 | |
|         mesh_instances
 | |
|             .get(&entity)
 | |
|             .map(|entity| entity.current_uniform_index)
 | |
|     }
 | |
| 
 | |
|     fn get_batch_indirect_parameters_index(
 | |
|         (mesh_instances, _, meshes, mesh_allocator): &SystemParamItem<Self::Param>,
 | |
|         indirect_parameters_buffer: &mut IndirectParametersBuffer,
 | |
|         entity: Entity,
 | |
|         instance_index: u32,
 | |
|     ) -> Option<NonMaxU32> {
 | |
|         get_batch_indirect_parameters_index(
 | |
|             mesh_instances,
 | |
|             meshes,
 | |
|             mesh_allocator,
 | |
|             indirect_parameters_buffer,
 | |
|             entity,
 | |
|             instance_index,
 | |
|         )
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Pushes a set of [`IndirectParameters`] onto the [`IndirectParametersBuffer`]
 | |
| /// for the given mesh instance, and returns the index of those indirect
 | |
| /// parameters.
 | |
| fn get_batch_indirect_parameters_index(
 | |
|     mesh_instances: &RenderMeshInstances,
 | |
|     meshes: &RenderAssets<RenderMesh>,
 | |
|     mesh_allocator: &MeshAllocator,
 | |
|     indirect_parameters_buffer: &mut IndirectParametersBuffer,
 | |
|     entity: Entity,
 | |
|     instance_index: u32,
 | |
| ) -> Option<NonMaxU32> {
 | |
|     // This should only be called during GPU building.
 | |
|     let RenderMeshInstances::GpuBuilding(ref mesh_instances) = *mesh_instances else {
 | |
|         error!(
 | |
|             "`get_batch_indirect_parameters_index` should never be called in CPU mesh uniform \
 | |
|                 building mode"
 | |
|         );
 | |
|         return None;
 | |
|     };
 | |
| 
 | |
|     let mesh_instance = mesh_instances.get(&entity)?;
 | |
|     let mesh = meshes.get(mesh_instance.mesh_asset_id)?;
 | |
|     let vertex_buffer_slice = mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id)?;
 | |
| 
 | |
|     // Note that `IndirectParameters` covers both of these structures, even
 | |
|     // though they actually have distinct layouts. See the comment above that
 | |
|     // type for more information.
 | |
|     let indirect_parameters = match mesh.buffer_info {
 | |
|         RenderMeshBufferInfo::Indexed {
 | |
|             count: index_count, ..
 | |
|         } => {
 | |
|             let index_buffer_slice =
 | |
|                 mesh_allocator.mesh_index_slice(&mesh_instance.mesh_asset_id)?;
 | |
|             IndirectParameters {
 | |
|                 vertex_or_index_count: index_count,
 | |
|                 instance_count: 0,
 | |
|                 first_vertex_or_first_index: index_buffer_slice.range.start,
 | |
|                 base_vertex_or_first_instance: vertex_buffer_slice.range.start,
 | |
|                 first_instance: instance_index,
 | |
|             }
 | |
|         }
 | |
|         RenderMeshBufferInfo::NonIndexed => IndirectParameters {
 | |
|             vertex_or_index_count: mesh.vertex_count,
 | |
|             instance_count: 0,
 | |
|             first_vertex_or_first_index: vertex_buffer_slice.range.start,
 | |
|             base_vertex_or_first_instance: instance_index,
 | |
|             first_instance: instance_index,
 | |
|         },
 | |
|     };
 | |
| 
 | |
|     (indirect_parameters_buffer.push(indirect_parameters) as u32)
 | |
|         .try_into()
 | |
|         .ok()
 | |
| }
 | |
| 
 | |
| bitflags::bitflags! {
 | |
|     #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
 | |
|     #[repr(transparent)]
 | |
|     // NOTE: Apparently quadro drivers support up to 64x MSAA.
 | |
|     /// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
 | |
|     pub struct MeshPipelineKey: u64 {
 | |
|         // Nothing
 | |
|         const NONE                              = 0;
 | |
| 
 | |
|         // Inherited bits
 | |
|         const MORPH_TARGETS                     = BaseMeshPipelineKey::MORPH_TARGETS.bits();
 | |
| 
 | |
|         // Flag bits
 | |
|         const HDR                               = 1 << 0;
 | |
|         const TONEMAP_IN_SHADER                 = 1 << 1;
 | |
|         const DEBAND_DITHER                     = 1 << 2;
 | |
|         const DEPTH_PREPASS                     = 1 << 3;
 | |
|         const NORMAL_PREPASS                    = 1 << 4;
 | |
|         const DEFERRED_PREPASS                  = 1 << 5;
 | |
|         const MOTION_VECTOR_PREPASS             = 1 << 6;
 | |
|         const MAY_DISCARD                       = 1 << 7; // Guards shader codepaths that may discard, allowing early depth tests in most cases
 | |
|                                                             // See: https://www.khronos.org/opengl/wiki/Early_Fragment_Test
 | |
|         const ENVIRONMENT_MAP                   = 1 << 8;
 | |
|         const SCREEN_SPACE_AMBIENT_OCCLUSION    = 1 << 9;
 | |
|         const DEPTH_CLAMP_ORTHO                 = 1 << 10;
 | |
|         const TEMPORAL_JITTER                   = 1 << 11;
 | |
|         const READS_VIEW_TRANSMISSION_TEXTURE   = 1 << 12;
 | |
|         const LIGHTMAPPED                       = 1 << 13;
 | |
|         const IRRADIANCE_VOLUME                 = 1 << 14;
 | |
|         const VISIBILITY_RANGE_DITHER           = 1 << 15;
 | |
|         const SCREEN_SPACE_REFLECTIONS          = 1 << 16;
 | |
|         const HAS_PREVIOUS_SKIN                 = 1 << 17;
 | |
|         const HAS_PREVIOUS_MORPH                = 1 << 18;
 | |
|         const LAST_FLAG                         = Self::HAS_PREVIOUS_MORPH.bits();
 | |
| 
 | |
|         // Bitfields
 | |
|         const MSAA_RESERVED_BITS                = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
 | |
|         const BLEND_RESERVED_BITS               = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS; // ← Bitmask reserving bits for the blend state
 | |
|         const BLEND_OPAQUE                      = 0 << Self::BLEND_SHIFT_BITS;                     // ← Values are just sequential within the mask
 | |
|         const BLEND_PREMULTIPLIED_ALPHA         = 1 << Self::BLEND_SHIFT_BITS;                     // ← As blend states is on 3 bits, it can range from 0 to 7
 | |
|         const BLEND_MULTIPLY                    = 2 << Self::BLEND_SHIFT_BITS;                     // ← See `BLEND_MASK_BITS` for the number of bits available
 | |
|         const BLEND_ALPHA                       = 3 << Self::BLEND_SHIFT_BITS;                     //
 | |
|         const BLEND_ALPHA_TO_COVERAGE           = 4 << Self::BLEND_SHIFT_BITS;                     // ← We still have room for three more values without adding more bits
 | |
|         const TONEMAP_METHOD_RESERVED_BITS      = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_NONE               = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_REINHARD           = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_ACES_FITTED        = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_AGX                = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_TONY_MC_MAPFACE     = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const TONEMAP_METHOD_BLENDER_FILMIC      = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
|         const SHADOW_FILTER_METHOD_RESERVED_BITS = Self::SHADOW_FILTER_METHOD_MASK_BITS << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
 | |
|         const SHADOW_FILTER_METHOD_HARDWARE_2X2  = 0 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
 | |
|         const SHADOW_FILTER_METHOD_GAUSSIAN      = 1 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
 | |
|         const SHADOW_FILTER_METHOD_TEMPORAL      = 2 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
 | |
|         const VIEW_PROJECTION_RESERVED_BITS     = Self::VIEW_PROJECTION_MASK_BITS << Self::VIEW_PROJECTION_SHIFT_BITS;
 | |
|         const VIEW_PROJECTION_NONSTANDARD       = 0 << Self::VIEW_PROJECTION_SHIFT_BITS;
 | |
|         const VIEW_PROJECTION_PERSPECTIVE       = 1 << Self::VIEW_PROJECTION_SHIFT_BITS;
 | |
|         const VIEW_PROJECTION_ORTHOGRAPHIC      = 2 << Self::VIEW_PROJECTION_SHIFT_BITS;
 | |
|         const VIEW_PROJECTION_RESERVED          = 3 << Self::VIEW_PROJECTION_SHIFT_BITS;
 | |
|         const SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS = Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
 | |
|         const SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW = 0 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
 | |
|         const SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM = 1 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
 | |
|         const SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH = 2 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
 | |
|         const SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA = 3 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
 | |
|         const ALL_RESERVED_BITS =
 | |
|             Self::BLEND_RESERVED_BITS.bits() |
 | |
|             Self::MSAA_RESERVED_BITS.bits() |
 | |
|             Self::TONEMAP_METHOD_RESERVED_BITS.bits() |
 | |
|             Self::SHADOW_FILTER_METHOD_RESERVED_BITS.bits() |
 | |
|             Self::VIEW_PROJECTION_RESERVED_BITS.bits() |
 | |
|             Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS.bits();
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl MeshPipelineKey {
 | |
|     const MSAA_MASK_BITS: u64 = 0b111;
 | |
|     const MSAA_SHIFT_BITS: u64 = Self::LAST_FLAG.bits().trailing_zeros() as u64 + 1;
 | |
| 
 | |
|     const BLEND_MASK_BITS: u64 = 0b111;
 | |
|     const BLEND_SHIFT_BITS: u64 = Self::MSAA_MASK_BITS.count_ones() as u64 + Self::MSAA_SHIFT_BITS;
 | |
| 
 | |
|     const TONEMAP_METHOD_MASK_BITS: u64 = 0b111;
 | |
|     const TONEMAP_METHOD_SHIFT_BITS: u64 =
 | |
|         Self::BLEND_MASK_BITS.count_ones() as u64 + Self::BLEND_SHIFT_BITS;
 | |
| 
 | |
|     const SHADOW_FILTER_METHOD_MASK_BITS: u64 = 0b11;
 | |
|     const SHADOW_FILTER_METHOD_SHIFT_BITS: u64 =
 | |
|         Self::TONEMAP_METHOD_MASK_BITS.count_ones() as u64 + Self::TONEMAP_METHOD_SHIFT_BITS;
 | |
| 
 | |
|     const VIEW_PROJECTION_MASK_BITS: u64 = 0b11;
 | |
|     const VIEW_PROJECTION_SHIFT_BITS: u64 = Self::SHADOW_FILTER_METHOD_MASK_BITS.count_ones()
 | |
|         as u64
 | |
|         + Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
 | |
| 
 | |
|     const SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS: u64 = 0b11;
 | |
|     const SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS: u64 =
 | |
|         Self::VIEW_PROJECTION_MASK_BITS.count_ones() as u64 + Self::VIEW_PROJECTION_SHIFT_BITS;
 | |
| 
 | |
|     pub fn from_msaa_samples(msaa_samples: u32) -> Self {
 | |
|         let msaa_bits =
 | |
|             (msaa_samples.trailing_zeros() as u64 & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
 | |
|         Self::from_bits_retain(msaa_bits)
 | |
|     }
 | |
| 
 | |
|     pub fn from_hdr(hdr: bool) -> Self {
 | |
|         if hdr {
 | |
|             MeshPipelineKey::HDR
 | |
|         } else {
 | |
|             MeshPipelineKey::NONE
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn msaa_samples(&self) -> u32 {
 | |
|         1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
 | |
|     }
 | |
| 
 | |
|     pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
 | |
|         let primitive_topology_bits = ((primitive_topology as u64)
 | |
|             & BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS)
 | |
|             << BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
 | |
|         Self::from_bits_retain(primitive_topology_bits)
 | |
|     }
 | |
| 
 | |
|     pub fn primitive_topology(&self) -> PrimitiveTopology {
 | |
|         let primitive_topology_bits = (self.bits()
 | |
|             >> BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
 | |
|             & BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS;
 | |
|         match primitive_topology_bits {
 | |
|             x if x == PrimitiveTopology::PointList as u64 => PrimitiveTopology::PointList,
 | |
|             x if x == PrimitiveTopology::LineList as u64 => PrimitiveTopology::LineList,
 | |
|             x if x == PrimitiveTopology::LineStrip as u64 => PrimitiveTopology::LineStrip,
 | |
|             x if x == PrimitiveTopology::TriangleList as u64 => PrimitiveTopology::TriangleList,
 | |
|             x if x == PrimitiveTopology::TriangleStrip as u64 => PrimitiveTopology::TriangleStrip,
 | |
|             _ => PrimitiveTopology::default(),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Ensure that we didn't overflow the number of bits available in `MeshPipelineKey`.
 | |
| const_assert_eq!(
 | |
|     (((MeshPipelineKey::LAST_FLAG.bits() << 1) - 1) | MeshPipelineKey::ALL_RESERVED_BITS.bits())
 | |
|         & BaseMeshPipelineKey::all().bits(),
 | |
|     0
 | |
| );
 | |
| 
 | |
| // Ensure that the reserved bits don't overlap with the topology bits
 | |
| const_assert_eq!(
 | |
|     (BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS
 | |
|         << BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
 | |
|         & MeshPipelineKey::ALL_RESERVED_BITS.bits(),
 | |
|     0
 | |
| );
 | |
| 
 | |
| fn is_skinned(layout: &MeshVertexBufferLayoutRef) -> bool {
 | |
|     layout.0.contains(Mesh::ATTRIBUTE_JOINT_INDEX)
 | |
|         && layout.0.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
 | |
| }
 | |
| pub fn setup_morph_and_skinning_defs(
 | |
|     mesh_layouts: &MeshLayouts,
 | |
|     layout: &MeshVertexBufferLayoutRef,
 | |
|     offset: u32,
 | |
|     key: &MeshPipelineKey,
 | |
|     shader_defs: &mut Vec<ShaderDefVal>,
 | |
|     vertex_attributes: &mut Vec<VertexAttributeDescriptor>,
 | |
| ) -> BindGroupLayout {
 | |
|     let mut add_skin_data = || {
 | |
|         shader_defs.push("SKINNED".into());
 | |
|         vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(offset));
 | |
|         vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(offset + 1));
 | |
|     };
 | |
|     let is_morphed = key.intersects(MeshPipelineKey::MORPH_TARGETS);
 | |
|     let is_lightmapped = key.intersects(MeshPipelineKey::LIGHTMAPPED);
 | |
|     let motion_vector_prepass = key.intersects(MeshPipelineKey::MOTION_VECTOR_PREPASS);
 | |
|     match (
 | |
|         is_skinned(layout),
 | |
|         is_morphed,
 | |
|         is_lightmapped,
 | |
|         motion_vector_prepass,
 | |
|     ) {
 | |
|         (true, false, _, true) => {
 | |
|             add_skin_data();
 | |
|             mesh_layouts.skinned_motion.clone()
 | |
|         }
 | |
|         (true, false, _, false) => {
 | |
|             add_skin_data();
 | |
|             mesh_layouts.skinned.clone()
 | |
|         }
 | |
|         (true, true, _, true) => {
 | |
|             add_skin_data();
 | |
|             shader_defs.push("MORPH_TARGETS".into());
 | |
|             mesh_layouts.morphed_skinned_motion.clone()
 | |
|         }
 | |
|         (true, true, _, false) => {
 | |
|             add_skin_data();
 | |
|             shader_defs.push("MORPH_TARGETS".into());
 | |
|             mesh_layouts.morphed_skinned.clone()
 | |
|         }
 | |
|         (false, true, _, true) => {
 | |
|             shader_defs.push("MORPH_TARGETS".into());
 | |
|             mesh_layouts.morphed_motion.clone()
 | |
|         }
 | |
|         (false, true, _, false) => {
 | |
|             shader_defs.push("MORPH_TARGETS".into());
 | |
|             mesh_layouts.morphed.clone()
 | |
|         }
 | |
|         (false, false, true, _) => mesh_layouts.lightmapped.clone(),
 | |
|         (false, false, false, _) => mesh_layouts.model_only.clone(),
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl SpecializedMeshPipeline for MeshPipeline {
 | |
|     type Key = MeshPipelineKey;
 | |
| 
 | |
|     fn specialize(
 | |
|         &self,
 | |
|         key: Self::Key,
 | |
|         layout: &MeshVertexBufferLayoutRef,
 | |
|     ) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
 | |
|         let mut shader_defs = Vec::new();
 | |
|         let mut vertex_attributes = Vec::new();
 | |
| 
 | |
|         // Let the shader code know that it's running in a mesh pipeline.
 | |
|         shader_defs.push("MESH_PIPELINE".into());
 | |
| 
 | |
|         shader_defs.push("VERTEX_OUTPUT_INSTANCE_INDEX".into());
 | |
| 
 | |
|         if layout.0.contains(Mesh::ATTRIBUTE_POSITION) {
 | |
|             shader_defs.push("VERTEX_POSITIONS".into());
 | |
|             vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
 | |
|         }
 | |
| 
 | |
|         if layout.0.contains(Mesh::ATTRIBUTE_NORMAL) {
 | |
|             shader_defs.push("VERTEX_NORMALS".into());
 | |
|             vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
 | |
|         }
 | |
| 
 | |
|         if layout.0.contains(Mesh::ATTRIBUTE_UV_0) {
 | |
|             shader_defs.push("VERTEX_UVS".into());
 | |
|             shader_defs.push("VERTEX_UVS_A".into());
 | |
|             vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
 | |
|         }
 | |
| 
 | |
|         if layout.0.contains(Mesh::ATTRIBUTE_UV_1) {
 | |
|             shader_defs.push("VERTEX_UVS".into());
 | |
|             shader_defs.push("VERTEX_UVS_B".into());
 | |
|             vertex_attributes.push(Mesh::ATTRIBUTE_UV_1.at_shader_location(3));
 | |
|         }
 | |
| 
 | |
|         if layout.0.contains(Mesh::ATTRIBUTE_TANGENT) {
 | |
|             shader_defs.push("VERTEX_TANGENTS".into());
 | |
|             vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(4));
 | |
|         }
 | |
| 
 | |
|         if layout.0.contains(Mesh::ATTRIBUTE_COLOR) {
 | |
|             shader_defs.push("VERTEX_COLORS".into());
 | |
|             vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(5));
 | |
|         }
 | |
| 
 | |
|         if cfg!(feature = "pbr_transmission_textures") {
 | |
|             shader_defs.push("PBR_TRANSMISSION_TEXTURES_SUPPORTED".into());
 | |
|         }
 | |
|         if cfg!(feature = "pbr_multi_layer_material_textures") {
 | |
|             shader_defs.push("PBR_MULTI_LAYER_MATERIAL_TEXTURES_SUPPORTED".into());
 | |
|         }
 | |
|         if cfg!(feature = "pbr_anisotropy_texture") {
 | |
|             shader_defs.push("PBR_ANISOTROPY_TEXTURE_SUPPORTED".into());
 | |
|         }
 | |
| 
 | |
|         let mut bind_group_layout = vec![self.get_view_layout(key.into()).clone()];
 | |
| 
 | |
|         if key.msaa_samples() > 1 {
 | |
|             shader_defs.push("MULTISAMPLED".into());
 | |
|         };
 | |
| 
 | |
|         bind_group_layout.push(setup_morph_and_skinning_defs(
 | |
|             &self.mesh_layouts,
 | |
|             layout,
 | |
|             6,
 | |
|             &key,
 | |
|             &mut shader_defs,
 | |
|             &mut vertex_attributes,
 | |
|         ));
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION) {
 | |
|             shader_defs.push("SCREEN_SPACE_AMBIENT_OCCLUSION".into());
 | |
|         }
 | |
| 
 | |
|         let vertex_buffer_layout = layout.0.get_layout(&vertex_attributes)?;
 | |
| 
 | |
|         let (label, blend, depth_write_enabled);
 | |
|         let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
 | |
|         let (mut is_opaque, mut alpha_to_coverage_enabled) = (false, false);
 | |
|         if pass == MeshPipelineKey::BLEND_ALPHA {
 | |
|             label = "alpha_blend_mesh_pipeline".into();
 | |
|             blend = Some(BlendState::ALPHA_BLENDING);
 | |
|             // For the transparent pass, fragments that are closer will be alpha blended
 | |
|             // but their depth is not written to the depth buffer
 | |
|             depth_write_enabled = false;
 | |
|         } else if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
 | |
|             label = "premultiplied_alpha_mesh_pipeline".into();
 | |
|             blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
 | |
|             shader_defs.push("PREMULTIPLY_ALPHA".into());
 | |
|             shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
 | |
|             // For the transparent pass, fragments that are closer will be alpha blended
 | |
|             // but their depth is not written to the depth buffer
 | |
|             depth_write_enabled = false;
 | |
|         } else if pass == MeshPipelineKey::BLEND_MULTIPLY {
 | |
|             label = "multiply_mesh_pipeline".into();
 | |
|             blend = Some(BlendState {
 | |
|                 color: BlendComponent {
 | |
|                     src_factor: BlendFactor::Dst,
 | |
|                     dst_factor: BlendFactor::OneMinusSrcAlpha,
 | |
|                     operation: BlendOperation::Add,
 | |
|                 },
 | |
|                 alpha: BlendComponent::OVER,
 | |
|             });
 | |
|             shader_defs.push("PREMULTIPLY_ALPHA".into());
 | |
|             shader_defs.push("BLEND_MULTIPLY".into());
 | |
|             // For the multiply pass, fragments that are closer will be alpha blended
 | |
|             // but their depth is not written to the depth buffer
 | |
|             depth_write_enabled = false;
 | |
|         } else if pass == MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE {
 | |
|             label = "alpha_to_coverage_mesh_pipeline".into();
 | |
|             // BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
 | |
|             blend = None;
 | |
|             // For the opaque and alpha mask passes, fragments that are closer will replace
 | |
|             // the current fragment value in the output and the depth is written to the
 | |
|             // depth buffer
 | |
|             depth_write_enabled = true;
 | |
|             is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
 | |
|             alpha_to_coverage_enabled = true;
 | |
|             shader_defs.push("ALPHA_TO_COVERAGE".into());
 | |
|         } else {
 | |
|             label = "opaque_mesh_pipeline".into();
 | |
|             // BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
 | |
|             blend = None;
 | |
|             // For the opaque and alpha mask passes, fragments that are closer will replace
 | |
|             // the current fragment value in the output and the depth is written to the
 | |
|             // depth buffer
 | |
|             depth_write_enabled = true;
 | |
|             is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::NORMAL_PREPASS) {
 | |
|             shader_defs.push("NORMAL_PREPASS".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::DEPTH_PREPASS) {
 | |
|             shader_defs.push("DEPTH_PREPASS".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
 | |
|             shader_defs.push("MOTION_VECTOR_PREPASS".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::HAS_PREVIOUS_SKIN) {
 | |
|             shader_defs.push("HAS_PREVIOUS_SKIN".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::HAS_PREVIOUS_MORPH) {
 | |
|             shader_defs.push("HAS_PREVIOUS_MORPH".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::DEFERRED_PREPASS) {
 | |
|             shader_defs.push("DEFERRED_PREPASS".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::NORMAL_PREPASS) && key.msaa_samples() == 1 && is_opaque {
 | |
|             shader_defs.push("LOAD_PREPASS_NORMALS".into());
 | |
|         }
 | |
| 
 | |
|         let view_projection = key.intersection(MeshPipelineKey::VIEW_PROJECTION_RESERVED_BITS);
 | |
|         if view_projection == MeshPipelineKey::VIEW_PROJECTION_NONSTANDARD {
 | |
|             shader_defs.push("VIEW_PROJECTION_NONSTANDARD".into());
 | |
|         } else if view_projection == MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE {
 | |
|             shader_defs.push("VIEW_PROJECTION_PERSPECTIVE".into());
 | |
|         } else if view_projection == MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC {
 | |
|             shader_defs.push("VIEW_PROJECTION_ORTHOGRAPHIC".into());
 | |
|         }
 | |
| 
 | |
|         #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
 | |
|         shader_defs.push("WEBGL2".into());
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
 | |
|             shader_defs.push("TONEMAP_IN_SHADER".into());
 | |
|             shader_defs.push(ShaderDefVal::UInt(
 | |
|                 "TONEMAPPING_LUT_TEXTURE_BINDING_INDEX".into(),
 | |
|                 23,
 | |
|             ));
 | |
|             shader_defs.push(ShaderDefVal::UInt(
 | |
|                 "TONEMAPPING_LUT_SAMPLER_BINDING_INDEX".into(),
 | |
|                 24,
 | |
|             ));
 | |
| 
 | |
|             let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
 | |
| 
 | |
|             if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
 | |
|                 shader_defs.push("TONEMAP_METHOD_NONE".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
 | |
|                 shader_defs.push("TONEMAP_METHOD_REINHARD".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
 | |
|                 shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
 | |
|                 shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
 | |
|                 shader_defs.push("TONEMAP_METHOD_AGX".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
 | |
|                 shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
 | |
|                 shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
 | |
|             } else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
 | |
|                 shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
 | |
|             }
 | |
| 
 | |
|             // Debanding is tied to tonemapping in the shader, cannot run without it.
 | |
|             if key.contains(MeshPipelineKey::DEBAND_DITHER) {
 | |
|                 shader_defs.push("DEBAND_DITHER".into());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::MAY_DISCARD) {
 | |
|             shader_defs.push("MAY_DISCARD".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
 | |
|             shader_defs.push("ENVIRONMENT_MAP".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::IRRADIANCE_VOLUME) && IRRADIANCE_VOLUMES_ARE_USABLE {
 | |
|             shader_defs.push("IRRADIANCE_VOLUME".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::LIGHTMAPPED) {
 | |
|             shader_defs.push("LIGHTMAP".into());
 | |
|         }
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::TEMPORAL_JITTER) {
 | |
|             shader_defs.push("TEMPORAL_JITTER".into());
 | |
|         }
 | |
| 
 | |
|         let shadow_filter_method =
 | |
|             key.intersection(MeshPipelineKey::SHADOW_FILTER_METHOD_RESERVED_BITS);
 | |
|         if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2 {
 | |
|             shader_defs.push("SHADOW_FILTER_METHOD_HARDWARE_2X2".into());
 | |
|         } else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN {
 | |
|             shader_defs.push("SHADOW_FILTER_METHOD_GAUSSIAN".into());
 | |
|         } else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL {
 | |
|             shader_defs.push("SHADOW_FILTER_METHOD_TEMPORAL".into());
 | |
|         }
 | |
| 
 | |
|         let blur_quality =
 | |
|             key.intersection(MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS);
 | |
| 
 | |
|         shader_defs.push(ShaderDefVal::Int(
 | |
|             "SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS".into(),
 | |
|             match blur_quality {
 | |
|                 MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW => 4,
 | |
|                 MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM => 8,
 | |
|                 MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH => 16,
 | |
|                 MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA => 32,
 | |
|                 _ => unreachable!(), // Not possible, since the mask is 2 bits, and we've covered all 4 cases
 | |
|             },
 | |
|         ));
 | |
| 
 | |
|         if key.contains(MeshPipelineKey::VISIBILITY_RANGE_DITHER) {
 | |
|             shader_defs.push("VISIBILITY_RANGE_DITHER".into());
 | |
|         }
 | |
| 
 | |
|         if self.binding_arrays_are_usable {
 | |
|             shader_defs.push("MULTIPLE_LIGHT_PROBES_IN_ARRAY".into());
 | |
|         }
 | |
| 
 | |
|         if IRRADIANCE_VOLUMES_ARE_USABLE {
 | |
|             shader_defs.push("IRRADIANCE_VOLUMES_ARE_USABLE".into());
 | |
|         }
 | |
| 
 | |
|         let format = if key.contains(MeshPipelineKey::HDR) {
 | |
|             ViewTarget::TEXTURE_FORMAT_HDR
 | |
|         } else {
 | |
|             TextureFormat::bevy_default()
 | |
|         };
 | |
| 
 | |
|         // This is defined here so that custom shaders that use something other than
 | |
|         // the mesh binding from bevy_pbr::mesh_bindings can easily make use of this
 | |
|         // in their own shaders.
 | |
|         if let Some(per_object_buffer_batch_size) = self.per_object_buffer_batch_size {
 | |
|             shader_defs.push(ShaderDefVal::UInt(
 | |
|                 "PER_OBJECT_BUFFER_BATCH_SIZE".into(),
 | |
|                 per_object_buffer_batch_size,
 | |
|             ));
 | |
|         }
 | |
| 
 | |
|         Ok(RenderPipelineDescriptor {
 | |
|             vertex: VertexState {
 | |
|                 shader: MESH_SHADER_HANDLE,
 | |
|                 entry_point: "vertex".into(),
 | |
|                 shader_defs: shader_defs.clone(),
 | |
|                 buffers: vec![vertex_buffer_layout],
 | |
|             },
 | |
|             fragment: Some(FragmentState {
 | |
|                 shader: MESH_SHADER_HANDLE,
 | |
|                 shader_defs,
 | |
|                 entry_point: "fragment".into(),
 | |
|                 targets: vec![Some(ColorTargetState {
 | |
|                     format,
 | |
|                     blend,
 | |
|                     write_mask: ColorWrites::ALL,
 | |
|                 })],
 | |
|             }),
 | |
|             layout: bind_group_layout,
 | |
|             push_constant_ranges: vec![],
 | |
|             primitive: PrimitiveState {
 | |
|                 front_face: FrontFace::Ccw,
 | |
|                 cull_mode: Some(Face::Back),
 | |
|                 unclipped_depth: false,
 | |
|                 polygon_mode: PolygonMode::Fill,
 | |
|                 conservative: false,
 | |
|                 topology: key.primitive_topology(),
 | |
|                 strip_index_format: None,
 | |
|             },
 | |
|             depth_stencil: Some(DepthStencilState {
 | |
|                 format: CORE_3D_DEPTH_FORMAT,
 | |
|                 depth_write_enabled,
 | |
|                 depth_compare: CompareFunction::GreaterEqual,
 | |
|                 stencil: StencilState {
 | |
|                     front: StencilFaceState::IGNORE,
 | |
|                     back: StencilFaceState::IGNORE,
 | |
|                     read_mask: 0,
 | |
|                     write_mask: 0,
 | |
|                 },
 | |
|                 bias: DepthBiasState {
 | |
|                     constant: 0,
 | |
|                     slope_scale: 0.0,
 | |
|                     clamp: 0.0,
 | |
|                 },
 | |
|             }),
 | |
|             multisample: MultisampleState {
 | |
|                 count: key.msaa_samples(),
 | |
|                 mask: !0,
 | |
|                 alpha_to_coverage_enabled,
 | |
|             },
 | |
|             label: Some(label),
 | |
|         })
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Bind groups for meshes currently loaded.
 | |
| #[derive(Resource, Default)]
 | |
| pub struct MeshBindGroups {
 | |
|     model_only: Option<BindGroup>,
 | |
|     skinned: Option<MeshBindGroupPair>,
 | |
|     morph_targets: HashMap<AssetId<Mesh>, MeshBindGroupPair>,
 | |
|     lightmaps: HashMap<AssetId<Image>, BindGroup>,
 | |
| }
 | |
| 
 | |
| pub struct MeshBindGroupPair {
 | |
|     motion_vectors: BindGroup,
 | |
|     no_motion_vectors: BindGroup,
 | |
| }
 | |
| 
 | |
| impl MeshBindGroups {
 | |
|     pub fn reset(&mut self) {
 | |
|         self.model_only = None;
 | |
|         self.skinned = None;
 | |
|         self.morph_targets.clear();
 | |
|         self.lightmaps.clear();
 | |
|     }
 | |
|     /// Get the `BindGroup` for `RenderMesh` with given `handle_id` and lightmap
 | |
|     /// key `lightmap`.
 | |
|     pub fn get(
 | |
|         &self,
 | |
|         asset_id: AssetId<Mesh>,
 | |
|         lightmap: Option<AssetId<Image>>,
 | |
|         is_skinned: bool,
 | |
|         morph: bool,
 | |
|         motion_vectors: bool,
 | |
|     ) -> Option<&BindGroup> {
 | |
|         match (is_skinned, morph, lightmap) {
 | |
|             (_, true, _) => self
 | |
|                 .morph_targets
 | |
|                 .get(&asset_id)
 | |
|                 .map(|bind_group_pair| bind_group_pair.get(motion_vectors)),
 | |
|             (true, false, _) => self
 | |
|                 .skinned
 | |
|                 .as_ref()
 | |
|                 .map(|bind_group_pair| bind_group_pair.get(motion_vectors)),
 | |
|             (false, false, Some(lightmap)) => self.lightmaps.get(&lightmap),
 | |
|             (false, false, None) => self.model_only.as_ref(),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl MeshBindGroupPair {
 | |
|     fn get(&self, motion_vectors: bool) -> &BindGroup {
 | |
|         if motion_vectors {
 | |
|             &self.motion_vectors
 | |
|         } else {
 | |
|             &self.no_motion_vectors
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[allow(clippy::too_many_arguments)]
 | |
| pub fn prepare_mesh_bind_group(
 | |
|     meshes: Res<RenderAssets<RenderMesh>>,
 | |
|     images: Res<RenderAssets<GpuImage>>,
 | |
|     mut groups: ResMut<MeshBindGroups>,
 | |
|     mesh_pipeline: Res<MeshPipeline>,
 | |
|     render_device: Res<RenderDevice>,
 | |
|     cpu_batched_instance_buffer: Option<
 | |
|         Res<no_gpu_preprocessing::BatchedInstanceBuffer<MeshUniform>>,
 | |
|     >,
 | |
|     gpu_batched_instance_buffers: Option<
 | |
|         Res<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>,
 | |
|     >,
 | |
|     skins_uniform: Res<SkinUniforms>,
 | |
|     weights_uniform: Res<MorphUniforms>,
 | |
|     render_lightmaps: Res<RenderLightmaps>,
 | |
| ) {
 | |
|     groups.reset();
 | |
| 
 | |
|     let layouts = &mesh_pipeline.mesh_layouts;
 | |
| 
 | |
|     let model = if let Some(cpu_batched_instance_buffer) = cpu_batched_instance_buffer {
 | |
|         cpu_batched_instance_buffer
 | |
|             .into_inner()
 | |
|             .instance_data_binding()
 | |
|     } else if let Some(gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
 | |
|         gpu_batched_instance_buffers
 | |
|             .into_inner()
 | |
|             .instance_data_binding()
 | |
|     } else {
 | |
|         return;
 | |
|     };
 | |
|     let Some(model) = model else { return };
 | |
| 
 | |
|     groups.model_only = Some(layouts.model_only(&render_device, &model));
 | |
| 
 | |
|     // Create the skinned mesh bind group with the current and previous buffers
 | |
|     // (the latter being for motion vector computation). If there's no previous
 | |
|     // buffer, just use the current one as the shader will ignore it.
 | |
|     let skin = skins_uniform.current_buffer.buffer();
 | |
|     if let Some(skin) = skin {
 | |
|         let prev_skin = skins_uniform.prev_buffer.buffer().unwrap_or(skin);
 | |
|         groups.skinned = Some(MeshBindGroupPair {
 | |
|             motion_vectors: layouts.skinned_motion(&render_device, &model, skin, prev_skin),
 | |
|             no_motion_vectors: layouts.skinned(&render_device, &model, skin),
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     // Create the morphed bind groups just like we did for the skinned bind
 | |
|     // group.
 | |
|     if let Some(weights) = weights_uniform.current_buffer.buffer() {
 | |
|         let prev_weights = weights_uniform.prev_buffer.buffer().unwrap_or(weights);
 | |
|         for (id, gpu_mesh) in meshes.iter() {
 | |
|             if let Some(targets) = gpu_mesh.morph_targets.as_ref() {
 | |
|                 let bind_group_pair = match skin.filter(|_| is_skinned(&gpu_mesh.layout)) {
 | |
|                     Some(skin) => {
 | |
|                         let prev_skin = skins_uniform.prev_buffer.buffer().unwrap_or(skin);
 | |
|                         MeshBindGroupPair {
 | |
|                             motion_vectors: layouts.morphed_skinned_motion(
 | |
|                                 &render_device,
 | |
|                                 &model,
 | |
|                                 skin,
 | |
|                                 weights,
 | |
|                                 targets,
 | |
|                                 prev_skin,
 | |
|                                 prev_weights,
 | |
|                             ),
 | |
|                             no_motion_vectors: layouts.morphed_skinned(
 | |
|                                 &render_device,
 | |
|                                 &model,
 | |
|                                 skin,
 | |
|                                 weights,
 | |
|                                 targets,
 | |
|                             ),
 | |
|                         }
 | |
|                     }
 | |
|                     None => MeshBindGroupPair {
 | |
|                         motion_vectors: layouts.morphed_motion(
 | |
|                             &render_device,
 | |
|                             &model,
 | |
|                             weights,
 | |
|                             targets,
 | |
|                             prev_weights,
 | |
|                         ),
 | |
|                         no_motion_vectors: layouts.morphed(
 | |
|                             &render_device,
 | |
|                             &model,
 | |
|                             weights,
 | |
|                             targets,
 | |
|                         ),
 | |
|                     },
 | |
|                 };
 | |
|                 groups.morph_targets.insert(id, bind_group_pair);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Create lightmap bindgroups.
 | |
|     for &image_id in &render_lightmaps.all_lightmap_images {
 | |
|         if let (Entry::Vacant(entry), Some(image)) =
 | |
|             (groups.lightmaps.entry(image_id), images.get(image_id))
 | |
|         {
 | |
|             entry.insert(layouts.lightmapped(&render_device, &model, image));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct SetMeshViewBindGroup<const I: usize>;
 | |
| impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
 | |
|     type Param = ();
 | |
|     type ViewQuery = (
 | |
|         Read<ViewUniformOffset>,
 | |
|         Read<ViewLightsUniformOffset>,
 | |
|         Read<ViewFogUniformOffset>,
 | |
|         Read<ViewLightProbesUniformOffset>,
 | |
|         Read<ViewScreenSpaceReflectionsUniformOffset>,
 | |
|         Read<ViewEnvironmentMapUniformOffset>,
 | |
|         Read<MeshViewBindGroup>,
 | |
|     );
 | |
|     type ItemQuery = ();
 | |
| 
 | |
|     #[inline]
 | |
|     fn render<'w>(
 | |
|         _item: &P,
 | |
|         (
 | |
|             view_uniform,
 | |
|             view_lights,
 | |
|             view_fog,
 | |
|             view_light_probes,
 | |
|             view_ssr,
 | |
|             view_environment_map,
 | |
|             mesh_view_bind_group,
 | |
|         ): ROQueryItem<'w, Self::ViewQuery>,
 | |
|         _entity: Option<()>,
 | |
|         _: SystemParamItem<'w, '_, Self::Param>,
 | |
|         pass: &mut TrackedRenderPass<'w>,
 | |
|     ) -> RenderCommandResult {
 | |
|         pass.set_bind_group(
 | |
|             I,
 | |
|             &mesh_view_bind_group.value,
 | |
|             &[
 | |
|                 view_uniform.offset,
 | |
|                 view_lights.offset,
 | |
|                 view_fog.offset,
 | |
|                 **view_light_probes,
 | |
|                 **view_ssr,
 | |
|                 **view_environment_map,
 | |
|             ],
 | |
|         );
 | |
| 
 | |
|         RenderCommandResult::Success
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct SetMeshBindGroup<const I: usize>;
 | |
| impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
 | |
|     type Param = (
 | |
|         SRes<MeshBindGroups>,
 | |
|         SRes<RenderMeshInstances>,
 | |
|         SRes<SkinIndices>,
 | |
|         SRes<MorphIndices>,
 | |
|         SRes<RenderLightmaps>,
 | |
|     );
 | |
|     type ViewQuery = Has<MotionVectorPrepass>;
 | |
|     type ItemQuery = ();
 | |
| 
 | |
|     #[inline]
 | |
|     fn render<'w>(
 | |
|         item: &P,
 | |
|         has_motion_vector_prepass: bool,
 | |
|         _item_query: Option<()>,
 | |
|         (bind_groups, mesh_instances, skin_indices, morph_indices, lightmaps): SystemParamItem<
 | |
|             'w,
 | |
|             '_,
 | |
|             Self::Param,
 | |
|         >,
 | |
|         pass: &mut TrackedRenderPass<'w>,
 | |
|     ) -> RenderCommandResult {
 | |
|         let bind_groups = bind_groups.into_inner();
 | |
|         let mesh_instances = mesh_instances.into_inner();
 | |
|         let skin_indices = skin_indices.into_inner();
 | |
|         let morph_indices = morph_indices.into_inner();
 | |
| 
 | |
|         let entity = &item.entity();
 | |
| 
 | |
|         let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(*entity) else {
 | |
|             return RenderCommandResult::Success;
 | |
|         };
 | |
|         let current_skin_index = skin_indices.current.get(entity);
 | |
|         let prev_skin_index = skin_indices.prev.get(entity);
 | |
|         let current_morph_index = morph_indices.current.get(entity);
 | |
|         let prev_morph_index = morph_indices.prev.get(entity);
 | |
| 
 | |
|         let is_skinned = current_skin_index.is_some();
 | |
|         let is_morphed = current_morph_index.is_some();
 | |
| 
 | |
|         let lightmap = lightmaps
 | |
|             .render_lightmaps
 | |
|             .get(entity)
 | |
|             .map(|render_lightmap| render_lightmap.image);
 | |
| 
 | |
|         let Some(bind_group) = bind_groups.get(
 | |
|             mesh_asset_id,
 | |
|             lightmap,
 | |
|             is_skinned,
 | |
|             is_morphed,
 | |
|             has_motion_vector_prepass,
 | |
|         ) else {
 | |
|             return RenderCommandResult::Failure(
 | |
|                 "The MeshBindGroups resource wasn't set in the render phase. \
 | |
|                 It should be set by the prepare_mesh_bind_group system.\n\
 | |
|                 This is a bevy bug! Please open an issue.",
 | |
|             );
 | |
|         };
 | |
| 
 | |
|         let mut dynamic_offsets: [u32; 3] = Default::default();
 | |
|         let mut offset_count = 0;
 | |
|         if let Some(dynamic_offset) = item.extra_index().as_dynamic_offset() {
 | |
|             dynamic_offsets[offset_count] = dynamic_offset.get();
 | |
|             offset_count += 1;
 | |
|         }
 | |
|         if let Some(current_skin_index) = current_skin_index {
 | |
|             dynamic_offsets[offset_count] = current_skin_index.index;
 | |
|             offset_count += 1;
 | |
|         }
 | |
|         if let Some(current_morph_index) = current_morph_index {
 | |
|             dynamic_offsets[offset_count] = current_morph_index.index;
 | |
|             offset_count += 1;
 | |
|         }
 | |
| 
 | |
|         // Attach motion vectors if needed.
 | |
|         if has_motion_vector_prepass {
 | |
|             // Attach the previous skin index for motion vector computation. If
 | |
|             // there isn't one, just use zero as the shader will ignore it.
 | |
|             if current_skin_index.is_some() {
 | |
|                 match prev_skin_index {
 | |
|                     Some(prev_skin_index) => dynamic_offsets[offset_count] = prev_skin_index.index,
 | |
|                     None => dynamic_offsets[offset_count] = 0,
 | |
|                 }
 | |
|                 offset_count += 1;
 | |
|             }
 | |
| 
 | |
|             // Attach the previous morph index for motion vector computation. If
 | |
|             // there isn't one, just use zero as the shader will ignore it.
 | |
|             if current_morph_index.is_some() {
 | |
|                 match prev_morph_index {
 | |
|                     Some(prev_morph_index) => {
 | |
|                         dynamic_offsets[offset_count] = prev_morph_index.index;
 | |
|                     }
 | |
|                     None => dynamic_offsets[offset_count] = 0,
 | |
|                 }
 | |
|                 offset_count += 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         pass.set_bind_group(I, bind_group, &dynamic_offsets[0..offset_count]);
 | |
| 
 | |
|         RenderCommandResult::Success
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct DrawMesh;
 | |
| impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
 | |
|     type Param = (
 | |
|         SRes<RenderAssets<RenderMesh>>,
 | |
|         SRes<RenderMeshInstances>,
 | |
|         SRes<IndirectParametersBuffer>,
 | |
|         SRes<PipelineCache>,
 | |
|         SRes<MeshAllocator>,
 | |
|         Option<SRes<PreprocessPipelines>>,
 | |
|     );
 | |
|     type ViewQuery = Has<PreprocessBindGroup>;
 | |
|     type ItemQuery = ();
 | |
|     #[inline]
 | |
|     fn render<'w>(
 | |
|         item: &P,
 | |
|         has_preprocess_bind_group: ROQueryItem<Self::ViewQuery>,
 | |
|         _item_query: Option<()>,
 | |
|         (
 | |
|             meshes,
 | |
|             mesh_instances,
 | |
|             indirect_parameters_buffer,
 | |
|             pipeline_cache,
 | |
|             mesh_allocator,
 | |
|             preprocess_pipelines,
 | |
|         ): SystemParamItem<'w, '_, Self::Param>,
 | |
|         pass: &mut TrackedRenderPass<'w>,
 | |
|     ) -> RenderCommandResult {
 | |
|         // If we're using GPU preprocessing, then we're dependent on that
 | |
|         // compute shader having been run, which of course can only happen if
 | |
|         // it's compiled. Otherwise, our mesh instance data won't be present.
 | |
|         if let Some(preprocess_pipelines) = preprocess_pipelines {
 | |
|             if !has_preprocess_bind_group
 | |
|                 || !preprocess_pipelines.pipelines_are_loaded(&pipeline_cache)
 | |
|             {
 | |
|                 return RenderCommandResult::Skip;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let meshes = meshes.into_inner();
 | |
|         let mesh_instances = mesh_instances.into_inner();
 | |
|         let indirect_parameters_buffer = indirect_parameters_buffer.into_inner();
 | |
|         let mesh_allocator = mesh_allocator.into_inner();
 | |
| 
 | |
|         let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(item.entity()) else {
 | |
|             return RenderCommandResult::Skip;
 | |
|         };
 | |
|         let Some(gpu_mesh) = meshes.get(mesh_asset_id) else {
 | |
|             return RenderCommandResult::Skip;
 | |
|         };
 | |
|         let Some(vertex_buffer_slice) = mesh_allocator.mesh_vertex_slice(&mesh_asset_id) else {
 | |
|             return RenderCommandResult::Skip;
 | |
|         };
 | |
| 
 | |
|         // Calculate the indirect offset, and look up the buffer.
 | |
|         let indirect_parameters = match item.extra_index().as_indirect_parameters_index() {
 | |
|             None => None,
 | |
|             Some(index) => match indirect_parameters_buffer.buffer() {
 | |
|                 None => {
 | |
|                     warn!("Not rendering mesh because indirect parameters buffer wasn't present");
 | |
|                     return RenderCommandResult::Skip;
 | |
|                 }
 | |
|                 Some(buffer) => Some((
 | |
|                     index as u64 * size_of::<IndirectParameters>() as u64,
 | |
|                     buffer,
 | |
|                 )),
 | |
|             },
 | |
|         };
 | |
| 
 | |
|         pass.set_vertex_buffer(0, vertex_buffer_slice.buffer.slice(..));
 | |
| 
 | |
|         let batch_range = item.batch_range();
 | |
| 
 | |
|         // Draw either directly or indirectly, as appropriate.
 | |
|         match &gpu_mesh.buffer_info {
 | |
|             RenderMeshBufferInfo::Indexed {
 | |
|                 index_format,
 | |
|                 count,
 | |
|             } => {
 | |
|                 let Some(index_buffer_slice) = mesh_allocator.mesh_index_slice(&mesh_asset_id)
 | |
|                 else {
 | |
|                     return RenderCommandResult::Skip;
 | |
|                 };
 | |
| 
 | |
|                 pass.set_index_buffer(index_buffer_slice.buffer.slice(..), 0, *index_format);
 | |
| 
 | |
|                 match indirect_parameters {
 | |
|                     None => {
 | |
|                         pass.draw_indexed(
 | |
|                             index_buffer_slice.range.start
 | |
|                                 ..(index_buffer_slice.range.start + *count),
 | |
|                             vertex_buffer_slice.range.start as i32,
 | |
|                             batch_range.clone(),
 | |
|                         );
 | |
|                     }
 | |
|                     Some((indirect_parameters_offset, indirect_parameters_buffer)) => pass
 | |
|                         .draw_indexed_indirect(
 | |
|                             indirect_parameters_buffer,
 | |
|                             indirect_parameters_offset,
 | |
|                         ),
 | |
|                 }
 | |
|             }
 | |
|             RenderMeshBufferInfo::NonIndexed => match indirect_parameters {
 | |
|                 None => {
 | |
|                     pass.draw(vertex_buffer_slice.range, batch_range.clone());
 | |
|                 }
 | |
|                 Some((indirect_parameters_offset, indirect_parameters_buffer)) => {
 | |
|                     pass.draw_indirect(indirect_parameters_buffer, indirect_parameters_offset);
 | |
|                 }
 | |
|             },
 | |
|         }
 | |
|         RenderCommandResult::Success
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(test)]
 | |
| mod tests {
 | |
|     use super::MeshPipelineKey;
 | |
|     #[test]
 | |
|     fn mesh_key_msaa_samples() {
 | |
|         for i in [1, 2, 4, 8, 16, 32, 64, 128] {
 | |
|             assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
 | |
|         }
 | |
|     }
 | |
| }
 |