bevy/crates/bevy_input/src/gamepad.rs
Gino Valente 9b32e09551
bevy_reflect: Add clone registrations project-wide (#18307)
# Objective

Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.

## Solution

This PR is broken into 4 commits:

1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
   
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.

Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.

That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.

Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).

## Testing

You can test locally with a `cargo check`:

```
cargo check --workspace --all-features
```
2025-03-17 18:32:35 +00:00

2979 lines
103 KiB
Rust

//! The gamepad input functionality.
use core::{ops::RangeInclusive, time::Duration};
use crate::{Axis, ButtonInput, ButtonState};
use alloc::string::String;
#[cfg(feature = "bevy_reflect")]
use bevy_ecs::prelude::ReflectComponent;
use bevy_ecs::{
change_detection::DetectChangesMut,
component::Component,
entity::Entity,
event::{Event, EventReader, EventWriter},
name::Name,
system::{Commands, Query},
};
use bevy_math::ops;
use bevy_math::Vec2;
use bevy_platform_support::collections::HashMap;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
use derive_more::derive::From;
use log::{info, warn};
use thiserror::Error;
/// A gamepad event.
///
/// This event type is used over the [`GamepadConnectionEvent`],
/// [`GamepadButtonChangedEvent`] and [`GamepadAxisChangedEvent`] when
/// the in-frame relative ordering of events is important.
///
/// This event is produced by `bevy_input`.
#[derive(Event, Debug, Clone, PartialEq, From)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub enum GamepadEvent {
/// A gamepad has been connected or disconnected.
Connection(GamepadConnectionEvent),
/// A button of the gamepad has been triggered.
Button(GamepadButtonChangedEvent),
/// An axis of the gamepad has been triggered.
Axis(GamepadAxisChangedEvent),
}
/// A raw gamepad event.
///
/// This event type is used over the [`GamepadConnectionEvent`],
/// [`RawGamepadButtonChangedEvent`] and [`RawGamepadAxisChangedEvent`] when
/// the in-frame relative ordering of events is important.
///
/// This event type is used by `bevy_input` to feed its components.
#[derive(Event, Debug, Clone, PartialEq, From)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub enum RawGamepadEvent {
/// A gamepad has been connected or disconnected.
Connection(GamepadConnectionEvent),
/// A button of the gamepad has been triggered.
Button(RawGamepadButtonChangedEvent),
/// An axis of the gamepad has been triggered.
Axis(RawGamepadAxisChangedEvent),
}
/// [`GamepadButton`] changed event unfiltered by [`GamepadSettings`].
#[derive(Event, Debug, Copy, Clone, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct RawGamepadButtonChangedEvent {
/// The gamepad on which the button is triggered.
pub gamepad: Entity,
/// The type of the triggered button.
pub button: GamepadButton,
/// The value of the button.
pub value: f32,
}
impl RawGamepadButtonChangedEvent {
/// Creates a [`RawGamepadButtonChangedEvent`].
pub fn new(gamepad: Entity, button_type: GamepadButton, value: f32) -> Self {
Self {
gamepad,
button: button_type,
value,
}
}
}
/// [`GamepadAxis`] changed event unfiltered by [`GamepadSettings`].
#[derive(Event, Debug, Copy, Clone, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct RawGamepadAxisChangedEvent {
/// The gamepad on which the axis is triggered.
pub gamepad: Entity,
/// The type of the triggered axis.
pub axis: GamepadAxis,
/// The value of the axis.
pub value: f32,
}
impl RawGamepadAxisChangedEvent {
/// Creates a [`RawGamepadAxisChangedEvent`].
pub fn new(gamepad: Entity, axis_type: GamepadAxis, value: f32) -> Self {
Self {
gamepad,
axis: axis_type,
value,
}
}
}
/// A Gamepad connection event. Created when a connection to a gamepad
/// is established and when a gamepad is disconnected.
#[derive(Event, Debug, Clone, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct GamepadConnectionEvent {
/// The gamepad whose connection status changed.
pub gamepad: Entity,
/// The change in the gamepads connection.
pub connection: GamepadConnection,
}
impl GamepadConnectionEvent {
/// Creates a [`GamepadConnectionEvent`].
pub fn new(gamepad: Entity, connection: GamepadConnection) -> Self {
Self {
gamepad,
connection,
}
}
/// Whether the gamepad is connected.
pub fn connected(&self) -> bool {
matches!(self.connection, GamepadConnection::Connected { .. })
}
/// Whether the gamepad is disconnected.
pub fn disconnected(&self) -> bool {
!self.connected()
}
}
/// [`GamepadButton`] event triggered by a digital state change.
#[derive(Event, Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct GamepadButtonStateChangedEvent {
/// The entity that represents this gamepad.
pub entity: Entity,
/// The gamepad button assigned to the event.
pub button: GamepadButton,
/// The pressed state of the button.
pub state: ButtonState,
}
impl GamepadButtonStateChangedEvent {
/// Creates a new [`GamepadButtonStateChangedEvent`].
pub fn new(entity: Entity, button: GamepadButton, state: ButtonState) -> Self {
Self {
entity,
button,
state,
}
}
}
/// [`GamepadButton`] event triggered by an analog state change.
#[derive(Event, Debug, Clone, Copy, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct GamepadButtonChangedEvent {
/// The entity that represents this gamepad.
pub entity: Entity,
/// The gamepad button assigned to the event.
pub button: GamepadButton,
/// The pressed state of the button.
pub state: ButtonState,
/// The analog value of the button (rescaled to be in the 0.0..=1.0 range).
pub value: f32,
}
impl GamepadButtonChangedEvent {
/// Creates a new [`GamepadButtonChangedEvent`].
pub fn new(entity: Entity, button: GamepadButton, state: ButtonState, value: f32) -> Self {
Self {
entity,
button,
state,
value,
}
}
}
/// [`GamepadAxis`] event triggered by an analog state change.
#[derive(Event, Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(
all(feature = "bevy_reflect", feature = "serialize"),
reflect(Serialize, Deserialize)
)]
pub struct GamepadAxisChangedEvent {
/// The entity that represents this gamepad.
pub entity: Entity,
/// The gamepad axis assigned to the event.
pub axis: GamepadAxis,
/// The value of this axis (rescaled to account for axis settings).
pub value: f32,
}
impl GamepadAxisChangedEvent {
/// Creates a new [`GamepadAxisChangedEvent`].
pub fn new(entity: Entity, axis: GamepadAxis, value: f32) -> Self {
Self {
entity,
axis,
value,
}
}
}
/// Errors that occur when setting axis settings for gamepad input.
#[derive(Error, Debug, PartialEq)]
pub enum AxisSettingsError {
/// The given parameter `livezone_lowerbound` was not in range -1.0..=0.0.
#[error("invalid livezone_lowerbound {0}, expected value [-1.0..=0.0]")]
LiveZoneLowerBoundOutOfRange(f32),
/// The given parameter `deadzone_lowerbound` was not in range -1.0..=0.0.
#[error("invalid deadzone_lowerbound {0}, expected value [-1.0..=0.0]")]
DeadZoneLowerBoundOutOfRange(f32),
/// The given parameter `deadzone_lowerbound` was not in range -1.0..=0.0.
#[error("invalid deadzone_upperbound {0}, expected value [0.0..=1.0]")]
DeadZoneUpperBoundOutOfRange(f32),
/// The given parameter `deadzone_lowerbound` was not in range -1.0..=0.0.
#[error("invalid livezone_upperbound {0}, expected value [0.0..=1.0]")]
LiveZoneUpperBoundOutOfRange(f32),
/// Parameter `livezone_lowerbound` was not less than or equal to parameter `deadzone_lowerbound`.
#[error("invalid parameter values livezone_lowerbound {} deadzone_lowerbound {}, expected livezone_lowerbound <= deadzone_lowerbound", livezone_lowerbound, deadzone_lowerbound)]
LiveZoneLowerBoundGreaterThanDeadZoneLowerBound {
/// The value of the `livezone_lowerbound` parameter.
livezone_lowerbound: f32,
/// The value of the `deadzone_lowerbound` parameter.
deadzone_lowerbound: f32,
},
/// Parameter `deadzone_upperbound` was not less than or equal to parameter `livezone_upperbound`.
#[error("invalid parameter values livezone_upperbound {} deadzone_upperbound {}, expected deadzone_upperbound <= livezone_upperbound", livezone_upperbound, deadzone_upperbound)]
DeadZoneUpperBoundGreaterThanLiveZoneUpperBound {
/// The value of the `livezone_upperbound` parameter.
livezone_upperbound: f32,
/// The value of the `deadzone_upperbound` parameter.
deadzone_upperbound: f32,
},
/// The given parameter was not in range 0.0..=2.0.
#[error("invalid threshold {0}, expected 0.0 <= threshold <= 2.0")]
Threshold(f32),
}
/// Errors that occur when setting button settings for gamepad input.
#[derive(Error, Debug, PartialEq)]
pub enum ButtonSettingsError {
/// The given parameter was not in range 0.0..=1.0.
#[error("invalid release_threshold {0}, expected value [0.0..=1.0]")]
ReleaseThresholdOutOfRange(f32),
/// The given parameter was not in range 0.0..=1.0.
#[error("invalid press_threshold {0}, expected [0.0..=1.0]")]
PressThresholdOutOfRange(f32),
/// Parameter `release_threshold` was not less than or equal to `press_threshold`.
#[error("invalid parameter values release_threshold {} press_threshold {}, expected release_threshold <= press_threshold", release_threshold, press_threshold)]
ReleaseThresholdGreaterThanPressThreshold {
/// The value of the `press_threshold` parameter.
press_threshold: f32,
/// The value of the `release_threshold` parameter.
release_threshold: f32,
},
}
/// Stores a connected gamepad's metadata such as the name and its [`GamepadButton`] and [`GamepadAxis`].
///
/// An entity with this component is spawned automatically after [`GamepadConnectionEvent`]
/// and updated by [`gamepad_event_processing_system`].
///
/// See also [`GamepadSettings`] for configuration.
///
/// # Examples
///
/// ```
/// # use bevy_input::gamepad::{Gamepad, GamepadAxis, GamepadButton};
/// # use bevy_ecs::system::Query;
/// # use bevy_ecs::name::Name;
/// #
/// fn gamepad_usage_system(gamepads: Query<(&Name, &Gamepad)>) {
/// for (name, gamepad) in &gamepads {
/// println!("{name}");
///
/// if gamepad.just_pressed(GamepadButton::North) {
/// println!("{} just pressed North", name)
/// }
///
/// if let Some(left_stick_x) = gamepad.get(GamepadAxis::LeftStickX) {
/// println!("left stick X: {}", left_stick_x)
/// }
/// }
/// }
/// ```
#[derive(Component, Debug)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Component, Default)
)]
#[require(GamepadSettings)]
pub struct Gamepad {
/// The USB vendor ID as assigned by the USB-IF, if available.
pub(crate) vendor_id: Option<u16>,
/// The USB product ID as assigned by the [vendor][Self::vendor_id], if available.
pub(crate) product_id: Option<u16>,
/// [`ButtonInput`] of [`GamepadButton`] representing their digital state.
pub(crate) digital: ButtonInput<GamepadButton>,
/// [`Axis`] of [`GamepadButton`] representing their analog state.
pub(crate) analog: Axis<GamepadInput>,
}
impl Gamepad {
/// Returns the USB vendor ID as assigned by the USB-IF, if available.
pub fn vendor_id(&self) -> Option<u16> {
self.vendor_id
}
/// Returns the USB product ID as assigned by the [vendor], if available.
///
/// [vendor]: Self::vendor_id
pub fn product_id(&self) -> Option<u16> {
self.product_id
}
/// Returns the analog data of the provided [`GamepadAxis`] or [`GamepadButton`].
///
/// This will be clamped between [[`Axis::MIN`],[`Axis::MAX`]].
pub fn get(&self, input: impl Into<GamepadInput>) -> Option<f32> {
self.analog.get(input.into())
}
/// Returns the unclamped analog data of the provided [`GamepadAxis`] or [`GamepadButton`].
///
/// This value may be outside the [`Axis::MIN`] and [`Axis::MAX`] range.
pub fn get_unclamped(&self, input: impl Into<GamepadInput>) -> Option<f32> {
self.analog.get_unclamped(input.into())
}
/// Returns the left stick as a [`Vec2`].
pub fn left_stick(&self) -> Vec2 {
Vec2 {
x: self.get(GamepadAxis::LeftStickX).unwrap_or(0.0),
y: self.get(GamepadAxis::LeftStickY).unwrap_or(0.0),
}
}
/// Returns the right stick as a [`Vec2`].
pub fn right_stick(&self) -> Vec2 {
Vec2 {
x: self.get(GamepadAxis::RightStickX).unwrap_or(0.0),
y: self.get(GamepadAxis::RightStickY).unwrap_or(0.0),
}
}
/// Returns the directional pad as a [`Vec2`].
pub fn dpad(&self) -> Vec2 {
Vec2 {
x: self.get(GamepadButton::DPadRight).unwrap_or(0.0)
- self.get(GamepadButton::DPadLeft).unwrap_or(0.0),
y: self.get(GamepadButton::DPadUp).unwrap_or(0.0)
- self.get(GamepadButton::DPadDown).unwrap_or(0.0),
}
}
/// Returns `true` if the [`GamepadButton`] has been pressed.
pub fn pressed(&self, button_type: GamepadButton) -> bool {
self.digital.pressed(button_type)
}
/// Returns `true` if any item in the [`GamepadButton`] iterator has been pressed.
pub fn any_pressed(&self, button_inputs: impl IntoIterator<Item = GamepadButton>) -> bool {
self.digital.any_pressed(button_inputs)
}
/// Returns `true` if all items in the [`GamepadButton`] iterator have been pressed.
pub fn all_pressed(&self, button_inputs: impl IntoIterator<Item = GamepadButton>) -> bool {
self.digital.all_pressed(button_inputs)
}
/// Returns `true` if the [`GamepadButton`] has been pressed during the current frame.
///
/// Note: This function does not imply information regarding the current state of [`ButtonInput::pressed`] or [`ButtonInput::just_released`].
pub fn just_pressed(&self, button_type: GamepadButton) -> bool {
self.digital.just_pressed(button_type)
}
/// Returns `true` if any item in the [`GamepadButton`] iterator has been pressed during the current frame.
pub fn any_just_pressed(&self, button_inputs: impl IntoIterator<Item = GamepadButton>) -> bool {
self.digital.any_just_pressed(button_inputs)
}
/// Returns `true` if all items in the [`GamepadButton`] iterator have been just pressed.
pub fn all_just_pressed(&self, button_inputs: impl IntoIterator<Item = GamepadButton>) -> bool {
self.digital.all_just_pressed(button_inputs)
}
/// Returns `true` if the [`GamepadButton`] has been released during the current frame.
///
/// Note: This function does not imply information regarding the current state of [`ButtonInput::pressed`] or [`ButtonInput::just_pressed`].
pub fn just_released(&self, button_type: GamepadButton) -> bool {
self.digital.just_released(button_type)
}
/// Returns `true` if any item in the [`GamepadButton`] iterator has just been released.
pub fn any_just_released(
&self,
button_inputs: impl IntoIterator<Item = GamepadButton>,
) -> bool {
self.digital.any_just_released(button_inputs)
}
/// Returns `true` if all items in the [`GamepadButton`] iterator have just been released.
pub fn all_just_released(
&self,
button_inputs: impl IntoIterator<Item = GamepadButton>,
) -> bool {
self.digital.all_just_released(button_inputs)
}
/// Returns an iterator over all digital [button]s that are pressed.
///
/// [button]: GamepadButton
pub fn get_pressed(&self) -> impl Iterator<Item = &GamepadButton> {
self.digital.get_pressed()
}
/// Returns an iterator over all digital [button]s that were just pressed.
///
/// [button]: GamepadButton
pub fn get_just_pressed(&self) -> impl Iterator<Item = &GamepadButton> {
self.digital.get_just_pressed()
}
/// Returns an iterator over all digital [button]s that were just released.
///
/// [button]: GamepadButton
pub fn get_just_released(&self) -> impl Iterator<Item = &GamepadButton> {
self.digital.get_just_released()
}
/// Returns an iterator over all analog [axes][GamepadInput].
pub fn get_analog_axes(&self) -> impl Iterator<Item = &GamepadInput> {
self.analog.all_axes()
}
/// [`ButtonInput`] of [`GamepadButton`] representing their digital state.
pub fn digital(&self) -> &ButtonInput<GamepadButton> {
&self.digital
}
/// Mutable [`ButtonInput`] of [`GamepadButton`] representing their digital state. Useful for mocking inputs.
pub fn digital_mut(&mut self) -> &mut ButtonInput<GamepadButton> {
&mut self.digital
}
/// [`Axis`] of [`GamepadButton`] representing their analog state.
pub fn analog(&self) -> &Axis<GamepadInput> {
&self.analog
}
/// Mutable [`Axis`] of [`GamepadButton`] representing their analog state. Useful for mocking inputs.
pub fn analog_mut(&mut self) -> &mut Axis<GamepadInput> {
&mut self.analog
}
}
impl Default for Gamepad {
fn default() -> Self {
let mut analog = Axis::default();
for button in GamepadButton::all().iter().copied() {
analog.set(button, 0.0);
}
for axis_type in GamepadAxis::all().iter().copied() {
analog.set(axis_type, 0.0);
}
Self {
vendor_id: None,
product_id: None,
digital: Default::default(),
analog,
}
}
}
/// Represents gamepad input types that are mapped in the range [0.0, 1.0].
///
/// ## Usage
///
/// This is used to determine which button has changed its value when receiving gamepad button events.
/// It is also used in the [`Gamepad`] component.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Hash, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub enum GamepadButton {
/// The bottom action button of the action pad (i.e. PS: Cross, Xbox: A).
South,
/// The right action button of the action pad (i.e. PS: Circle, Xbox: B).
East,
/// The upper action button of the action pad (i.e. PS: Triangle, Xbox: Y).
North,
/// The left action button of the action pad (i.e. PS: Square, Xbox: X).
West,
/// The C button.
C,
/// The Z button.
Z,
/// The first left trigger.
LeftTrigger,
/// The second left trigger.
LeftTrigger2,
/// The first right trigger.
RightTrigger,
/// The second right trigger.
RightTrigger2,
/// The select button.
Select,
/// The start button.
Start,
/// The mode button.
Mode,
/// The left thumb stick button.
LeftThumb,
/// The right thumb stick button.
RightThumb,
/// The up button of the D-Pad.
DPadUp,
/// The down button of the D-Pad.
DPadDown,
/// The left button of the D-Pad.
DPadLeft,
/// The right button of the D-Pad.
DPadRight,
/// Miscellaneous buttons, considered non-standard (i.e. Extra buttons on a flight stick that do not have a gamepad equivalent).
Other(u8),
}
impl GamepadButton {
/// Returns an array of all the standard [`GamepadButton`].
pub const fn all() -> [GamepadButton; 19] {
[
GamepadButton::South,
GamepadButton::East,
GamepadButton::North,
GamepadButton::West,
GamepadButton::C,
GamepadButton::Z,
GamepadButton::LeftTrigger,
GamepadButton::LeftTrigger2,
GamepadButton::RightTrigger,
GamepadButton::RightTrigger2,
GamepadButton::Select,
GamepadButton::Start,
GamepadButton::Mode,
GamepadButton::LeftThumb,
GamepadButton::RightThumb,
GamepadButton::DPadUp,
GamepadButton::DPadDown,
GamepadButton::DPadLeft,
GamepadButton::DPadRight,
]
}
}
/// Represents gamepad input types that are mapped in the range [-1.0, 1.0].
///
/// ## Usage
///
/// This is used to determine which axis has changed its value when receiving a
/// gamepad axis event. It is also used in the [`Gamepad`] component.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Hash, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub enum GamepadAxis {
/// The horizontal value of the left stick.
LeftStickX,
/// The vertical value of the left stick.
LeftStickY,
/// Generally the throttle axis of a HOTAS setup.
/// Refer to [`GamepadButton::LeftTrigger2`] for the analog trigger on a gamepad controller.
LeftZ,
/// The horizontal value of the right stick.
RightStickX,
/// The vertical value of the right stick.
RightStickY,
/// The yaw of the main joystick, not supported on common gamepads.
/// Refer to [`GamepadButton::RightTrigger2`] for the analog trigger on a gamepad controller.
RightZ,
/// Non-standard support for other axis types (i.e. HOTAS sliders, potentiometers, etc).
Other(u8),
}
impl GamepadAxis {
/// Returns an array of all the standard [`GamepadAxis`].
pub const fn all() -> [GamepadAxis; 6] {
[
GamepadAxis::LeftStickX,
GamepadAxis::LeftStickY,
GamepadAxis::LeftZ,
GamepadAxis::RightStickX,
GamepadAxis::RightStickY,
GamepadAxis::RightZ,
]
}
}
/// Encapsulation over [`GamepadAxis`] and [`GamepadButton`].
// This is done so Gamepad can share a single Axis<T> and simplifies the API by having only one get/get_unclamped method
#[derive(Debug, Copy, Clone, Eq, Hash, PartialEq, From)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Hash, PartialEq, Clone)
)]
pub enum GamepadInput {
/// A [`GamepadAxis`].
Axis(GamepadAxis),
/// A [`GamepadButton`].
Button(GamepadButton),
}
/// Gamepad settings component.
///
/// ## Usage
///
/// It is used to create a `bevy` component that stores the settings of [`GamepadButton`] and [`GamepadAxis`] in [`Gamepad`].
/// If no user defined [`ButtonSettings`], [`AxisSettings`], or [`ButtonAxisSettings`]
/// are defined, the default settings of each are used as a fallback accordingly.
///
/// ## Note
///
/// The [`GamepadSettings`] are used to determine when raw gamepad events
/// should register. Events that don't meet the change thresholds defined in [`GamepadSettings`]
/// will not register. To modify these settings, mutate the corresponding component.
#[derive(Component, Clone, Default, Debug)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Default, Component, Clone)
)]
pub struct GamepadSettings {
/// The default button settings.
pub default_button_settings: ButtonSettings,
/// The default axis settings.
pub default_axis_settings: AxisSettings,
/// The default button axis settings.
pub default_button_axis_settings: ButtonAxisSettings,
/// The user defined button settings.
pub button_settings: HashMap<GamepadButton, ButtonSettings>,
/// The user defined axis settings.
pub axis_settings: HashMap<GamepadAxis, AxisSettings>,
/// The user defined button axis settings.
pub button_axis_settings: HashMap<GamepadButton, ButtonAxisSettings>,
}
impl GamepadSettings {
/// Returns the [`ButtonSettings`] of the [`GamepadButton`].
///
/// If no user defined [`ButtonSettings`] are specified the default [`ButtonSettings`] get returned.
///
/// # Examples
///
/// ```
/// # use bevy_input::gamepad::{GamepadSettings, GamepadButton};
/// #
/// # let settings = GamepadSettings::default();
/// let button_settings = settings.get_button_settings(GamepadButton::South);
/// ```
pub fn get_button_settings(&self, button: GamepadButton) -> &ButtonSettings {
self.button_settings
.get(&button)
.unwrap_or(&self.default_button_settings)
}
/// Returns the [`AxisSettings`] of the [`GamepadAxis`].
///
/// If no user defined [`AxisSettings`] are specified the default [`AxisSettings`] get returned.
///
/// # Examples
///
/// ```
/// # use bevy_input::gamepad::{GamepadSettings, GamepadAxis};
/// #
/// # let settings = GamepadSettings::default();
/// let axis_settings = settings.get_axis_settings(GamepadAxis::LeftStickX);
/// ```
pub fn get_axis_settings(&self, axis: GamepadAxis) -> &AxisSettings {
self.axis_settings
.get(&axis)
.unwrap_or(&self.default_axis_settings)
}
/// Returns the [`ButtonAxisSettings`] of the [`GamepadButton`].
///
/// If no user defined [`ButtonAxisSettings`] are specified the default [`ButtonAxisSettings`] get returned.
///
/// # Examples
///
/// ```
/// # use bevy_input::gamepad::{GamepadSettings, GamepadButton};
/// #
/// # let settings = GamepadSettings::default();
/// let button_axis_settings = settings.get_button_axis_settings(GamepadButton::South);
/// ```
pub fn get_button_axis_settings(&self, button: GamepadButton) -> &ButtonAxisSettings {
self.button_axis_settings
.get(&button)
.unwrap_or(&self.default_button_axis_settings)
}
}
/// Manages settings for gamepad buttons.
///
/// It is used inside [`GamepadSettings`] to define the threshold for a [`GamepadButton`]
/// to be considered pressed or released. A button is considered pressed if the `press_threshold`
/// value is surpassed and released if the `release_threshold` value is undercut.
///
/// Allowed values: `0.0 <= ``release_threshold`` <= ``press_threshold`` <= 1.0`
#[derive(Debug, PartialEq, Clone)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Default, Clone)
)]
pub struct ButtonSettings {
press_threshold: f32,
release_threshold: f32,
}
impl Default for ButtonSettings {
fn default() -> Self {
ButtonSettings {
press_threshold: 0.75,
release_threshold: 0.65,
}
}
}
impl ButtonSettings {
/// Creates a new [`ButtonSettings`] instance.
///
/// # Parameters
///
/// + `press_threshold` is the button input value above which the button is considered pressed.
/// + `release_threshold` is the button input value below which the button is considered released.
///
/// Restrictions:
/// + `0.0 <= ``release_threshold`` <= ``press_threshold`` <= 1.0`
///
/// # Errors
///
/// If the restrictions are not met, returns one of
/// `GamepadSettingsError::ButtonReleaseThresholdOutOfRange`,
/// `GamepadSettingsError::ButtonPressThresholdOutOfRange`, or
/// `GamepadSettingsError::ButtonReleaseThresholdGreaterThanPressThreshold`.
pub fn new(
press_threshold: f32,
release_threshold: f32,
) -> Result<ButtonSettings, ButtonSettingsError> {
if !(0.0..=1.0).contains(&release_threshold) {
Err(ButtonSettingsError::ReleaseThresholdOutOfRange(
release_threshold,
))
} else if !(0.0..=1.0).contains(&press_threshold) {
Err(ButtonSettingsError::PressThresholdOutOfRange(
press_threshold,
))
} else if release_threshold > press_threshold {
Err(
ButtonSettingsError::ReleaseThresholdGreaterThanPressThreshold {
press_threshold,
release_threshold,
},
)
} else {
Ok(ButtonSettings {
press_threshold,
release_threshold,
})
}
}
/// Returns `true` if the button is pressed.
///
/// A button is considered pressed if the `value` passed is greater than or equal to the press threshold.
pub fn is_pressed(&self, value: f32) -> bool {
value >= self.press_threshold
}
/// Returns `true` if the button is released.
///
/// A button is considered released if the `value` passed is lower than or equal to the release threshold.
pub fn is_released(&self, value: f32) -> bool {
value <= self.release_threshold
}
/// Get the button input threshold above which the button is considered pressed.
pub fn press_threshold(&self) -> f32 {
self.press_threshold
}
/// Try to set the button input threshold above which the button is considered pressed.
///
/// # Errors
///
/// If the value passed is outside the range [release threshold..=1.0], returns either
/// `GamepadSettingsError::ButtonPressThresholdOutOfRange` or
/// `GamepadSettingsError::ButtonReleaseThresholdGreaterThanPressThreshold`.
pub fn try_set_press_threshold(&mut self, value: f32) -> Result<(), ButtonSettingsError> {
if (self.release_threshold..=1.0).contains(&value) {
self.press_threshold = value;
Ok(())
} else if !(0.0..1.0).contains(&value) {
Err(ButtonSettingsError::PressThresholdOutOfRange(value))
} else {
Err(
ButtonSettingsError::ReleaseThresholdGreaterThanPressThreshold {
press_threshold: value,
release_threshold: self.release_threshold,
},
)
}
}
/// Try to set the button input threshold above which the button is considered pressed.
/// If the value passed is outside the range [release threshold..=1.0], the value will not be changed.
///
/// Returns the new value of the press threshold.
pub fn set_press_threshold(&mut self, value: f32) -> f32 {
self.try_set_press_threshold(value).ok();
self.press_threshold
}
/// Get the button input threshold below which the button is considered released.
pub fn release_threshold(&self) -> f32 {
self.release_threshold
}
/// Try to set the button input threshold below which the button is considered released.
///
/// # Errors
///
/// If the value passed is outside the range [0.0..=press threshold], returns
/// `ButtonSettingsError::ReleaseThresholdOutOfRange` or
/// `ButtonSettingsError::ReleaseThresholdGreaterThanPressThreshold`.
pub fn try_set_release_threshold(&mut self, value: f32) -> Result<(), ButtonSettingsError> {
if (0.0..=self.press_threshold).contains(&value) {
self.release_threshold = value;
Ok(())
} else if !(0.0..1.0).contains(&value) {
Err(ButtonSettingsError::ReleaseThresholdOutOfRange(value))
} else {
Err(
ButtonSettingsError::ReleaseThresholdGreaterThanPressThreshold {
press_threshold: self.press_threshold,
release_threshold: value,
},
)
}
}
/// Try to set the button input threshold below which the button is considered released. If the
/// value passed is outside the range [0.0..=press threshold], the value will not be changed.
///
/// Returns the new value of the release threshold.
pub fn set_release_threshold(&mut self, value: f32) -> f32 {
self.try_set_release_threshold(value).ok();
self.release_threshold
}
}
/// Settings for a [`GamepadAxis`].
///
/// It is used inside the [`GamepadSettings`] to define the sensitivity range and
/// threshold for an axis.
/// Values that are higher than `livezone_upperbound` will be rounded up to 1.0.
/// Values that are lower than `livezone_lowerbound` will be rounded down to -1.0.
/// Values that are in-between `deadzone_lowerbound` and `deadzone_upperbound` will be rounded to 0.0.
/// Otherwise, values will be linearly rescaled to fit into the sensitivity range.
/// For example, a value that is one fourth of the way from `deadzone_upperbound` to `livezone_upperbound` will be scaled to 0.25.
///
/// The valid range is `[-1.0, 1.0]`.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default, Clone)
)]
pub struct AxisSettings {
/// Values that are higher than `livezone_upperbound` will be rounded up to 1.0.
livezone_upperbound: f32,
/// Positive values that are less than `deadzone_upperbound` will be rounded down to 0.0.
deadzone_upperbound: f32,
/// Negative values that are greater than `deadzone_lowerbound` will be rounded up to 0.0.
deadzone_lowerbound: f32,
/// Values that are lower than `livezone_lowerbound` will be rounded down to -1.0.
livezone_lowerbound: f32,
/// `threshold` defines the minimum difference between old and new values to apply the changes.
threshold: f32,
}
impl Default for AxisSettings {
fn default() -> Self {
AxisSettings {
livezone_upperbound: 1.0,
deadzone_upperbound: 0.05,
deadzone_lowerbound: -0.05,
livezone_lowerbound: -1.0,
threshold: 0.01,
}
}
}
impl AxisSettings {
/// Creates a new [`AxisSettings`] instance.
///
/// # Arguments
///
/// + `livezone_lowerbound` - the value below which inputs will be rounded down to -1.0.
/// + `deadzone_lowerbound` - the value above which negative inputs will be rounded up to 0.0.
/// + `deadzone_upperbound` - the value below which positive inputs will be rounded down to 0.0.
/// + `livezone_upperbound` - the value above which inputs will be rounded up to 1.0.
/// + `threshold` - the minimum value by which input must change before the change is registered.
///
/// Restrictions:
///
/// + `-1.0 <= livezone_lowerbound <= deadzone_lowerbound <= 0.0`
/// + `0.0 <= deadzone_upperbound <= livezone_upperbound <= 1.0`
/// + `0.0 <= threshold <= 2.0`
///
/// # Errors
///
/// Returns an [`AxisSettingsError`] if any restrictions on the zone values are not met.
/// If the zone restrictions are met, but the `threshold` value restrictions are not met,
/// returns [`AxisSettingsError::Threshold`].
pub fn new(
livezone_lowerbound: f32,
deadzone_lowerbound: f32,
deadzone_upperbound: f32,
livezone_upperbound: f32,
threshold: f32,
) -> Result<AxisSettings, AxisSettingsError> {
if !(-1.0..=0.0).contains(&livezone_lowerbound) {
Err(AxisSettingsError::LiveZoneLowerBoundOutOfRange(
livezone_lowerbound,
))
} else if !(-1.0..=0.0).contains(&deadzone_lowerbound) {
Err(AxisSettingsError::DeadZoneLowerBoundOutOfRange(
deadzone_lowerbound,
))
} else if !(0.0..=1.0).contains(&deadzone_upperbound) {
Err(AxisSettingsError::DeadZoneUpperBoundOutOfRange(
deadzone_upperbound,
))
} else if !(0.0..=1.0).contains(&livezone_upperbound) {
Err(AxisSettingsError::LiveZoneUpperBoundOutOfRange(
livezone_upperbound,
))
} else if livezone_lowerbound > deadzone_lowerbound {
Err(
AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound {
livezone_lowerbound,
deadzone_lowerbound,
},
)
} else if deadzone_upperbound > livezone_upperbound {
Err(
AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound {
livezone_upperbound,
deadzone_upperbound,
},
)
} else if !(0.0..=2.0).contains(&threshold) {
Err(AxisSettingsError::Threshold(threshold))
} else {
Ok(Self {
livezone_lowerbound,
deadzone_lowerbound,
deadzone_upperbound,
livezone_upperbound,
threshold,
})
}
}
/// Get the value above which inputs will be rounded up to 1.0.
pub fn livezone_upperbound(&self) -> f32 {
self.livezone_upperbound
}
/// Try to set the value above which inputs will be rounded up to 1.0.
///
/// # Errors
///
/// If the value passed is less than the deadzone upper bound,
/// returns `AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound`.
/// If the value passed is not in range [0.0..=1.0], returns `AxisSettingsError::LiveZoneUpperBoundOutOfRange`.
pub fn try_set_livezone_upperbound(&mut self, value: f32) -> Result<(), AxisSettingsError> {
if !(0.0..=1.0).contains(&value) {
Err(AxisSettingsError::LiveZoneUpperBoundOutOfRange(value))
} else if value < self.deadzone_upperbound {
Err(
AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound {
livezone_upperbound: value,
deadzone_upperbound: self.deadzone_upperbound,
},
)
} else {
self.livezone_upperbound = value;
Ok(())
}
}
/// Try to set the value above which inputs will be rounded up to 1.0.
/// If the value passed is negative or less than `deadzone_upperbound`,
/// the value will not be changed.
///
/// Returns the new value of `livezone_upperbound`.
pub fn set_livezone_upperbound(&mut self, value: f32) -> f32 {
self.try_set_livezone_upperbound(value).ok();
self.livezone_upperbound
}
/// Get the value below which positive inputs will be rounded down to 0.0.
pub fn deadzone_upperbound(&self) -> f32 {
self.deadzone_upperbound
}
/// Try to set the value below which positive inputs will be rounded down to 0.0.
///
/// # Errors
///
/// If the value passed is greater than the live zone upper bound,
/// returns `AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound`.
/// If the value passed is not in range [0.0..=1.0], returns `AxisSettingsError::DeadZoneUpperBoundOutOfRange`.
pub fn try_set_deadzone_upperbound(&mut self, value: f32) -> Result<(), AxisSettingsError> {
if !(0.0..=1.0).contains(&value) {
Err(AxisSettingsError::DeadZoneUpperBoundOutOfRange(value))
} else if self.livezone_upperbound < value {
Err(
AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound {
livezone_upperbound: self.livezone_upperbound,
deadzone_upperbound: value,
},
)
} else {
self.deadzone_upperbound = value;
Ok(())
}
}
/// Try to set the value below which positive inputs will be rounded down to 0.0.
/// If the value passed is negative or greater than `livezone_upperbound`,
/// the value will not be changed.
///
/// Returns the new value of `deadzone_upperbound`.
pub fn set_deadzone_upperbound(&mut self, value: f32) -> f32 {
self.try_set_deadzone_upperbound(value).ok();
self.deadzone_upperbound
}
/// Get the value below which negative inputs will be rounded down to -1.0.
pub fn livezone_lowerbound(&self) -> f32 {
self.livezone_lowerbound
}
/// Try to set the value below which negative inputs will be rounded down to -1.0.
///
/// # Errors
///
/// If the value passed is less than the deadzone lower bound,
/// returns `AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound`.
/// If the value passed is not in range [-1.0..=0.0], returns `AxisSettingsError::LiveZoneLowerBoundOutOfRange`.
pub fn try_set_livezone_lowerbound(&mut self, value: f32) -> Result<(), AxisSettingsError> {
if !(-1.0..=0.0).contains(&value) {
Err(AxisSettingsError::LiveZoneLowerBoundOutOfRange(value))
} else if value > self.deadzone_lowerbound {
Err(
AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound {
livezone_lowerbound: value,
deadzone_lowerbound: self.deadzone_lowerbound,
},
)
} else {
self.livezone_lowerbound = value;
Ok(())
}
}
/// Try to set the value below which negative inputs will be rounded down to -1.0.
/// If the value passed is positive or greater than `deadzone_lowerbound`,
/// the value will not be changed.
///
/// Returns the new value of `livezone_lowerbound`.
pub fn set_livezone_lowerbound(&mut self, value: f32) -> f32 {
self.try_set_livezone_lowerbound(value).ok();
self.livezone_lowerbound
}
/// Get the value above which inputs will be rounded up to 0.0.
pub fn deadzone_lowerbound(&self) -> f32 {
self.deadzone_lowerbound
}
/// Try to set the value above which inputs will be rounded up to 0.0.
///
/// # Errors
///
/// If the value passed is less than the live zone lower bound,
/// returns `AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound`.
/// If the value passed is not in range [-1.0..=0.0], returns `AxisSettingsError::DeadZoneLowerBoundOutOfRange`.
pub fn try_set_deadzone_lowerbound(&mut self, value: f32) -> Result<(), AxisSettingsError> {
if !(-1.0..=0.0).contains(&value) {
Err(AxisSettingsError::DeadZoneLowerBoundOutOfRange(value))
} else if self.livezone_lowerbound > value {
Err(
AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound {
livezone_lowerbound: self.livezone_lowerbound,
deadzone_lowerbound: value,
},
)
} else {
self.deadzone_lowerbound = value;
Ok(())
}
}
/// Try to set the value above which inputs will be rounded up to 0.0.
/// If the value passed is less than -1.0 or less than `livezone_lowerbound`,
/// the value will not be changed.
///
/// Returns the new value of `deadzone_lowerbound`.
pub fn set_deadzone_lowerbound(&mut self, value: f32) -> f32 {
self.try_set_deadzone_lowerbound(value).ok();
self.deadzone_lowerbound
}
/// Get the minimum value by which input must change before the change is registered.
pub fn threshold(&self) -> f32 {
self.threshold
}
/// Try to set the minimum value by which input must change before the change is registered.
///
/// # Errors
///
/// If the value passed is not within [0.0..=2.0], returns `GamepadSettingsError::AxisThreshold`.
pub fn try_set_threshold(&mut self, value: f32) -> Result<(), AxisSettingsError> {
if !(0.0..=2.0).contains(&value) {
Err(AxisSettingsError::Threshold(value))
} else {
self.threshold = value;
Ok(())
}
}
/// Try to set the minimum value by which input must change before the changes will be applied.
/// If the value passed is not within [0.0..=2.0], the value will not be changed.
///
/// Returns the new value of threshold.
pub fn set_threshold(&mut self, value: f32) -> f32 {
self.try_set_threshold(value).ok();
self.threshold
}
/// Clamps the `raw_value` according to the `AxisSettings`.
pub fn clamp(&self, raw_value: f32) -> f32 {
if self.deadzone_lowerbound <= raw_value && raw_value <= self.deadzone_upperbound {
0.0
} else if raw_value >= self.livezone_upperbound {
1.0
} else if raw_value <= self.livezone_lowerbound {
-1.0
} else {
raw_value
}
}
/// Determines whether the change from `old_raw_value` to `new_raw_value` should
/// be registered as a change, according to the [`AxisSettings`].
fn should_register_change(&self, new_raw_value: f32, old_raw_value: Option<f32>) -> bool {
match old_raw_value {
None => true,
Some(old_raw_value) => ops::abs(new_raw_value - old_raw_value) >= self.threshold,
}
}
/// Filters the `new_raw_value` based on the `old_raw_value`, according to the [`AxisSettings`].
///
/// Returns the clamped and scaled `new_raw_value` if the change exceeds the settings threshold,
/// and `None` otherwise.
fn filter(
&self,
new_raw_value: f32,
old_raw_value: Option<f32>,
) -> Option<FilteredAxisPosition> {
let clamped_unscaled = self.clamp(new_raw_value);
match self.should_register_change(clamped_unscaled, old_raw_value) {
true => Some(FilteredAxisPosition {
scaled: self.get_axis_position_from_value(clamped_unscaled),
raw: new_raw_value,
}),
false => None,
}
}
#[inline(always)]
fn get_axis_position_from_value(&self, value: f32) -> ScaledAxisWithDeadZonePosition {
if value < self.deadzone_upperbound && value > self.deadzone_lowerbound {
ScaledAxisWithDeadZonePosition::Dead
} else if value > self.livezone_upperbound {
ScaledAxisWithDeadZonePosition::AboveHigh
} else if value < self.livezone_lowerbound {
ScaledAxisWithDeadZonePosition::BelowLow
} else if value >= self.deadzone_upperbound {
ScaledAxisWithDeadZonePosition::High(linear_remapping(
value,
self.deadzone_upperbound..=self.livezone_upperbound,
0.0..=1.0,
))
} else if value <= self.deadzone_lowerbound {
ScaledAxisWithDeadZonePosition::Low(linear_remapping(
value,
self.livezone_lowerbound..=self.deadzone_lowerbound,
-1.0..=0.0,
))
} else {
unreachable!();
}
}
}
/// A linear remapping of `value` from `old` to `new`.
fn linear_remapping(value: f32, old: RangeInclusive<f32>, new: RangeInclusive<f32>) -> f32 {
// https://stackoverflow.com/a/929104
((value - old.start()) / (old.end() - old.start())) * (new.end() - new.start()) + new.start()
}
#[derive(Debug, Clone, Copy)]
/// Deadzone-aware axis position.
enum ScaledAxisWithDeadZonePosition {
/// The input clipped below the valid range of the axis.
BelowLow,
/// The input is lower than the deadzone.
Low(f32),
/// The input falls within the deadzone, meaning it is counted as 0.
Dead,
/// The input is higher than the deadzone.
High(f32),
/// The input clipped above the valid range of the axis.
AboveHigh,
}
struct FilteredAxisPosition {
scaled: ScaledAxisWithDeadZonePosition,
raw: f32,
}
impl ScaledAxisWithDeadZonePosition {
/// Converts the value into a float in the range [-1, 1].
fn to_f32(self) -> f32 {
match self {
ScaledAxisWithDeadZonePosition::BelowLow => -1.,
ScaledAxisWithDeadZonePosition::Low(scaled)
| ScaledAxisWithDeadZonePosition::High(scaled) => scaled,
ScaledAxisWithDeadZonePosition::Dead => 0.,
ScaledAxisWithDeadZonePosition::AboveHigh => 1.,
}
}
}
#[derive(Debug, Clone, Copy)]
/// Low/High-aware axis position.
enum ScaledAxisPosition {
/// The input fell short of the "low" value.
ClampedLow,
/// The input was in the normal range.
Scaled(f32),
/// The input surpassed the "high" value.
ClampedHigh,
}
struct FilteredButtonAxisPosition {
scaled: ScaledAxisPosition,
raw: f32,
}
impl ScaledAxisPosition {
/// Converts the value into a float in the range [0, 1].
fn to_f32(self) -> f32 {
match self {
ScaledAxisPosition::ClampedLow => 0.,
ScaledAxisPosition::Scaled(scaled) => scaled,
ScaledAxisPosition::ClampedHigh => 1.,
}
}
}
/// Settings for a [`GamepadButton`].
///
/// It is used inside the [`GamepadSettings`] to define the sensitivity range and
/// threshold for a button axis.
///
/// ## Logic
///
/// - Values that are higher than or equal to `high` will be rounded to 1.0.
/// - Values that are lower than or equal to `low` will be rounded to 0.0.
/// - Otherwise, values will not be rounded.
///
/// The valid range is from 0.0 to 1.0, inclusive.
#[derive(Debug, Clone)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Default, Clone)
)]
pub struct ButtonAxisSettings {
/// The high value at which to apply rounding.
pub high: f32,
/// The low value at which to apply rounding.
pub low: f32,
/// The threshold to apply rounding.
pub threshold: f32,
}
impl Default for ButtonAxisSettings {
fn default() -> Self {
ButtonAxisSettings {
high: 0.95,
low: 0.05,
threshold: 0.01,
}
}
}
impl ButtonAxisSettings {
/// Clamps the `raw_value` according to the specified settings.
///
/// If the `raw_value` is:
/// - lower than or equal to `low` it will be rounded to 0.0.
/// - higher than or equal to `high` it will be rounded to 1.0.
/// - Otherwise it will not be rounded.
fn clamp(&self, raw_value: f32) -> f32 {
if raw_value <= self.low {
return 0.0;
}
if raw_value >= self.high {
return 1.0;
}
raw_value
}
/// Determines whether the change from an `old_raw_value` to a `new_raw_value` should
/// be registered as a change event, according to the specified settings.
fn should_register_change(&self, new_raw_value: f32, old_raw_value: Option<f32>) -> bool {
match old_raw_value {
None => true,
Some(old_raw_value) => ops::abs(new_raw_value - old_raw_value) >= self.threshold,
}
}
/// Filters the `new_raw_value` based on the `old_raw_value`, according to the [`ButtonAxisSettings`].
///
/// Returns the clamped and scaled `new_raw_value`, according to the [`ButtonAxisSettings`], if the change
/// exceeds the settings threshold, and `None` otherwise.
fn filter(
&self,
new_raw_value: f32,
old_raw_value: Option<f32>,
) -> Option<FilteredButtonAxisPosition> {
let clamped_unscaled = self.clamp(new_raw_value);
match self.should_register_change(clamped_unscaled, old_raw_value) {
true => Some(FilteredButtonAxisPosition {
scaled: self.get_axis_position_from_value(clamped_unscaled),
raw: new_raw_value,
}),
false => None,
}
}
/// Clamps and scales the `value` according to the specified settings.
///
/// If the `value` is:
/// - lower than or equal to `low` it will be rounded to 0.0.
/// - higher than or equal to `high` it will be rounded to 1.0.
/// - Otherwise, it will be scaled from (low, high) to (0, 1).
fn get_axis_position_from_value(&self, value: f32) -> ScaledAxisPosition {
if value <= self.low {
ScaledAxisPosition::ClampedLow
} else if value >= self.high {
ScaledAxisPosition::ClampedHigh
} else {
ScaledAxisPosition::Scaled(linear_remapping(value, self.low..=self.high, 0.0..=1.0))
}
}
}
/// Handles [`GamepadConnectionEvent`]s events.
///
/// On connection, adds the components representing a [`Gamepad`] to the entity.
/// On disconnection, removes the [`Gamepad`] and other related components.
/// Entities are left alive and might leave components like [`GamepadSettings`] to preserve state in the case of a reconnection.
///
/// ## Note
///
/// Whenever a [`Gamepad`] connects or disconnects, an information gets printed to the console using the [`info!`] macro.
pub fn gamepad_connection_system(
mut commands: Commands,
mut connection_events: EventReader<GamepadConnectionEvent>,
) {
for connection_event in connection_events.read() {
let id = connection_event.gamepad;
match &connection_event.connection {
GamepadConnection::Connected {
name,
vendor_id,
product_id,
} => {
let Ok(mut gamepad) = commands.get_entity(id) else {
warn!("Gamepad {} removed before handling connection event.", id);
continue;
};
gamepad.insert((
Name::new(name.clone()),
Gamepad {
vendor_id: *vendor_id,
product_id: *product_id,
..Default::default()
},
));
info!("Gamepad {} connected.", id);
}
GamepadConnection::Disconnected => {
let Ok(mut gamepad) = commands.get_entity(id) else {
warn!("Gamepad {} removed before handling disconnection event. You can ignore this if you manually removed it.", id);
continue;
};
// Gamepad entities are left alive to preserve their state (e.g. [`GamepadSettings`]).
// Instead of despawning, we remove Gamepad components that don't need to preserve state
// and re-add them if they ever reconnect.
gamepad.remove::<Gamepad>();
info!("Gamepad {} disconnected.", id);
}
}
}
}
// Note that we don't expose `gilrs::Gamepad::uuid` due to
// https://gitlab.com/gilrs-project/gilrs/-/issues/153.
//
/// The connection status of a gamepad.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub enum GamepadConnection {
/// The gamepad is connected.
Connected {
/// The name of the gamepad.
///
/// This name is generally defined by the OS.
///
/// For example on Windows the name may be "HID-compliant game controller".
name: String,
/// The USB vendor ID as assigned by the USB-IF, if available.
vendor_id: Option<u16>,
/// The USB product ID as assigned by the vendor, if available.
product_id: Option<u16>,
},
/// The gamepad is disconnected.
Disconnected,
}
/// Consumes [`RawGamepadEvent`] events, filters them using their [`GamepadSettings`] and if successful,
/// updates the [`Gamepad`] and sends [`GamepadAxisChangedEvent`], [`GamepadButtonStateChangedEvent`], [`GamepadButtonChangedEvent`] events.
pub fn gamepad_event_processing_system(
mut gamepads: Query<(&mut Gamepad, &GamepadSettings)>,
mut raw_events: EventReader<RawGamepadEvent>,
mut processed_events: EventWriter<GamepadEvent>,
mut processed_axis_events: EventWriter<GamepadAxisChangedEvent>,
mut processed_digital_events: EventWriter<GamepadButtonStateChangedEvent>,
mut processed_analog_events: EventWriter<GamepadButtonChangedEvent>,
) {
// Clear digital buttons state
for (mut gamepad, _) in gamepads.iter_mut() {
gamepad.bypass_change_detection().digital.clear();
}
for event in raw_events.read() {
match event {
// Connections require inserting/removing components so they are done in a separate system
RawGamepadEvent::Connection(send_event) => {
processed_events.write(GamepadEvent::from(send_event.clone()));
}
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent {
gamepad,
axis,
value,
}) => {
let (gamepad, axis, value) = (*gamepad, *axis, *value);
let Ok((mut gamepad_axis, gamepad_settings)) = gamepads.get_mut(gamepad) else {
continue;
};
let Some(filtered_value) = gamepad_settings
.get_axis_settings(axis)
.filter(value, gamepad_axis.get(axis))
else {
continue;
};
gamepad_axis.analog.set(axis, filtered_value.raw);
let send_event =
GamepadAxisChangedEvent::new(gamepad, axis, filtered_value.scaled.to_f32());
processed_axis_events.write(send_event);
processed_events.write(GamepadEvent::from(send_event));
}
RawGamepadEvent::Button(RawGamepadButtonChangedEvent {
gamepad,
button,
value,
}) => {
let (gamepad, button, value) = (*gamepad, *button, *value);
let Ok((mut gamepad_buttons, settings)) = gamepads.get_mut(gamepad) else {
continue;
};
let Some(filtered_value) = settings
.get_button_axis_settings(button)
.filter(value, gamepad_buttons.get(button))
else {
continue;
};
let button_settings = settings.get_button_settings(button);
gamepad_buttons.analog.set(button, filtered_value.raw);
if button_settings.is_released(filtered_value.raw) {
// Check if button was previously pressed
if gamepad_buttons.pressed(button) {
processed_digital_events.write(GamepadButtonStateChangedEvent::new(
gamepad,
button,
ButtonState::Released,
));
}
// We don't have to check if the button was previously pressed here
// because that check is performed within Input<T>::release()
gamepad_buttons.digital.release(button);
} else if button_settings.is_pressed(filtered_value.raw) {
// Check if button was previously not pressed
if !gamepad_buttons.pressed(button) {
processed_digital_events.write(GamepadButtonStateChangedEvent::new(
gamepad,
button,
ButtonState::Pressed,
));
}
gamepad_buttons.digital.press(button);
};
let button_state = if gamepad_buttons.digital.pressed(button) {
ButtonState::Pressed
} else {
ButtonState::Released
};
let send_event = GamepadButtonChangedEvent::new(
gamepad,
button,
button_state,
filtered_value.scaled.to_f32(),
);
processed_analog_events.write(send_event);
processed_events.write(GamepadEvent::from(send_event));
}
}
}
}
/// The intensity at which a gamepad's force-feedback motors may rumble.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Clone)
)]
pub struct GamepadRumbleIntensity {
/// The rumble intensity of the strong gamepad motor.
///
/// Ranges from `0.0` to `1.0`.
///
/// By convention, this is usually a low-frequency motor on the left-hand
/// side of the gamepad, though it may vary across platforms and hardware.
pub strong_motor: f32,
/// The rumble intensity of the weak gamepad motor.
///
/// Ranges from `0.0` to `1.0`.
///
/// By convention, this is usually a high-frequency motor on the right-hand
/// side of the gamepad, though it may vary across platforms and hardware.
pub weak_motor: f32,
}
impl GamepadRumbleIntensity {
/// Rumble both gamepad motors at maximum intensity.
pub const MAX: Self = GamepadRumbleIntensity {
strong_motor: 1.0,
weak_motor: 1.0,
};
/// Rumble the weak motor at maximum intensity.
pub const WEAK_MAX: Self = GamepadRumbleIntensity {
strong_motor: 0.0,
weak_motor: 1.0,
};
/// Rumble the strong motor at maximum intensity.
pub const STRONG_MAX: Self = GamepadRumbleIntensity {
strong_motor: 1.0,
weak_motor: 0.0,
};
/// Creates a new rumble intensity with weak motor intensity set to the given value.
///
/// Clamped within the `0.0` to `1.0` range.
pub const fn weak_motor(intensity: f32) -> Self {
Self {
weak_motor: intensity,
strong_motor: 0.0,
}
}
/// Creates a new rumble intensity with strong motor intensity set to the given value.
///
/// Clamped within the `0.0` to `1.0` range.
pub const fn strong_motor(intensity: f32) -> Self {
Self {
strong_motor: intensity,
weak_motor: 0.0,
}
}
}
/// An event that controls force-feedback rumbling of a [`Gamepad`] [`entity`](Entity).
///
/// # Notes
///
/// Does nothing if the gamepad or platform does not support rumble.
///
/// # Example
///
/// ```
/// # use bevy_input::gamepad::{Gamepad, GamepadRumbleRequest, GamepadRumbleIntensity};
/// # use bevy_ecs::prelude::{EventWriter, Res, Query, Entity, With};
/// # use core::time::Duration;
/// fn rumble_gamepad_system(
/// mut rumble_requests: EventWriter<GamepadRumbleRequest>,
/// gamepads: Query<Entity, With<Gamepad>>,
/// ) {
/// for entity in gamepads.iter() {
/// rumble_requests.write(GamepadRumbleRequest::Add {
/// gamepad: entity,
/// intensity: GamepadRumbleIntensity::MAX,
/// duration: Duration::from_secs_f32(0.5),
/// });
/// }
/// }
/// ```
#[doc(alias = "haptic feedback")]
#[doc(alias = "force feedback")]
#[doc(alias = "vibration")]
#[doc(alias = "vibrate")]
#[derive(Event, Clone)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Clone))]
pub enum GamepadRumbleRequest {
/// Add a rumble to the given gamepad.
///
/// Simultaneous rumble effects add up to the sum of their strengths.
///
/// Consequently, if two rumbles at half intensity are added at the same
/// time, their intensities will be added up, and the controller will rumble
/// at full intensity until one of the rumbles finishes, then the rumble
/// will continue at the intensity of the remaining event.
///
/// To replace an existing rumble, send a [`GamepadRumbleRequest::Stop`] event first.
Add {
/// How long the gamepad should rumble.
duration: Duration,
/// How intense the rumble should be.
intensity: GamepadRumbleIntensity,
/// The gamepad to rumble.
gamepad: Entity,
},
/// Stop all running rumbles on the given [`Entity`].
Stop {
/// The gamepad to stop rumble.
gamepad: Entity,
},
}
impl GamepadRumbleRequest {
/// Get the [`Entity`] associated with this request.
pub fn gamepad(&self) -> Entity {
match self {
Self::Add { gamepad, .. } | Self::Stop { gamepad } => *gamepad,
}
}
}
#[cfg(test)]
mod tests {
use super::{
gamepad_connection_system, gamepad_event_processing_system, AxisSettings,
AxisSettingsError, ButtonAxisSettings, ButtonSettings, ButtonSettingsError, Gamepad,
GamepadAxis, GamepadAxisChangedEvent, GamepadButton, GamepadButtonChangedEvent,
GamepadButtonStateChangedEvent,
GamepadConnection::{Connected, Disconnected},
GamepadConnectionEvent, GamepadEvent, GamepadSettings, RawGamepadAxisChangedEvent,
RawGamepadButtonChangedEvent, RawGamepadEvent,
};
use crate::ButtonState;
use alloc::string::ToString;
use bevy_app::{App, PreUpdate};
use bevy_ecs::entity::Entity;
use bevy_ecs::event::Events;
use bevy_ecs::schedule::IntoScheduleConfigs;
fn test_button_axis_settings_filter(
settings: ButtonAxisSettings,
new_raw_value: f32,
old_raw_value: Option<f32>,
expected: Option<f32>,
) {
let actual = settings
.filter(new_raw_value, old_raw_value)
.map(|f| f.scaled.to_f32());
assert_eq!(
expected, actual,
"Testing filtering for {settings:?} with new_raw_value = {new_raw_value:?}, old_raw_value = {old_raw_value:?}",
);
}
#[test]
fn test_button_axis_settings_default_filter() {
let cases = [
// clamped
(1.0, None, Some(1.0)),
(0.99, None, Some(1.0)),
(0.96, None, Some(1.0)),
(0.95, None, Some(1.0)),
// linearly rescaled from 0.05..=0.95 to 0.0..=1.0
(0.9499, None, Some(0.9998889)),
(0.84, None, Some(0.87777776)),
(0.43, None, Some(0.42222223)),
(0.05001, None, Some(0.000011109644)),
// clamped
(0.05, None, Some(0.0)),
(0.04, None, Some(0.0)),
(0.01, None, Some(0.0)),
(0.0, None, Some(0.0)),
];
for (new_raw_value, old_raw_value, expected) in cases {
let settings = ButtonAxisSettings::default();
test_button_axis_settings_filter(settings, new_raw_value, old_raw_value, expected);
}
}
#[test]
fn test_button_axis_settings_default_filter_with_old_raw_value() {
let cases = [
// 0.43 gets rescaled to 0.42222223 (0.05..=0.95 -> 0.0..=1.0)
(0.43, Some(0.44001), Some(0.42222223)),
(0.43, Some(0.44), None),
(0.43, Some(0.43), None),
(0.43, Some(0.41999), Some(0.42222223)),
(0.43, Some(0.17), Some(0.42222223)),
(0.43, Some(0.84), Some(0.42222223)),
(0.05, Some(0.055), Some(0.0)),
(0.95, Some(0.945), Some(1.0)),
];
for (new_raw_value, old_raw_value, expected) in cases {
let settings = ButtonAxisSettings::default();
test_button_axis_settings_filter(settings, new_raw_value, old_raw_value, expected);
}
}
fn test_axis_settings_filter(
settings: AxisSettings,
new_raw_value: f32,
old_raw_value: Option<f32>,
expected: Option<f32>,
) {
let actual = settings.filter(new_raw_value, old_raw_value);
assert_eq!(
expected, actual.map(|f| f.scaled.to_f32()),
"Testing filtering for {settings:?} with new_raw_value = {new_raw_value:?}, old_raw_value = {old_raw_value:?}",
);
}
#[test]
fn test_axis_settings_default_filter() {
// new (raw), expected (rescaled linearly)
let cases = [
// high enough to round to 1.0
(1.0, Some(1.0)),
(0.99, Some(1.0)),
(0.96, Some(1.0)),
(0.95, Some(1.0)),
// for the following, remember that 0.05 is the "low" value and 0.95 is the "high" value
// barely below the high value means barely below 1 after scaling
(0.9499, Some(0.9998889)), // scaled as: (0.9499 - 0.05) / (0.95 - 0.05)
(0.84, Some(0.87777776)), // scaled as: (0.84 - 0.05) / (0.95 - 0.05)
(0.43, Some(0.42222223)), // scaled as: (0.43 - 0.05) / (0.95 - 0.05)
// barely above the low value means barely above 0 after scaling
(0.05001, Some(0.000011109644)), // scaled as: (0.05001 - 0.05) / (0.95 - 0.05)
// low enough to be rounded to 0 (dead zone)
(0.05, Some(0.0)),
(0.04, Some(0.0)),
(0.01, Some(0.0)),
(0.0, Some(0.0)),
// same exact tests as above, but below 0 (bottom half of the dead zone and live zone)
// low enough to be rounded to -1
(-1.0, Some(-1.0)),
(-0.99, Some(-1.0)),
(-0.96, Some(-1.0)),
(-0.95, Some(-1.0)),
// scaled inputs
(-0.9499, Some(-0.9998889)), // scaled as: (-0.9499 - -0.05) / (-0.95 - -0.05)
(-0.84, Some(-0.87777776)), // scaled as: (-0.84 - -0.05) / (-0.95 - -0.05)
(-0.43, Some(-0.42222226)), // scaled as: (-0.43 - -0.05) / (-0.95 - -0.05)
(-0.05001, Some(-0.000011146069)), // scaled as: (-0.05001 - -0.05) / (-0.95 - -0.05)
// high enough to be rounded to 0 (dead zone)
(-0.05, Some(0.0)),
(-0.04, Some(0.0)),
(-0.01, Some(0.0)),
];
for (new_raw_value, expected) in cases {
let settings = AxisSettings::new(-0.95, -0.05, 0.05, 0.95, 0.01).unwrap();
test_axis_settings_filter(settings, new_raw_value, None, expected);
}
}
#[test]
fn test_axis_settings_default_filter_with_old_raw_values() {
let threshold = 0.01;
// expected values are hardcoded to be rescaled to from 0.05..=0.95 to 0.0..=1.0
// new (raw), old (raw), expected
let cases = [
// enough increase to change
(0.43, Some(0.43 + threshold * 1.1), Some(0.42222223)),
// enough decrease to change
(0.43, Some(0.43 - threshold * 1.1), Some(0.42222223)),
// not enough increase to change
(0.43, Some(0.43 + threshold * 0.9), None),
// not enough decrease to change
(0.43, Some(0.43 - threshold * 0.9), None),
// enough increase to change
(-0.43, Some(-0.43 + threshold * 1.1), Some(-0.42222226)),
// enough decrease to change
(-0.43, Some(-0.43 - threshold * 1.1), Some(-0.42222226)),
// not enough increase to change
(-0.43, Some(-0.43 + threshold * 0.9), None),
// not enough decrease to change
(-0.43, Some(-0.43 - threshold * 0.9), None),
// test upper deadzone logic
(0.05, Some(0.0), None),
(0.06, Some(0.0), Some(0.0111111095)),
// test lower deadzone logic
(-0.05, Some(0.0), None),
(-0.06, Some(0.0), Some(-0.011111081)),
// test upper livezone logic
(0.95, Some(1.0), None),
(0.94, Some(1.0), Some(0.9888889)),
// test lower livezone logic
(-0.95, Some(-1.0), None),
(-0.94, Some(-1.0), Some(-0.9888889)),
];
for (new_raw_value, old_raw_value, expected) in cases {
let settings = AxisSettings::new(-0.95, -0.05, 0.05, 0.95, threshold).unwrap();
test_axis_settings_filter(settings, new_raw_value, old_raw_value, expected);
}
}
#[test]
fn test_button_settings_default_is_pressed() {
let cases = [
(1.0, true),
(0.95, true),
(0.9, true),
(0.8, true),
(0.75, true),
(0.7, false),
(0.65, false),
(0.5, false),
(0.0, false),
];
for (value, expected) in cases {
let settings = ButtonSettings::default();
let actual = settings.is_pressed(value);
assert_eq!(
expected, actual,
"testing ButtonSettings::is_pressed() for value: {value}",
);
}
}
#[test]
fn test_button_settings_default_is_released() {
let cases = [
(1.0, false),
(0.95, false),
(0.9, false),
(0.8, false),
(0.75, false),
(0.7, false),
(0.65, true),
(0.5, true),
(0.0, true),
];
for (value, expected) in cases {
let settings = ButtonSettings::default();
let actual = settings.is_released(value);
assert_eq!(
expected, actual,
"testing ButtonSettings::is_released() for value: {value}",
);
}
}
#[test]
fn test_new_button_settings_given_valid_parameters() {
let cases = [
(1.0, 0.0),
(1.0, 1.0),
(1.0, 0.9),
(0.9, 0.9),
(0.9, 0.0),
(0.0, 0.0),
];
for (press_threshold, release_threshold) in cases {
let bs = ButtonSettings::new(press_threshold, release_threshold);
match bs {
Ok(button_settings) => {
assert_eq!(button_settings.press_threshold, press_threshold);
assert_eq!(button_settings.release_threshold, release_threshold);
}
Err(_) => {
panic!(
"ButtonSettings::new({press_threshold}, {release_threshold}) should be valid"
);
}
}
}
}
#[test]
fn test_new_button_settings_given_invalid_parameters() {
let cases = [
(1.1, 0.0),
(1.1, 1.0),
(1.0, 1.1),
(-1.0, 0.9),
(-1.0, 0.0),
(-1.0, -0.4),
(0.9, 1.0),
(0.0, 0.1),
];
for (press_threshold, release_threshold) in cases {
let bs = ButtonSettings::new(press_threshold, release_threshold);
match bs {
Ok(_) => {
panic!(
"ButtonSettings::new({press_threshold}, {release_threshold}) should be invalid"
);
}
Err(err_code) => match err_code {
ButtonSettingsError::PressThresholdOutOfRange(_press_threshold) => {}
ButtonSettingsError::ReleaseThresholdGreaterThanPressThreshold {
press_threshold: _press_threshold,
release_threshold: _release_threshold,
} => {}
ButtonSettingsError::ReleaseThresholdOutOfRange(_release_threshold) => {}
},
}
}
}
#[test]
fn test_try_out_of_range_axis_settings() {
let mut axis_settings = AxisSettings::default();
assert_eq!(
AxisSettings::new(-0.95, -0.05, 0.05, 0.95, 0.001),
Ok(AxisSettings {
livezone_lowerbound: -0.95,
deadzone_lowerbound: -0.05,
deadzone_upperbound: 0.05,
livezone_upperbound: 0.95,
threshold: 0.001,
})
);
assert_eq!(
Err(AxisSettingsError::LiveZoneLowerBoundOutOfRange(-2.0)),
axis_settings.try_set_livezone_lowerbound(-2.0)
);
assert_eq!(
Err(AxisSettingsError::LiveZoneLowerBoundOutOfRange(0.1)),
axis_settings.try_set_livezone_lowerbound(0.1)
);
assert_eq!(
Err(AxisSettingsError::DeadZoneLowerBoundOutOfRange(-2.0)),
axis_settings.try_set_deadzone_lowerbound(-2.0)
);
assert_eq!(
Err(AxisSettingsError::DeadZoneLowerBoundOutOfRange(0.1)),
axis_settings.try_set_deadzone_lowerbound(0.1)
);
assert_eq!(
Err(AxisSettingsError::DeadZoneUpperBoundOutOfRange(-0.1)),
axis_settings.try_set_deadzone_upperbound(-0.1)
);
assert_eq!(
Err(AxisSettingsError::DeadZoneUpperBoundOutOfRange(1.1)),
axis_settings.try_set_deadzone_upperbound(1.1)
);
assert_eq!(
Err(AxisSettingsError::LiveZoneUpperBoundOutOfRange(-0.1)),
axis_settings.try_set_livezone_upperbound(-0.1)
);
assert_eq!(
Err(AxisSettingsError::LiveZoneUpperBoundOutOfRange(1.1)),
axis_settings.try_set_livezone_upperbound(1.1)
);
axis_settings.set_livezone_lowerbound(-0.7);
axis_settings.set_deadzone_lowerbound(-0.3);
assert_eq!(
Err(
AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound {
livezone_lowerbound: -0.1,
deadzone_lowerbound: -0.3,
}
),
axis_settings.try_set_livezone_lowerbound(-0.1)
);
assert_eq!(
Err(
AxisSettingsError::LiveZoneLowerBoundGreaterThanDeadZoneLowerBound {
livezone_lowerbound: -0.7,
deadzone_lowerbound: -0.9
}
),
axis_settings.try_set_deadzone_lowerbound(-0.9)
);
axis_settings.set_deadzone_upperbound(0.3);
axis_settings.set_livezone_upperbound(0.7);
assert_eq!(
Err(
AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound {
deadzone_upperbound: 0.8,
livezone_upperbound: 0.7
}
),
axis_settings.try_set_deadzone_upperbound(0.8)
);
assert_eq!(
Err(
AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound {
deadzone_upperbound: 0.3,
livezone_upperbound: 0.1
}
),
axis_settings.try_set_livezone_upperbound(0.1)
);
}
struct TestContext {
pub app: App,
}
impl TestContext {
pub fn new() -> Self {
let mut app = App::new();
app.add_systems(
PreUpdate,
(
gamepad_connection_system,
gamepad_event_processing_system.after(gamepad_connection_system),
),
)
.add_event::<GamepadEvent>()
.add_event::<GamepadConnectionEvent>()
.add_event::<RawGamepadButtonChangedEvent>()
.add_event::<GamepadButtonChangedEvent>()
.add_event::<GamepadButtonStateChangedEvent>()
.add_event::<GamepadAxisChangedEvent>()
.add_event::<RawGamepadAxisChangedEvent>()
.add_event::<RawGamepadEvent>();
Self { app }
}
pub fn update(&mut self) {
self.app.update();
}
pub fn send_gamepad_connection_event(&mut self, gamepad: Option<Entity>) -> Entity {
let gamepad = gamepad.unwrap_or_else(|| self.app.world_mut().spawn_empty().id());
self.app
.world_mut()
.resource_mut::<Events<GamepadConnectionEvent>>()
.send(GamepadConnectionEvent::new(
gamepad,
Connected {
name: "Test gamepad".to_string(),
vendor_id: None,
product_id: None,
},
));
gamepad
}
pub fn send_gamepad_disconnection_event(&mut self, gamepad: Entity) {
self.app
.world_mut()
.resource_mut::<Events<GamepadConnectionEvent>>()
.send(GamepadConnectionEvent::new(gamepad, Disconnected));
}
pub fn send_raw_gamepad_event(&mut self, event: RawGamepadEvent) {
self.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send(event);
}
pub fn send_raw_gamepad_event_batch(
&mut self,
events: impl IntoIterator<Item = RawGamepadEvent>,
) {
self.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
}
}
#[test]
fn connection_event() {
let mut ctx = TestContext::new();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
ctx.send_gamepad_connection_event(None);
ctx.update();
assert_eq!(
ctx.app
.world_mut()
.query::<(&Gamepad, &GamepadSettings)>()
.iter(ctx.app.world())
.len(),
1
);
}
#[test]
fn disconnection_event() {
let mut ctx = TestContext::new();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
let entity = ctx.send_gamepad_connection_event(None);
ctx.update();
assert_eq!(
ctx.app
.world_mut()
.query::<(&Gamepad, &GamepadSettings)>()
.iter(ctx.app.world())
.len(),
1
);
ctx.send_gamepad_disconnection_event(entity);
ctx.update();
// Gamepad component should be removed
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.is_err());
// Settings should be kept
assert!(ctx
.app
.world_mut()
.query::<&GamepadSettings>()
.get(ctx.app.world(), entity)
.is_ok());
// Mistakenly sending a second disconnection event shouldn't break anything
ctx.send_gamepad_disconnection_event(entity);
ctx.update();
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.is_err());
assert!(ctx
.app
.world_mut()
.query::<&GamepadSettings>()
.get(ctx.app.world(), entity)
.is_ok());
}
#[test]
fn connection_disconnection_frame_event() {
let mut ctx = TestContext::new();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
let entity = ctx.send_gamepad_connection_event(None);
ctx.send_gamepad_disconnection_event(entity);
ctx.update();
// Gamepad component should be removed
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.is_err());
// Settings should be kept
assert!(ctx
.app
.world_mut()
.query::<&GamepadSettings>()
.get(ctx.app.world(), entity)
.is_ok());
}
#[test]
fn reconnection_event() {
let button_settings = ButtonSettings::new(0.7, 0.2).expect("correct parameters");
let mut ctx = TestContext::new();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
let entity = ctx.send_gamepad_connection_event(None);
ctx.update();
let mut settings = ctx
.app
.world_mut()
.query::<&mut GamepadSettings>()
.get_mut(ctx.app.world_mut(), entity)
.expect("be alive");
assert_ne!(settings.default_button_settings, button_settings);
settings.default_button_settings = button_settings.clone();
ctx.send_gamepad_disconnection_event(entity);
ctx.update();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
ctx.send_gamepad_connection_event(Some(entity));
ctx.update();
let settings = ctx
.app
.world_mut()
.query::<&GamepadSettings>()
.get(ctx.app.world(), entity)
.expect("be alive");
assert_eq!(settings.default_button_settings, button_settings);
}
#[test]
fn reconnection_same_frame_event() {
let mut ctx = TestContext::new();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
let entity = ctx.send_gamepad_connection_event(None);
ctx.send_gamepad_disconnection_event(entity);
ctx.update();
assert_eq!(
ctx.app
.world_mut()
.query::<&Gamepad>()
.iter(ctx.app.world())
.len(),
0
);
assert!(ctx
.app
.world_mut()
.query::<(Entity, &GamepadSettings)>()
.get(ctx.app.world(), entity)
.is_ok());
}
#[test]
fn gamepad_axis_valid() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch([
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickY,
0.5,
)),
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::RightStickX,
0.6,
)),
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::RightZ,
-0.4,
)),
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::RightStickY,
-0.8,
)),
]);
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>()
.len(),
4
);
}
#[test]
fn gamepad_axis_threshold_filter() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let settings = GamepadSettings::default().default_axis_settings;
// Set of events to ensure they are being properly filtered
let base_value = 0.5;
let events = [
// Event above threshold
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
base_value,
)),
// Event below threshold, should be filtered
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
base_value + settings.threshold - 0.01,
)),
// Event above threshold
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
base_value + settings.threshold + 0.01,
)),
];
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>()
.len(),
2
);
}
#[test]
fn gamepad_axis_deadzone_filter() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let settings = GamepadSettings::default().default_axis_settings;
// Set of events to ensure they are being properly filtered
let events = [
// Event below deadzone upperbound should be filtered
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.deadzone_upperbound - 0.01,
)),
// Event above deadzone lowerbound should be filtered
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.deadzone_lowerbound + 0.01,
)),
];
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>()
.len(),
0
);
}
#[test]
fn gamepad_axis_deadzone_rounded() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let settings = GamepadSettings::default().default_axis_settings;
// Set of events to ensure they are being properly filtered
let events = [
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
1.0,
)),
// Event below deadzone upperbound should be rounded to 0
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.deadzone_upperbound - 0.01,
)),
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
1.0,
)),
// Event above deadzone lowerbound should be rounded to 0
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.deadzone_lowerbound + 0.01,
)),
];
let results = [1.0, 0.0, 1.0, 0.0];
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
ctx.update();
let events = ctx
.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>();
let mut event_reader = events.get_cursor();
for (event, result) in event_reader.read(events).zip(results) {
assert_eq!(event.value, result);
}
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>()
.len(),
4
);
}
#[test]
fn gamepad_axis_livezone_filter() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let settings = GamepadSettings::default().default_axis_settings;
// Set of events to ensure they are being properly filtered
let events = [
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
1.0,
)),
// Event above livezone upperbound should be filtered
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.livezone_upperbound + 0.01,
)),
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
-1.0,
)),
// Event below livezone lowerbound should be filtered
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.livezone_lowerbound - 0.01,
)),
];
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>()
.len(),
2
);
}
#[test]
fn gamepad_axis_livezone_rounded() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let settings = GamepadSettings::default().default_axis_settings;
// Set of events to ensure they are being properly filtered
let events = [
// Event above livezone upperbound should be rounded to 1
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.livezone_upperbound + 0.01,
)),
// Event below livezone lowerbound should be rounded to -1
RawGamepadEvent::Axis(RawGamepadAxisChangedEvent::new(
entity,
GamepadAxis::LeftStickX,
settings.livezone_lowerbound - 0.01,
)),
];
let results = [1.0, -1.0];
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
ctx.update();
let events = ctx
.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>();
let mut event_reader = events.get_cursor();
for (event, result) in event_reader.read(events).zip(results) {
assert_eq!(event.value, result);
}
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadAxisChangedEvent>>()
.len(),
2
);
}
#[test]
fn gamepad_buttons_pressed() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let digital_settings = GamepadSettings::default().default_button_settings;
let events = [RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.press_threshold,
))];
ctx.app
.world_mut()
.resource_mut::<Events<RawGamepadEvent>>()
.send_batch(events);
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>()
.len(),
1
);
let events = ctx
.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>();
let mut event_reader = events.get_cursor();
for event in event_reader.read(events) {
assert_eq!(event.button, GamepadButton::DPadDown);
assert_eq!(event.state, ButtonState::Pressed);
}
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.pressed(GamepadButton::DPadDown));
ctx.app
.world_mut()
.resource_mut::<Events<GamepadButtonStateChangedEvent>>()
.clear();
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>()
.len(),
0
);
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.pressed(GamepadButton::DPadDown));
}
#[test]
fn gamepad_buttons_just_pressed() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let digital_settings = GamepadSettings::default().default_button_settings;
ctx.send_raw_gamepad_event(RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.press_threshold,
)));
ctx.update();
// Check it is flagged for this frame
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.just_pressed(GamepadButton::DPadDown));
ctx.update();
//Check it clears next frame
assert!(!ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.just_pressed(GamepadButton::DPadDown));
}
#[test]
fn gamepad_buttons_released() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let digital_settings = GamepadSettings::default().default_button_settings;
ctx.send_raw_gamepad_event(RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.press_threshold,
)));
ctx.update();
ctx.app
.world_mut()
.resource_mut::<Events<GamepadButtonStateChangedEvent>>()
.clear();
ctx.send_raw_gamepad_event(RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.release_threshold - 0.01,
)));
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>()
.len(),
1
);
let events = ctx
.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>();
let mut event_reader = events.get_cursor();
for event in event_reader.read(events) {
assert_eq!(event.button, GamepadButton::DPadDown);
assert_eq!(event.state, ButtonState::Released);
}
assert!(!ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.pressed(GamepadButton::DPadDown));
ctx.app
.world_mut()
.resource_mut::<Events<GamepadButtonStateChangedEvent>>()
.clear();
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>()
.len(),
0
);
}
#[test]
fn gamepad_buttons_just_released() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let digital_settings = GamepadSettings::default().default_button_settings;
ctx.send_raw_gamepad_event_batch([
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.press_threshold,
)),
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.release_threshold - 0.01,
)),
]);
ctx.update();
// Check it is flagged for this frame
assert!(ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.just_released(GamepadButton::DPadDown));
ctx.update();
//Check it clears next frame
assert!(!ctx
.app
.world_mut()
.query::<&Gamepad>()
.get(ctx.app.world(), entity)
.unwrap()
.just_released(GamepadButton::DPadDown));
}
#[test]
fn gamepad_buttons_axis() {
let mut ctx = TestContext::new();
// Create test gamepad
let entity = ctx.send_gamepad_connection_event(None);
let digital_settings = GamepadSettings::default().default_button_settings;
let analog_settings = GamepadSettings::default().default_button_axis_settings;
// Test events
let events = [
// Should trigger event
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.press_threshold,
)),
// Should trigger event
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.release_threshold,
)),
// Shouldn't trigger a state changed event
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.release_threshold - analog_settings.threshold * 1.01,
)),
// Shouldn't trigger any event
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.release_threshold - (analog_settings.threshold * 1.5),
)),
// Shouldn't trigger a state changed event
RawGamepadEvent::Button(RawGamepadButtonChangedEvent::new(
entity,
GamepadButton::DPadDown,
digital_settings.release_threshold - (analog_settings.threshold * 2.02),
)),
];
ctx.send_raw_gamepad_event_batch(events);
ctx.update();
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadButtonStateChangedEvent>>()
.len(),
2
);
assert_eq!(
ctx.app
.world()
.resource::<Events<GamepadButtonChangedEvent>>()
.len(),
4
);
}
}